Forecast Analysis of Gross Regional Domestic Product based on the Linear Regression Algorithm Technique

Statistical data are indispensable for macro-economic planning activities such as the Gross Regional Domestic Product (GRDP) where data can determine the economic development strategies and policies that have been adopted and can be continued in the future. This study draws on quantitative data sour...

Full description

Saved in:
Bibliographic Details
Published in:TEM Journal Vol. 10; no. 2; pp. 620 - 626
Main Authors: Delimah Pasaribu, Veta Lidya, Septiani, Fauziah, Rahayu, Suharni, Lismiatun, L, Arief, Muhammad, Juanda, Angga, Sunaryo, M. Yusuf, Rahim, Robbi
Format: Journal Article
Language:English
Published: Novi Pazar UIKTEN - Association for Information Communication Technology Education and Science 01.05.2021
Subjects:
ISSN:2217-8309, 2217-8333
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Statistical data are indispensable for macro-economic planning activities such as the Gross Regional Domestic Product (GRDP) where data can determine the economic development strategies and policies that have been adopted and can be continued in the future. This study draws on quantitative data sources from the Regional Statistical Agency of Jakarta for the period 2017-2019, the subject of the Gross Regional Domestic Product based on current business prices. The aim of this research is to test and predict the level of accuracy of GRDP at current prices based on business fields using the Linear Regression method supported by Rapid Miner software. The results show that the validated Linear Regression algorithm with K-Fold values from 2 to 10 with the sampling type linear sampling and shuffled sampling can be used and implemented with the smallest Root Mean Square Error value of IDR 9,977,431 at k = 10 for the sampling.
AbstractList Statistical data are indispensable for macro-economic planning activities such as the Gross Regional Domestic Product (GRDP) where data can determine the economic development strategies and policies that have been adopted and can be continued in the future. This study draws on quantitative data sources from the Regional Statistical Agency of Jakarta for the period 2017-2019, the subject of the Gross Regional Domestic Product based on current business prices. The aim of this research is to test and predict the level of accuracy of GRDP at current prices based on business fields using the Linear Regression method supported by Rapid Miner software. The results show that the validated Linear Regression algorithm with K-Fold values from 2 to 10 with the sampling type linear sampling and shuffled sampling can be used and implemented with the smallest Root Mean Square Error value of IDR 9,977,431 at k = 10 for the sampling.
Author Rahim, Robbi
Lismiatun, L
Juanda, Angga
Delimah Pasaribu, Veta Lidya
Sunaryo, M. Yusuf
Septiani, Fauziah
Rahayu, Suharni
Arief, Muhammad
Author_xml – sequence: 1
  fullname: Delimah Pasaribu, Veta Lidya
– sequence: 2
  fullname: Septiani, Fauziah
– sequence: 3
  fullname: Rahayu, Suharni
– sequence: 4
  fullname: Lismiatun, L
– sequence: 5
  fullname: Arief, Muhammad
– sequence: 6
  fullname: Juanda, Angga
– sequence: 7
  fullname: Sunaryo, M. Yusuf
– sequence: 8
  fullname: Rahim, Robbi
BookMark eNptkEFPGzEQhS2USqTAhTMHS71VLHjs9Tp7jFKglYKKUDhbE-9s4mizTm3nwL_vhiAqVZxmNPrezJv3lY360BNjlyBuYFJKuF3cPYKQBZgTNpYSTDFRSo0-elGfsouUNkIIMFWpdDlmq_sQyWHKfNpj95p84qHlDzGkxJ9p5cMw5T_CllL2jj_F0Oxd5ktM1PDQ87wmPvc9YTzQkVIaFHzarUL0eb3lC3Lr3v_Z0zn70mKX6OK9nrGX-7vF7Gcx__3wazadF05plQtCo-oK2goRXUkoAHXtzKRVtWix0XqpwS3BGC3QaF0uDUBZgmxgglWjKnXGvh337mIYzqZsN2EfhyeSlUZIKUUlDpQ4Uu7waKTWOp8xD95zRN9ZEPYtUXtM1IIZJN__k-yi32J8_Ry-foeJQvfPAsYhxY5sE5yttQal7a5pB_zqU_yIqL_3D5Em
CitedBy_id crossref_primary_10_20525_ijrbs_v12i6_2833
crossref_primary_10_15826_jtr_2025_11_1_200
ContentType Journal Article
Copyright 2021. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AE2
BIXPP
REL
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.18421/TEM102-17
DatabaseName Central and Eastern European Online Library (C.E.E.O.L.) (DFG Nationallizenzen)
CEEOL: Open Access
Central and Eastern European Online Library - CEEOL Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One
Coronavirus Research Database
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Forecast Analysis of Gross Regional Domestic Product based on the Linear Regression Algorithm Technique
EISSN 2217-8333
EndPage 626
ExternalDocumentID 10_18421_TEM102_17
955135
GroupedDBID 5VS
8FE
8FG
ABDBF
ACUHS
ADBBV
AE2
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BIXPP
CCPQU
EN8
EOJEC
ESX
HCIFZ
IPNFZ
KQ8
M~E
OBODZ
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
REL
RIG
AAYXX
CITATION
ABUWG
AZQEC
COVID
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c353t-ea73961f6aaac4ea01a59c78f390fad55b51cb17750a7554b7114412d18a6d363
IEDL.DBID P5Z
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000657179100017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2217-8309
IngestDate Sun Nov 30 05:31:02 EST 2025
Tue Nov 18 21:15:19 EST 2025
Sat Nov 29 06:20:23 EST 2025
Tue Nov 07 20:43:29 EST 2023
Tue Oct 28 18:53:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Data Mining, Linear Regression
Root Mean Square Error
Gross Regional Domestic Product
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c353t-ea73961f6aaac4ea01a59c78f390fad55b51cb17750a7554b7114412d18a6d363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2702220606?pq-origsite=%requestingapplication%
PQID 2702220606
PQPubID 2046213
PageCount 7
ParticipantIDs proquest_journals_2702220606
ceeol_journals_955135
crossref_citationtrail_10_18421_TEM102_17
crossref_primary_10_18421_TEM102_17
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Novi Pazar
PublicationPlace_xml – name: Novi Pazar
PublicationSubtitle TEM Journal
PublicationTitle TEM Journal
PublicationTitleAlternate TEM Journal
PublicationYear 2021
Publisher UIKTEN - Association for Information Communication Technology Education and Science
Publisher_xml – name: UIKTEN - Association for Information Communication Technology Education and Science
SSID ssj0001764354
Score 2.1494675
Snippet Statistical data are indispensable for macro-economic planning activities such as the Gross Regional Domestic Product (GRDP) where data can determine the...
SourceID proquest
crossref
ceeol
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 620
SubjectTerms Algorithms
Data mining
Datasets
Experiments
Fisheries
GDP
Gross Domestic Product
ICT Information and Communications Technologies
Mean square errors
Prices
Regression analysis
Retailing industry
Software
Water supply
Title Forecast Analysis of Gross Regional Domestic Product based on the Linear Regression Algorithm Technique
URI https://www.ceeol.com//search/article-detail?id=955135
https://www.proquest.com/docview/2702220606
Volume 10
WOSCitedRecordID wos000657179100017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2217-8333
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001764354
  issn: 2217-8309
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2217-8333
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001764354
  issn: 2217-8309
  databaseCode: P5Z
  dateStart: 20130801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2217-8333
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001764354
  issn: 2217-8309
  databaseCode: BENPR
  dateStart: 20130801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2217-8333
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001764354
  issn: 2217-8309
  databaseCode: PIMPY
  dateStart: 20130801
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFH5ilMM4MMaYVuiQJeDAISK26zg5TbAVNgmqCJWJ7RI5jt1NKkmh2f7--SXOCgjtsmOSJ8XK8_vpl-8DOKCGSWqMCJiKomCotPODkbSByKWNk7zQvGnof72Q43F8c5OkvuG28GOVnU9sHHVRaeyRH-N_U4yFLt_-ML8LkDUKT1c9hcYL6CFKAlI3pOL7ssciXbxtiNAYQ2fMw8QjlMZDRo8no0uK1B4S4TmNqWaPY9Nj19zEm7NX_7vSTdjwmSY5abfGa1gx5RasP8AffANTJObUalGTDpuEVJac4-LIlZk2XULyqbpFJA5N0hYclmDgK0hVEpc7ElfLOltB6XagtiQns6lbTf3jlkw6fNhtuD4bTT5-DjzzQqC54HVglORJRG2klNJDo0KqRKJlbHkSWlUIkQuqEbhKhEq6hCSXFAszVtBYRQWP-FtYLavSvAPCubRCSUR6t670DNUw1nkRRrlOuJVx2Ift5ttn3nYWWYKcM6IPh0_ue1PKkC6llcnmhe3DUaezTHtYc2TXmGVY3qCes1bPGZV92P8rO2_BPJ6VGnR6Xb58qdSdfz_ehZcMx16amcgBrNb3v8x7WNO_65-L-z3onY7G6dVes0_dVfrlMv32B3XQ8Ic
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLRJwoHwUsVDAEvTAIWpsx3FyQKiiLV11d7VCCyon13HsBWmbLN1A1T_Fb8STjy5FiFsPXJNRItsvM57J-D2AV9QySa0VAdNxHETaeD8YSxeITLokzXLD64L-p6Ecj5Pj43SyBj-7szDYVtn5xNpR56XBGvkOnptiLPT77beLbwGqRuHf1U5Co4HFkb049ynb8s1gz6_vNmMH-9N3h0GrKhAYLngVWC15GlMXa61NZHVItUiNTJzP_p3OhcgENUjKJEItfbDNJMWkg-U00XHOY-6fewPWIwR7D9Yng9Hk86qqI32Er6XXGEP3z8O05URNIkZ3pvsjimIiEglBrS3nV6Ph1WBQR7iDjf9tbu7B3XYvTXYb8N-HNVs8gDu_MSw-hBlKjxq9rEjHvkJKR97jZJAPdlbXQcleeYpcI4ZMGvpbgqE9J2VB_O6Y-GzdDw2tm5bhguzOZ3701ZdTMu0YcDfh47WM9BH0irKwj4FwLp3QErnsnU-uQx0lJsvDODMpdzIJ-7BZr7VqvcNSpaiqI_qw_cf11lkoFIRpbNQid3143WFEmZa4HfVD5goTOMSVanClqOzDy0vbRUNX8lerrQ5Hq5evQPTk37dfwK3D6WiohoPx0VO4zbDJp-4A3YJedfbdPoOb5kf1dXn2vP06CJxcN-h-AXsBSos
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forecast+Analysis+of+Gross+Regional+Domestic+Product+based+on+the+Linear+Regression+Algorithm+Technique&rft.jtitle=TEM+Journal&rft.au=Delimah+Pasaribu%2C+Veta+Lidya&rft.au=Septiani%2C+Fauziah&rft.au=Rahayu%2C+Suharni&rft.au=Lismiatun%2C+L&rft.date=2021-05-01&rft.pub=UIKTEN+-+Association+for+Information+Communication+Technology+Education+and+Science&rft.issn=2217-8309&rft.eissn=2217-8333&rft.volume=10&rft.issue=2&rft.spage=620&rft.epage=626&rft_id=info:doi/10.18421%2FTEM102-17&rft.externalDocID=955135
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.ceeol.com%2F%2Fapi%2Fimage%2Fgetissuecoverimage%3Fid%3Dpicture_2021_60824.jpg