Forecast Analysis of Gross Regional Domestic Product based on the Linear Regression Algorithm Technique
Statistical data are indispensable for macro-economic planning activities such as the Gross Regional Domestic Product (GRDP) where data can determine the economic development strategies and policies that have been adopted and can be continued in the future. This study draws on quantitative data sour...
Saved in:
| Published in: | TEM Journal Vol. 10; no. 2; pp. 620 - 626 |
|---|---|
| Main Authors: | , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Novi Pazar
UIKTEN - Association for Information Communication Technology Education and Science
01.05.2021
|
| Subjects: | |
| ISSN: | 2217-8309, 2217-8333 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Statistical data are indispensable for macro-economic planning activities such as the Gross Regional Domestic Product (GRDP) where data can determine the economic development strategies and policies that have been adopted and can be continued in the future. This study draws on quantitative data sources from the Regional Statistical Agency of Jakarta for the period 2017-2019, the subject of the Gross Regional Domestic Product based on current business prices. The aim of this research is to test and predict the level of accuracy of GRDP at current prices based on business fields using the Linear Regression method supported by Rapid Miner software. The results show that the validated Linear Regression algorithm with K-Fold values from 2 to 10 with the sampling type linear sampling and shuffled sampling can be used and implemented with the smallest Root Mean Square Error value of IDR 9,977,431 at k = 10 for the sampling. |
|---|---|
| AbstractList | Statistical data are indispensable for macro-economic planning activities such as the Gross Regional Domestic Product (GRDP) where data can determine the economic development strategies and policies that have been adopted and can be continued in the future. This study draws on quantitative data sources from the Regional Statistical Agency of Jakarta for the period 2017-2019, the subject of the Gross Regional Domestic Product based on current business prices. The aim of this research is to test and predict the level of accuracy of GRDP at current prices based on business fields using the Linear Regression method supported by Rapid Miner software. The results show that the validated Linear Regression algorithm with K-Fold values from 2 to 10 with the sampling type linear sampling and shuffled sampling can be used and implemented with the smallest Root Mean Square Error value of IDR 9,977,431 at k = 10 for the sampling. |
| Author | Rahim, Robbi Lismiatun, L Juanda, Angga Delimah Pasaribu, Veta Lidya Sunaryo, M. Yusuf Septiani, Fauziah Rahayu, Suharni Arief, Muhammad |
| Author_xml | – sequence: 1 fullname: Delimah Pasaribu, Veta Lidya – sequence: 2 fullname: Septiani, Fauziah – sequence: 3 fullname: Rahayu, Suharni – sequence: 4 fullname: Lismiatun, L – sequence: 5 fullname: Arief, Muhammad – sequence: 6 fullname: Juanda, Angga – sequence: 7 fullname: Sunaryo, M. Yusuf – sequence: 8 fullname: Rahim, Robbi |
| BookMark | eNptkEFPGzEQhS2USqTAhTMHS71VLHjs9Tp7jFKglYKKUDhbE-9s4mizTm3nwL_vhiAqVZxmNPrezJv3lY360BNjlyBuYFJKuF3cPYKQBZgTNpYSTDFRSo0-elGfsouUNkIIMFWpdDlmq_sQyWHKfNpj95p84qHlDzGkxJ9p5cMw5T_CllL2jj_F0Oxd5ktM1PDQ87wmPvc9YTzQkVIaFHzarUL0eb3lC3Lr3v_Z0zn70mKX6OK9nrGX-7vF7Gcx__3wazadF05plQtCo-oK2goRXUkoAHXtzKRVtWix0XqpwS3BGC3QaF0uDUBZgmxgglWjKnXGvh337mIYzqZsN2EfhyeSlUZIKUUlDpQ4Uu7waKTWOp8xD95zRN9ZEPYtUXtM1IIZJN__k-yi32J8_Ry-foeJQvfPAsYhxY5sE5yttQal7a5pB_zqU_yIqL_3D5Em |
| CitedBy_id | crossref_primary_10_20525_ijrbs_v12i6_2833 crossref_primary_10_15826_jtr_2025_11_1_200 |
| ContentType | Journal Article |
| Copyright | 2021. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AE2 BIXPP REL AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU COVID DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.18421/TEM102-17 |
| DatabaseName | Central and Eastern European Online Library (C.E.E.O.L.) (DFG Nationallizenzen) CEEOL: Open Access Central and Eastern European Online Library - CEEOL Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Coronavirus Research Database ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| DocumentTitleAlternate | Forecast Analysis of Gross Regional Domestic Product based on the Linear Regression Algorithm Technique |
| EISSN | 2217-8333 |
| EndPage | 626 |
| ExternalDocumentID | 10_18421_TEM102_17 955135 |
| GroupedDBID | 5VS 8FE 8FG ABDBF ACUHS ADBBV AE2 AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BIXPP CCPQU EN8 EOJEC ESX HCIFZ IPNFZ KQ8 M~E OBODZ P62 PHGZM PHGZT PIMPY PQGLB PROAC REL RIG AAYXX CITATION ABUWG AZQEC COVID DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c353t-ea73961f6aaac4ea01a59c78f390fad55b51cb17750a7554b7114412d18a6d363 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000657179100017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2217-8309 |
| IngestDate | Sun Nov 30 05:31:02 EST 2025 Tue Nov 18 21:15:19 EST 2025 Sat Nov 29 06:20:23 EST 2025 Tue Nov 07 20:43:29 EST 2023 Tue Oct 28 18:53:34 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Data Mining, Linear Regression Root Mean Square Error Gross Regional Domestic Product |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c353t-ea73961f6aaac4ea01a59c78f390fad55b51cb17750a7554b7114412d18a6d363 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/2702220606?pq-origsite=%requestingapplication% |
| PQID | 2702220606 |
| PQPubID | 2046213 |
| PageCount | 7 |
| ParticipantIDs | proquest_journals_2702220606 ceeol_journals_955135 crossref_citationtrail_10_18421_TEM102_17 crossref_primary_10_18421_TEM102_17 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-05-01 |
| PublicationDateYYYYMMDD | 2021-05-01 |
| PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Novi Pazar |
| PublicationPlace_xml | – name: Novi Pazar |
| PublicationSubtitle | TEM Journal |
| PublicationTitle | TEM Journal |
| PublicationTitleAlternate | TEM Journal |
| PublicationYear | 2021 |
| Publisher | UIKTEN - Association for Information Communication Technology Education and Science |
| Publisher_xml | – name: UIKTEN - Association for Information Communication Technology Education and Science |
| SSID | ssj0001764354 |
| Score | 2.1494675 |
| Snippet | Statistical data are indispensable for macro-economic planning activities such as the Gross Regional Domestic Product (GRDP) where data can determine the... |
| SourceID | proquest crossref ceeol |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 620 |
| SubjectTerms | Algorithms Data mining Datasets Experiments Fisheries GDP Gross Domestic Product ICT Information and Communications Technologies Mean square errors Prices Regression analysis Retailing industry Software Water supply |
| Title | Forecast Analysis of Gross Regional Domestic Product based on the Linear Regression Algorithm Technique |
| URI | https://www.ceeol.com//search/article-detail?id=955135 https://www.proquest.com/docview/2702220606 |
| Volume | 10 |
| WOSCitedRecordID | wos000657179100017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2217-8333 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001764354 issn: 2217-8309 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2217-8333 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001764354 issn: 2217-8309 databaseCode: P5Z dateStart: 20130801 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2217-8333 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001764354 issn: 2217-8309 databaseCode: BENPR dateStart: 20130801 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2217-8333 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001764354 issn: 2217-8309 databaseCode: PIMPY dateStart: 20130801 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFH5ilMM4MMaYVuiQJeDAISK26zg5TbAVNgmqCJWJ7RI5jt1NKkmh2f7--SXOCgjtsmOSJ8XK8_vpl-8DOKCGSWqMCJiKomCotPODkbSByKWNk7zQvGnof72Q43F8c5OkvuG28GOVnU9sHHVRaeyRH-N_U4yFLt_-ML8LkDUKT1c9hcYL6CFKAlI3pOL7ssciXbxtiNAYQ2fMw8QjlMZDRo8no0uK1B4S4TmNqWaPY9Nj19zEm7NX_7vSTdjwmSY5abfGa1gx5RasP8AffANTJObUalGTDpuEVJac4-LIlZk2XULyqbpFJA5N0hYclmDgK0hVEpc7ElfLOltB6XagtiQns6lbTf3jlkw6fNhtuD4bTT5-DjzzQqC54HVglORJRG2klNJDo0KqRKJlbHkSWlUIkQuqEbhKhEq6hCSXFAszVtBYRQWP-FtYLavSvAPCubRCSUR6t670DNUw1nkRRrlOuJVx2Ift5ttn3nYWWYKcM6IPh0_ue1PKkC6llcnmhe3DUaezTHtYc2TXmGVY3qCes1bPGZV92P8rO2_BPJ6VGnR6Xb58qdSdfz_ehZcMx16amcgBrNb3v8x7WNO_65-L-z3onY7G6dVes0_dVfrlMv32B3XQ8Ic |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLRJwoHwUsVDAEvTAIWpsx3FyQKiiLV11d7VCCyon13HsBWmbLN1A1T_Fb8STjy5FiFsPXJNRItsvM57J-D2AV9QySa0VAdNxHETaeD8YSxeITLokzXLD64L-p6Ecj5Pj43SyBj-7szDYVtn5xNpR56XBGvkOnptiLPT77beLbwGqRuHf1U5Co4HFkb049ynb8s1gz6_vNmMH-9N3h0GrKhAYLngVWC15GlMXa61NZHVItUiNTJzP_p3OhcgENUjKJEItfbDNJMWkg-U00XHOY-6fewPWIwR7D9Yng9Hk86qqI32Er6XXGEP3z8O05URNIkZ3pvsjimIiEglBrS3nV6Ph1WBQR7iDjf9tbu7B3XYvTXYb8N-HNVs8gDu_MSw-hBlKjxq9rEjHvkJKR97jZJAPdlbXQcleeYpcI4ZMGvpbgqE9J2VB_O6Y-GzdDw2tm5bhguzOZ3701ZdTMu0YcDfh47WM9BH0irKwj4FwLp3QErnsnU-uQx0lJsvDODMpdzIJ-7BZr7VqvcNSpaiqI_qw_cf11lkoFIRpbNQid3143WFEmZa4HfVD5goTOMSVanClqOzDy0vbRUNX8lerrQ5Hq5evQPTk37dfwK3D6WiohoPx0VO4zbDJp-4A3YJedfbdPoOb5kf1dXn2vP06CJxcN-h-AXsBSos |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forecast+Analysis+of+Gross+Regional+Domestic+Product+based+on+the+Linear+Regression+Algorithm+Technique&rft.jtitle=TEM+Journal&rft.au=Delimah+Pasaribu%2C+Veta+Lidya&rft.au=Septiani%2C+Fauziah&rft.au=Rahayu%2C+Suharni&rft.au=Lismiatun%2C+L&rft.date=2021-05-01&rft.pub=UIKTEN+-+Association+for+Information+Communication+Technology+Education+and+Science&rft.issn=2217-8309&rft.eissn=2217-8333&rft.volume=10&rft.issue=2&rft.spage=620&rft.epage=626&rft_id=info:doi/10.18421%2FTEM102-17&rft.externalDocID=955135 |
| thumbnail_s | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.ceeol.com%2F%2Fapi%2Fimage%2Fgetissuecoverimage%3Fid%3Dpicture_2021_60824.jpg |