Square Root Modified Bryson-Frazier Smoother

We derive here an algorithm for a complete square root implementation of the modified Bryson-Frazier (MBF) smoother. The MBF algorithm computes the smoothed covariance as the difference of two symmetric matrices. Numerical errors in this differencing can result in the covariance matrix not being pos...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on automatic control Ročník 56; číslo 2; s. 452 - 456
Hlavní autor: Gibbs, R G
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY IEEE 01.02.2011
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9286, 1558-2523
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We derive here an algorithm for a complete square root implementation of the modified Bryson-Frazier (MBF) smoother. The MBF algorithm computes the smoothed covariance as the difference of two symmetric matrices. Numerical errors in this differencing can result in the covariance matrix not being positive semi-definite. Earlier algorithms implemented the computation of intermediate quantities in square root form but still computed the smoothed covariance as the difference of two matrices. We show how to compute the square root of the smoothed covariance by solving an equation in the form CCT = AAT - BBT using QR decomposition with hyperbolic Householder transformations.
AbstractList We derive here an algorithm for a complete square root implementation of the modified Bryson-Frazier (MBF) smoother. The MBF algorithm computes the smoothed covariance as the difference of two symmetric matrices. Numerical errors in this differencing can result in the covariance matrix not being positive semi-definite. Earlier algorithms implemented the computation of intermediate quantities in square root form but still computed the smoothed covariance as the difference of two matrices. We show how to compute the square root of the smoothed covariance by solving an equation in the form CC T = AA T - BB T using QR decomposition with hyperbolic Householder transformations.
We derive here an algorithm for a complete square root implementation of the modified Bryson-Frazier (MBF) smoother. The MBF algorithm computes the smoothed covariance as the difference of two symmetric matrices. Numerical errors in this differencing can result in the covariance matrix not being positive semi-definite. Earlier algorithms implemented the computation of intermediate quantities in square root form but still computed the smoothed covariance as the difference of two matrices. We show how to compute the square root of the smoothed covariance by solving an equation in the form using QR decomposition with hyperbolic Householder transformations.
We derive here an algorithm for a complete square root implementation of the modified Bryson-Frazier (MBF) smoother. The MBF algorithm computes the smoothed covariance as the difference of two symmetric matrices. Numerical errors in this differencing can result in the covariance matrix not being positive semi-definite. Earlier algorithms implemented the computation of intermediate quantities in square root form but still computed the smoothed covariance as the difference of two matrices. We show how to compute the square root of the smoothed covariance by solving an equation in the form CCT = AAT - BBT using QR decomposition with hyperbolic Householder transformations.
Author Gibbs, R G
Author_xml – sequence: 1
  givenname: R G
  surname: Gibbs
  fullname: Gibbs, R G
  email: Richard.Gibbs@jhuapl.edu
  organization: Appl. Phys. Lab., Johns Hopkins Univ., Laurel, MD, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23938430$$DView record in Pascal Francis
BookMark eNp9kEtLAzEUhYNUsK3uBTeDILhwah6TSWZZi1WhIti6DunMDaZMJ20ys6i_3pRWFy5cXQ73O_dxBqjXuAYQuiR4RAgu7hfjyYjiqCiWheDsBPUJ5zKlnLIe6mNMZFpQmZ-hQQirKPMsI310N9922kPy7lybvLrKGgtV8uB3wTXp1OsvCz6Zr2P3E_w5OjW6DnBxrEP0MX1cTJ7T2dvTy2Q8S0vGWZsaI3OeEQlMG0q5EMYwVum8pLisOF1SgUGaClfZEnglsZCFYZwKkJjpgjM2RLeHuRvvth2EVq1tKKGudQOuC4rkgsS_hCARvf6Drlznm3idkpywuBzjCN0cIR1KXRuvm9IGtfF2rf1OUVYwmbE9lx-40rsQPBhV2la31jWt17ZWBKt91ipmrfZZq2PW0Yj_GH9m_2O5OlgsAPziPMcFkQX7BljaiG4
CODEN IETAA9
CitedBy_id crossref_primary_10_1109_TSP_2011_2172432
crossref_primary_10_1016_j_ifacol_2017_08_323
crossref_primary_10_1134_S0005117914080050
crossref_primary_10_1002_acs_1252
crossref_primary_10_1109_LSP_2021_3136130
crossref_primary_10_1007_s11768_025_00252_y
crossref_primary_10_1016_j_automatica_2013_07_013
crossref_primary_10_1007_s10586_018_2652_7
crossref_primary_10_1109_TAC_2013_2270074
crossref_primary_10_1109_TAC_2012_2231572
crossref_primary_10_1109_TIM_2021_3073293
crossref_primary_10_1109_TAC_2013_2259093
crossref_primary_10_1109_TAC_2022_3230368
Cites_doi 10.1109/TASSP.1986.1164998
10.1109/9.376092
10.1080/00207179508921582
10.2514/6.1972-877
10.1109/9.489212
10.1080/00207177308932487
10.1007/BF00929358
10.2514/3.3166
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2011
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2011
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
F28
DOI 10.1109/TAC.2010.2089753
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database
Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1558-2523
EndPage 456
ExternalDocumentID 2264531631
23938430
10_1109_TAC_2010_2089753
5609189
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
~02
AAYXX
CITATION
IQODW
RIG
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
F28
ID FETCH-LOGICAL-c353t-ff865418e3af22577ff33da6c20cd52b270e8fd0d4be5d80789f3527e803a9533
IEDL.DBID RIE
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000287084300027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9286
IngestDate Sun Sep 28 07:20:10 EDT 2025
Mon Jun 30 10:10:55 EDT 2025
Mon Jul 21 09:13:46 EDT 2025
Sat Nov 29 02:25:55 EST 2025
Tue Nov 18 20:48:39 EST 2025
Wed Aug 27 02:48:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Covariance
Symmetric matrix
Kalman filter
Estimation
Positive definite matrix
Householder transformation
Kalman filtering
Covariance matrix
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c353t-ff865418e3af22577ff33da6c20cd52b270e8fd0d4be5d80789f3527e803a9533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 851357700
PQPubID 85475
PageCount 5
ParticipantIDs crossref_citationtrail_10_1109_TAC_2010_2089753
pascalfrancis_primary_23938430
proquest_miscellaneous_1671252771
proquest_journals_851357700
crossref_primary_10_1109_TAC_2010_2089753
ieee_primary_5609189
PublicationCentury 2000
PublicationDate 2011-02-01
PublicationDateYYYYMMDD 2011-02-01
PublicationDate_xml – month: 02
  year: 2011
  text: 2011-02-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on automatic control
PublicationTitleAbbrev TAC
PublicationYear 2011
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref8
ref7
bierman (ref4) 1977
anderson (ref3) 1979
ref6
ref11
ref10
ref5
ref2
ref1
bryson (ref9) 1969
References_xml – ident: ref11
  doi: 10.1109/TASSP.1986.1164998
– ident: ref5
  doi: 10.1109/9.376092
– ident: ref6
  doi: 10.1080/00207179508921582
– year: 1969
  ident: ref9
  publication-title: Applied Optimal Control
– ident: ref2
  doi: 10.2514/6.1972-877
– year: 1979
  ident: ref3
  publication-title: Optimal Filtering
– ident: ref7
  doi: 10.1109/9.489212
– ident: ref8
  doi: 10.1080/00207177308932487
– ident: ref1
  doi: 10.1007/BF00929358
– year: 1977
  ident: ref4
  publication-title: Factorization Methods for Discrete Sequential Estimation
– ident: ref10
  doi: 10.2514/3.3166
SSID ssj0016441
Score 2.079689
Snippet We derive here an algorithm for a complete square root implementation of the modified Bryson-Frazier (MBF) smoother. The MBF algorithm computes the smoothed...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 452
SubjectTerms Algorithms
Applied sciences
Automatic control
Computation
Computer science; control theory; systems
Control theory. Systems
Covariance
Covariance matrix
Equations
Estimation
Exact sciences and technology
Kalman filtering
Kalman filters
Mathematical analysis
Mathematical model
Matrices
Matrix decomposition
Matrix methods
Modelling and identification
Roots
Smoothing methods
Symmetric matrices
Title Square Root Modified Bryson-Frazier Smoother
URI https://ieeexplore.ieee.org/document/5609189
https://www.proquest.com/docview/851357700
https://www.proquest.com/docview/1671252771
Volume 56
WOSCitedRecordID wos000287084300027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2523
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016441
  issn: 0018-9286
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB508aAHX6u4rkoFL4J102TbpMd1Ubwo4gO8lTaZgKBb3Yegv95JWouiCN4Kk9LyJZP5knkBHFiOSYRKh3GibNiPBYZpjDp0LWoKw0ySGuObTcjLS3V_n17NwVGTC4OIPvgMj92j9-WbUs_cVVmPrHMaqXQe5qVMqlytxmPg7Hq165ICc9W4JFnaux0MqxguzpTLI_1mgnxPFRcRmU8IFFt1s_ixMXtrc7byv_9cheWaVQaDahmswRyO1mHpS63BNhzdvNBqwOC6LKfBRWkeLJHP4GT8RoQ7JPr6TvYxuHkqfUbWBtydnd4Oz8O6VUKoRSymobXKNfRWKHJLGiqltUKYPNGcaRPzgkuGyhL2_QJj42vMW6JeEhUTuYsw3YTWqBzhFgS6EInKU54YRUczhUVsdRTn1kpuNAk70PtEL9N1HXHXzuIx8-cJlmaEd-bwzmq8O3DYvPFc1dD4Y2zb4dmMq6HswN63CWrkroKb6gvWge7njGW1Fk4yYpOCsGAk3W-kpD7OJ5KPsJxNsiiRRPG4lNH271_uwmJ1jewiWHagNR3PcBcW9Ov0YTLe82vwA2ch2BQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS-QwEB_8AvVBTz251dOrcC-CvU2TbZM-eqIo6iK6gm-hTSYg6Fb348D762-S1qLcIdxbYVJafslkJpmPH8B3xzFLUJk4zZSLe6nAOE_RxJ6iprTMZrm1gWxC9vvq7i6_moGDthYGEUPyGf7wjyGWbysz9VdlXbLOeaLyWZj3zFlNtVYbM_CWvd53SYW5aoOSLO8ODo_qLC7OlK8kfWeEAquKz4ksxgSLq_ks_tqag705Wf2_P_0EK41fGR3WC2ENZnC4Dstvug1uwMHNM60HjK6rahJdVvbekfsZ_Ry9kMsdkwP7myxkdPNYhZqsz3B7cjw4Oo0bsoTYiFRMYueUp_RWKApHOiqlc0LYIjOcGZvykkuGyhH6vRJTG7rMO3K-JComCp9juglzw2qIXyAypchUkfPMKjqcKSxTZ5K0cE5ya0jYge4reto0ncQ9ocWDDicKlmvCW3u8dYN3B_bbN57qLhofjN3weLbjGig7sPtuglq57-GmeoJ1YPt1xnSjh2NN_qQgLBhJ91opKZCPihRDrKZjnWSSnDwuZbL17y9_g8XTweWFvjjrn2_DUn2p7PNZvsLcZDTFHVgwvyb349FuWI9_ANLv210
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Square+Root+Modified+Bryson%E2%80%93Frazier+Smoother&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Gibbs%2C+Richard+G.&rft.date=2011-02-01&rft.issn=0018-9286&rft.eissn=1558-2523&rft.volume=56&rft.issue=2&rft.spage=452&rft.epage=456&rft_id=info:doi/10.1109%2FTAC.2010.2089753&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAC_2010_2089753
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon