Distributed algorithms for convex problems with linear coupling constraints

Distributed and parallel algorithms have been frequently investigated in the recent years, in particular in applications like machine learning. Nonetheless, only a small subclass of the optimization algorithms in the literature can be easily distributed, for the presence, e.g., of coupling constrain...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of global optimization Ročník 77; číslo 1; s. 53 - 73
Hlavní autoři: Colombo, Tommaso, Sagratella, Simone
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.05.2020
Springer
Springer Nature B.V
Témata:
ISSN:0925-5001, 1573-2916
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Distributed and parallel algorithms have been frequently investigated in the recent years, in particular in applications like machine learning. Nonetheless, only a small subclass of the optimization algorithms in the literature can be easily distributed, for the presence, e.g., of coupling constraints that make all the variables dependent from each other with respect to the feasible set. Augmented Lagrangian methods are among the most used techniques to get rid of the coupling constraints issue, namely by moving such constraints to the objective function in a structured, well-studied manner. Unfortunately, standard augmented Lagrangian methods need the solution of a nested problem by needing to (at least inexactly) solve a subproblem at each iteration, therefore leading to potential inefficiency of the algorithm. To fill this gap, we propose an augmented Lagrangian method to solve convex problems with linear coupling constraints that can be distributed and requires a single gradient projection step at every iteration. We give a formal convergence proof to at least ε -approximate solutions of the problem and a detailed analysis of how the parameters of the algorithm influence the value of the approximating parameter ε . Furthermore, we introduce a distributed version of the algorithm allowing to partition the data and perform the distribution of the computation in a parallel fashion.
AbstractList Distributed and parallel algorithms have been frequently investigated in the recent years, in particular in applications like machine learning. Nonetheless, only a small subclass of the optimization algorithms in the literature can be easily distributed, for the presence, e.g., of coupling constraints that make all the variables dependent from each other with respect to the feasible set. Augmented Lagrangian methods are among the most used techniques to get rid of the coupling constraints issue, namely by moving such constraints to the objective function in a structured, well-studied manner. Unfortunately, standard augmented Lagrangian methods need the solution of a nested problem by needing to (at least inexactly) solve a subproblem at each iteration, therefore leading to potential inefficiency of the algorithm. To fill this gap, we propose an augmented Lagrangian method to solve convex problems with linear coupling constraints that can be distributed and requires a single gradient projection step at every iteration. We give a formal convergence proof to at least ε -approximate solutions of the problem and a detailed analysis of how the parameters of the algorithm influence the value of the approximating parameter ε . Furthermore, we introduce a distributed version of the algorithm allowing to partition the data and perform the distribution of the computation in a parallel fashion.
Distributed and parallel algorithms have been frequently investigated in the recent years, in particular in applications like machine learning. Nonetheless, only a small subclass of the optimization algorithms in the literature can be easily distributed, for the presence, e.g., of coupling constraints that make all the variables dependent from each other with respect to the feasible set. Augmented Lagrangian methods are among the most used techniques to get rid of the coupling constraints issue, namely by moving such constraints to the objective function in a structured, well-studied manner. Unfortunately, standard augmented Lagrangian methods need the solution of a nested problem by needing to (at least inexactly) solve a subproblem at each iteration, therefore leading to potential inefficiency of the algorithm. To fill this gap, we propose an augmented Lagrangian method to solve convex problems with linear coupling constraints that can be distributed and requires a single gradient projection step at every iteration. We give a formal convergence proof to at least [Formula omitted]-approximate solutions of the problem and a detailed analysis of how the parameters of the algorithm influence the value of the approximating parameter [Formula omitted]. Furthermore, we introduce a distributed version of the algorithm allowing to partition the data and perform the distribution of the computation in a parallel fashion.
Distributed and parallel algorithms have been frequently investigated in the recent years, in particular in applications like machine learning. Nonetheless, only a small subclass of the optimization algorithms in the literature can be easily distributed, for the presence, e.g., of coupling constraints that make all the variables dependent from each other with respect to the feasible set. Augmented Lagrangian methods are among the most used techniques to get rid of the coupling constraints issue, namely by moving such constraints to the objective function in a structured, well-studied manner. Unfortunately, standard augmented Lagrangian methods need the solution of a nested problem by needing to (at least inexactly) solve a subproblem at each iteration, therefore leading to potential inefficiency of the algorithm. To fill this gap, we propose an augmented Lagrangian method to solve convex problems with linear coupling constraints that can be distributed and requires a single gradient projection step at every iteration. We give a formal convergence proof to at least ε-approximate solutions of the problem and a detailed analysis of how the parameters of the algorithm influence the value of the approximating parameter ε. Furthermore, we introduce a distributed version of the algorithm allowing to partition the data and perform the distribution of the computation in a parallel fashion.
Audience Academic
Author Sagratella, Simone
Colombo, Tommaso
Author_xml – sequence: 1
  givenname: Tommaso
  surname: Colombo
  fullname: Colombo, Tommaso
  organization: Department of Computer, Control and Management Engineering Antonio Ruberti, Sapienza University of Rome
– sequence: 2
  givenname: Simone
  orcidid: 0000-0001-5888-1953
  surname: Sagratella
  fullname: Sagratella, Simone
  email: sagratella@diag.uniroma1.it
  organization: Department of Computer, Control and Management Engineering Antonio Ruberti, Sapienza University of Rome
BookMark eNp9kMtOwzAQRS0EEm3hB1hFYp0ytuskXlblKSqxgbWV2uPgKk2KnfDo1-MQJHbIC3tm7hlf3Sk5btoGCbmgMKcA-VWgUMgiBSrTWEqWHo7IhIqcp0zS7JhMQDKRCgB6SqYhbAFAFoJNyOO1C513m75Dk5R11XrXve5CYluf6LZ5x89k79tNjbH3EUdJ7Rosh1m_j89qEMUFpWu6cEZObFkHPP-9Z-Tl9uZ5dZ-un-4eVst1qrngXYqZETwHS3FDdSZFboywmUW-4CyTGYKQxm7QaKu5iVpghc61LinVgAs0fEYux73R2VuPoVPbtvdN_FIxxikVhQSIqvmoqsoalWtsG23qeAzuXHSN1sX-MqfFghWLYgDYCGjfhuDRqr13u9J_KQpqSFmNKauYsvpJWR0ixEcoRHFTof_z8g_1Deysg9g
Cites_doi 10.1007/BF00939685
10.1109/TSP.2016.2637314
10.1109/TSP.2015.2399858
10.1007/978-3-642-99789-1_13
10.1137/S1052623497321894
10.1007/978-1-4899-0289-4_7
10.1007/s10288-007-0054-4
10.1016/j.ejor.2013.05.049
10.1007/s10107-016-1034-2
10.1007/s10589-014-9686-4
10.1137/1.9781611973365
10.1137/0312021
10.1007/s11590-010-0218-6
10.1007/s10957-008-9489-9
10.1007/s10589-018-9987-0
10.1007/s10589-017-9927-4
10.1007/s10898-014-0236-5
10.1007/s10589-007-9044-x
10.1007/s00186-016-0565-x
10.1109/TSP.2016.2637317
10.1007/s10288-018-0378-2
10.1137/1.9781611971309
10.1007/s10287-008-0090-3
10.1080/0233193031000079856
10.1109/CAMSAP.2017.8313161
10.1109/ICASSP.2014.6853715
10.1109/IJCNN.2016.7727590
10.1137/1.9781611972801.22
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
COPYRIGHT 2020 Springer
Springer Science+Business Media, LLC, part of Springer Nature 2019.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: COPYRIGHT 2020 Springer
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2019.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2O
M2P
M7S
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10898-019-00792-z
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database (ProQuest)
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Collection (ProQuest)
Computing Database
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList

ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Sciences (General)
Computer Science
EISSN 1573-2916
EndPage 73
ExternalDocumentID A718428480
10_1007_s10898_019_00792_z
GrantInformation_xml – fundername: Sapienza Università di Roma (IT)
  grantid: RP11816432902D1E
GroupedDBID -52
-57
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29K
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
88I
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M2O
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9M
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z8U
Z8W
Z92
ZMTXR
ZWQNP
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c353t-e6d5370f1eb1c6957dd5f6fe3432696e059dfbedcfc3d6d5028c7cca11c0e4ed3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000529229900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-5001
IngestDate Tue Nov 04 23:09:22 EST 2025
Sat Nov 29 10:09:50 EST 2025
Sat Nov 29 01:59:35 EST 2025
Fri Feb 21 02:42:29 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Lagrangian methods
Parallel algorithms
Distributed algorithms
Nonlinear optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c353t-e6d5370f1eb1c6957dd5f6fe3432696e059dfbedcfc3d6d5028c7cca11c0e4ed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5888-1953
OpenAccessLink http://hdl.handle.net/11573/1283222
PQID 2231158900
PQPubID 29930
PageCount 21
ParticipantIDs proquest_journals_2231158900
gale_infotracacademiconefile_A718428480
crossref_primary_10_1007_s10898_019_00792_z
springer_journals_10_1007_s10898_019_00792_z
PublicationCentury 2000
PublicationDate 20200500
2020-5-00
20200501
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 5
  year: 2020
  text: 20200500
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal Dealing with Theoretical and Computational Aspects of Seeking Global Optima and Their Applications in Science, Management and Engineering
PublicationTitle Journal of global optimization
PublicationTitleAbbrev J Glob Optim
PublicationYear 2020
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Woodsend, Gondzio (CR40) 2009; 10
García, Marín, Patriksson (CR19) 2003; 52
Boyd, Parikh, Chu, Peleato, Eckstein (CR6) 2011; 3
Cassioli, Di Lorenzo, Sciandrone (CR8) 2013; 231
Aussel, Sagratella (CR1) 2017; 85
Rockafellar, Wets (CR35) 2009
CR39
Birgin, Martinez (CR5) 2014
Scutari, Facchinei, Lampariello (CR37) 2016; 65
Chang, Lin (CR9) 2011; 2
Lucidi, Palagi, Risi, Sciandrone (CR28) 2007; 38
Bertsekas, Tsitsiklis (CR4) 1989
CR11
CR32
CR31
Mangasarian, Fischer, Riedmüller, Schäffler (CR29) 1996
Facchinei, Sagratella (CR17) 2011; 5
Piccialli, Sciandrone (CR33) 2018; 16
Facchinei, Pang (CR16) 2007
Hong, Luo (CR22) 2017; 162
Gondzio, Grothey (CR20) 2009; 6
Clarke (CR10) 1990
Rockafellar (CR34) 1974; 12
Di Pillo, Lucidi, Di Pillo, Giannessi (CR12) 1996
Jaggi (CR23) 2013; 1
Bertsekas (CR3) 2015
CR7
Facchinei, Scutari, Sagratella (CR18) 2015; 63
Latorre, Sagratella (CR25) 2016; 64
CR24
Lin, Lucidi, Palagi, Risi, Sciandrone (CR26) 2009; 141
CR21
Lucidi (CR27) 1988; 58
Bertsekas (CR2) 1999
Facchinei, Kanzow (CR14) 2007; 5
Di Pillo, Lucidi (CR13) 2002; 12
Scutari, Facchinei, Lampariello, Sardellitti, Song (CR38) 2016; 65
Facchinei, Kanzow, Karl, Sagratella (CR15) 2015; 62
Manno, Palagi, Sagratella (CR30) 2018; 71
Sagratella (CR36) 2017; 68
CC Chang (792_CR9) 2011; 2
F Facchinei (792_CR16) 2007
RT Rockafellar (792_CR34) 1974; 12
V Latorre (792_CR25) 2016; 64
RT Rockafellar (792_CR35) 2009
F Facchinei (792_CR15) 2015; 62
R García (792_CR19) 2003; 52
G Scutari (792_CR38) 2016; 65
S Lucidi (792_CR28) 2007; 38
792_CR31
792_CR32
792_CR11
G Di Pillo (792_CR12) 1996
DP Bertsekas (792_CR4) 1989
792_CR24
EG Birgin (792_CR5) 2014
K Woodsend (792_CR40) 2009; 10
S Boyd (792_CR6) 2011; 3
O Mangasarian (792_CR29) 1996
A Cassioli (792_CR8) 2013; 231
FH Clarke (792_CR10) 1990
792_CR7
D Aussel (792_CR1) 2017; 85
F Facchinei (792_CR17) 2011; 5
S Sagratella (792_CR36) 2017; 68
G Scutari (792_CR37) 2016; 65
F Facchinei (792_CR14) 2007; 5
CJ Lin (792_CR26) 2009; 141
A Manno (792_CR30) 2018; 71
J Gondzio (792_CR20) 2009; 6
G Di Pillo (792_CR13) 2002; 12
S Lucidi (792_CR27) 1988; 58
792_CR21
M Hong (792_CR22) 2017; 162
M Jaggi (792_CR23) 2013; 1
DP Bertsekas (792_CR3) 2015
792_CR39
F Facchinei (792_CR18) 2015; 63
DP Bertsekas (792_CR2) 1999
V Piccialli (792_CR33) 2018; 16
References_xml – volume: 58
  start-page: 259
  issue: 2
  year: 1988
  end-page: 282
  ident: CR27
  article-title: New results on a class of exact augmented lagrangians
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00939685
– volume: 65
  start-page: 1945
  issue: 8
  year: 2016
  end-page: 1960
  ident: CR38
  article-title: Parallel and distributed methods for constrained nonconvex optimization—part II: applications in communications and machine learning
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2016.2637314
– volume: 63
  start-page: 1874
  issue: 7
  year: 2015
  end-page: 1889
  ident: CR18
  article-title: Parallel selective algorithms for nonconvex big data optimization
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2015.2399858
– start-page: 175
  year: 1996
  end-page: 188
  ident: CR29
  article-title: Machine learning via polyhedral concave minimization
  publication-title: Applied Mathematics and Parallel Computing
  doi: 10.1007/978-3-642-99789-1_13
– year: 2015
  ident: CR3
  publication-title: Convex Optimization Algorithms
– volume: 3
  start-page: 1
  issue: 1
  year: 2011
  end-page: 122
  ident: CR6
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Found. Trends® Mach. Learn.
– ident: CR39
– volume: 12
  start-page: 376
  issue: 2
  year: 2002
  end-page: 406
  ident: CR13
  article-title: An augmented lagrangian function with improved exactness properties
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623497321894
– start-page: 85
  year: 1996
  end-page: 100
  ident: CR12
  article-title: On exact augmented lagrangian functions in nonlinear programming
  publication-title: Nonlinear Optimization and Applications
  doi: 10.1007/978-1-4899-0289-4_7
– volume: 5
  start-page: 173
  issue: 3
  year: 2007
  end-page: 210
  ident: CR14
  article-title: Generalized Nash equilibrium problems
  publication-title: 4OR
  doi: 10.1007/s10288-007-0054-4
– volume: 2
  start-page: 27
  issue: 3
  year: 2011
  ident: CR9
  article-title: Libsvm: a library for support vector machines
  publication-title: ACM Trans. Intell. Syst. Technol. (TIST)
– volume: 231
  start-page: 274
  issue: 2
  year: 2013
  end-page: 281
  ident: CR8
  article-title: On the convergence of inexact block coordinate descent methods for constrained optimization
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2013.05.049
– volume: 162
  start-page: 165
  issue: 1–2
  year: 2017
  end-page: 199
  ident: CR22
  article-title: On the linear convergence of the alternating direction method of multipliers
  publication-title: Math. Program.
  doi: 10.1007/s10107-016-1034-2
– volume: 62
  start-page: 85
  issue: 1
  year: 2015
  end-page: 109
  ident: CR15
  article-title: The semismooth Newton method for the solution of quasi-variational inequalities
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-014-9686-4
– year: 2014
  ident: CR5
  publication-title: Practical Augmented Lagrangian Methods for Constrained Optimization
  doi: 10.1137/1.9781611973365
– volume: 12
  start-page: 268
  issue: 2
  year: 1974
  end-page: 285
  ident: CR34
  article-title: Augmented Lagrange multiplier functions and duality in nonconvex programming
  publication-title: SIAM J. Control
  doi: 10.1137/0312021
– ident: CR21
– volume: 10
  start-page: 1937
  issue: Aug
  year: 2009
  end-page: 1953
  ident: CR40
  article-title: Hybrid MPI/OpenMP parallel linear support vector machine training
  publication-title: J. Mach. Learn. Res.
– volume: 5
  start-page: 531
  issue: 3
  year: 2011
  end-page: 547
  ident: CR17
  article-title: On the computation of all solutions of jointly convex generalized Nash equilibrium problems
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-010-0218-6
– volume: 141
  start-page: 107
  issue: 1
  year: 2009
  end-page: 126
  ident: CR26
  article-title: Decomposition algorithm model for singly linearly-constrained problems subject to lower and upper bounds
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-008-9489-9
– volume: 71
  start-page: 115
  issue: 1
  year: 2018
  end-page: 145
  ident: CR30
  article-title: Parallel decomposition methods for linearly constrained problems subject to simple bound with application to the SVMs training
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-018-9987-0
– volume: 68
  start-page: 689
  issue: 3
  year: 2017
  end-page: 717
  ident: CR36
  article-title: Algorithms for generalized potential games with mixed-integer variables
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-017-9927-4
– ident: CR31
– volume: 64
  start-page: 433
  issue: 3
  year: 2016
  end-page: 449
  ident: CR25
  article-title: A canonical duality approach for the solution of affine quasi-variational inequalities
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-014-0236-5
– ident: CR11
– year: 1989
  ident: CR4
  publication-title: Parallel and Distributed Computation: Numerical Methods
– volume: 38
  start-page: 217
  issue: 2
  year: 2007
  end-page: 234
  ident: CR28
  article-title: A convergent decomposition algorithm for support vector machines
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-007-9044-x
– ident: CR32
– volume: 85
  start-page: 3
  issue: 1
  year: 2017
  end-page: 18
  ident: CR1
  article-title: Sufficient conditions to compute any solution of a quasivariational inequality via a variational inequality
  publication-title: Math. Methods Oper. Res.
  doi: 10.1007/s00186-016-0565-x
– year: 2009
  ident: CR35
  publication-title: Variational Analysis
– volume: 1
  start-page: 427
  year: 2013
  end-page: 435
  ident: CR23
  article-title: Revisiting Frank-Wolfe: projection-free sparse convex optimization
  publication-title: ICML
– volume: 65
  start-page: 1929
  issue: 8
  year: 2016
  end-page: 1944
  ident: CR37
  article-title: Parallel and distributed methods for constrained nonconvex optimization—part I: theory
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2016.2637317
– volume: 16
  start-page: 111
  issue: 2
  year: 2018
  end-page: 149
  ident: CR33
  article-title: Nonlinear optimization and support vector machines
  publication-title: 4OR
  doi: 10.1007/s10288-018-0378-2
– ident: CR7
– year: 1990
  ident: CR10
  publication-title: Optimization and Nonsmooth Analysis
  doi: 10.1137/1.9781611971309
– year: 1999
  ident: CR2
  publication-title: Nonlinear Programming
– year: 2007
  ident: CR16
  publication-title: Finite-Dimensional Variational Inequalities and Complementarity Problems
– ident: CR24
– volume: 6
  start-page: 135
  issue: 2
  year: 2009
  end-page: 160
  ident: CR20
  article-title: Exploiting structure in parallel implementation of interior point methods for optimization
  publication-title: Comput. Manag. Sci.
  doi: 10.1007/s10287-008-0090-3
– volume: 52
  start-page: 171
  issue: 2
  year: 2003
  end-page: 200
  ident: CR19
  article-title: Column generation algorithms for nonlinear optimization, I: convergence analysis
  publication-title: Optimization
  doi: 10.1080/0233193031000079856
– volume: 231
  start-page: 274
  issue: 2
  year: 2013
  ident: 792_CR8
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2013.05.049
– start-page: 175
  volume-title: Applied Mathematics and Parallel Computing
  year: 1996
  ident: 792_CR29
  doi: 10.1007/978-3-642-99789-1_13
– ident: 792_CR7
  doi: 10.1109/CAMSAP.2017.8313161
– volume: 3
  start-page: 1
  issue: 1
  year: 2011
  ident: 792_CR6
  publication-title: Found. Trends® Mach. Learn.
– volume: 6
  start-page: 135
  issue: 2
  year: 2009
  ident: 792_CR20
  publication-title: Comput. Manag. Sci.
  doi: 10.1007/s10287-008-0090-3
– volume-title: Optimization and Nonsmooth Analysis
  year: 1990
  ident: 792_CR10
  doi: 10.1137/1.9781611971309
– volume: 141
  start-page: 107
  issue: 1
  year: 2009
  ident: 792_CR26
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-008-9489-9
– volume-title: Practical Augmented Lagrangian Methods for Constrained Optimization
  year: 2014
  ident: 792_CR5
  doi: 10.1137/1.9781611973365
– volume-title: Nonlinear Programming
  year: 1999
  ident: 792_CR2
– volume: 12
  start-page: 268
  issue: 2
  year: 1974
  ident: 792_CR34
  publication-title: SIAM J. Control
  doi: 10.1137/0312021
– volume: 1
  start-page: 427
  year: 2013
  ident: 792_CR23
  publication-title: ICML
– ident: 792_CR39
  doi: 10.1109/ICASSP.2014.6853715
– ident: 792_CR24
– volume: 5
  start-page: 531
  issue: 3
  year: 2011
  ident: 792_CR17
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-010-0218-6
– volume: 58
  start-page: 259
  issue: 2
  year: 1988
  ident: 792_CR27
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00939685
– ident: 792_CR31
  doi: 10.1109/IJCNN.2016.7727590
– volume: 63
  start-page: 1874
  issue: 7
  year: 2015
  ident: 792_CR18
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2015.2399858
– volume-title: Variational Analysis
  year: 2009
  ident: 792_CR35
– volume: 52
  start-page: 171
  issue: 2
  year: 2003
  ident: 792_CR19
  publication-title: Optimization
  doi: 10.1080/0233193031000079856
– volume: 12
  start-page: 376
  issue: 2
  year: 2002
  ident: 792_CR13
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623497321894
– ident: 792_CR32
  doi: 10.1137/1.9781611972801.22
– volume-title: Convex Optimization Algorithms
  year: 2015
  ident: 792_CR3
– volume: 162
  start-page: 165
  issue: 1–2
  year: 2017
  ident: 792_CR22
  publication-title: Math. Program.
  doi: 10.1007/s10107-016-1034-2
– volume: 65
  start-page: 1929
  issue: 8
  year: 2016
  ident: 792_CR37
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2016.2637317
– ident: 792_CR11
– volume: 38
  start-page: 217
  issue: 2
  year: 2007
  ident: 792_CR28
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-007-9044-x
– volume: 65
  start-page: 1945
  issue: 8
  year: 2016
  ident: 792_CR38
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2016.2637314
– volume: 16
  start-page: 111
  issue: 2
  year: 2018
  ident: 792_CR33
  publication-title: 4OR
  doi: 10.1007/s10288-018-0378-2
– ident: 792_CR21
– volume: 10
  start-page: 1937
  issue: Aug
  year: 2009
  ident: 792_CR40
  publication-title: J. Mach. Learn. Res.
– volume: 85
  start-page: 3
  issue: 1
  year: 2017
  ident: 792_CR1
  publication-title: Math. Methods Oper. Res.
  doi: 10.1007/s00186-016-0565-x
– start-page: 85
  volume-title: Nonlinear Optimization and Applications
  year: 1996
  ident: 792_CR12
  doi: 10.1007/978-1-4899-0289-4_7
– volume: 68
  start-page: 689
  issue: 3
  year: 2017
  ident: 792_CR36
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-017-9927-4
– volume: 62
  start-page: 85
  issue: 1
  year: 2015
  ident: 792_CR15
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-014-9686-4
– volume-title: Finite-Dimensional Variational Inequalities and Complementarity Problems
  year: 2007
  ident: 792_CR16
– volume: 64
  start-page: 433
  issue: 3
  year: 2016
  ident: 792_CR25
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-014-0236-5
– volume: 2
  start-page: 27
  issue: 3
  year: 2011
  ident: 792_CR9
  publication-title: ACM Trans. Intell. Syst. Technol. (TIST)
– volume: 71
  start-page: 115
  issue: 1
  year: 2018
  ident: 792_CR30
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-018-9987-0
– volume: 5
  start-page: 173
  issue: 3
  year: 2007
  ident: 792_CR14
  publication-title: 4OR
  doi: 10.1007/s10288-007-0054-4
– volume-title: Parallel and Distributed Computation: Numerical Methods
  year: 1989
  ident: 792_CR4
SSID ssj0009852
Score 2.2461154
Snippet Distributed and parallel algorithms have been frequently investigated in the recent years, in particular in applications like machine learning. Nonetheless,...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 53
SubjectTerms Algorithms
Analysis
Computer Science
Coupling
Dependent variables
Iterative methods
Machine learning
Mathematical optimization
Mathematics
Mathematics and Statistics
Nonlinear programming
Operations Research/Decision Theory
Optimization
Parameters
Production scheduling
Real Functions
SummonAdditionalLinks – databaseName: Computer Science Database (ProQuest)
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT90wEB5R4FAObAXx2ORDJUDFwkm8xCeEWIREhTgA4mYltgNI8FgSEOLX4zF-erSIXnq2FSeZ8cx4-b4P4KcXWlRWMeq4ZpTXsqHaFQ3NXK5qwRrvozbg-W91fFxeXOiTtOHWpmuVg5gYA7W7s7hHvhXSWCheSs3Y9v0DRdUoPF1NEhrfYCzL8wz9_EjRIeluGRV3mM4FFSEeJ9BMgs6VCC5DCA9TOqevfySmv8Pzp3PSmH4Opv73xadhMhWeZOfdU2ZgxPdnYeIDHeEszKSJ3pL1xEa98QOO9pBaF1WxvCPVzWV4dHd125JQ7JJ4Zf2FJFGaluCmLsG6tcK2JwT7XmKnNgpRdO0cnB3sn-4e0qTAQG0hio566UShWJOFiG6lFso50cjGIxpVaulDbeaa2jvb2MKFvqFYsSr4RJZZ5rl3xTyM9u_6fgFIybMq54XkYQXIbVlVqpa59bUUvJKl8j34Nfj95v6daMMMKZXRWCYYy0RjmdcerKGFDM7C8Am2SmCCMBbyWZmdkHLDwoqXrAfLA7OYND1bM7RJDzYHhh02fz3u4r-ftgTfc1yPxwuRyzDaPT75FRi3z911-7ganfMNX8jrAw
  priority: 102
  providerName: ProQuest
Title Distributed algorithms for convex problems with linear coupling constraints
URI https://link.springer.com/article/10.1007/s10898-019-00792-z
https://www.proquest.com/docview/2231158900
Volume 77
WOSCitedRecordID wos000529229900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1573-2916
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009852
  issn: 0925-5001
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dTxQxEJ8I-CAPIqfGE7z0wUSNNul-9OsREWKCnBdQRF82u20XSOAw18UQ_nqnpevh14O-TNJ0st3tdD667fwG4KnjmtdGMmpLzWjZiJZqW7Q0s7lsOGudi7UBD97J8VgdHupJSgrz_W33_kgyWuobyW4qpIOFpBsmdU6vFmAJ3Z0K6ri3fzCH2lWxzg7TOaccrXBKlfnzM35yR78a5d9OR6PT2V75v9e9B3dTkEk2rlfFKtxy0wGs9AUcSNLnASzfQCPE1u4PCFc_gNXE5cnzBE394j7svAk4u6FElrOkPj06n510x2eeYORL4v31S5Iq1HgS_vCSEMTWoe8iZP4eBSYfq1J0_gF83N76sPmWpnIM1BS86KgTlheStRmadyM0l9byVrQupKYKLRwGarZtnDWtKSzyYuRiJC6QLDPMlc4WD2Fxej51j4CoMqvzshAlbgdLo-paNiI3rhG8rIWSbggve6lUX69RN6o5vnKY2AontooTW10N4VkQXBVUEj_B1CmzAMcK4FbVBvpf3GWVig1hvZdtlXTVVxggYVisNMPuV70s591_H_fxv7GvwZ08bNbjbcl1WOxmF-4J3DbfuhM_G8GC_PR5BEuvt8aTPWztSIp0l20Gmr-PdBKo3Ec64V9GcdV_B3RL9Ww
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQcgBYQCwV8AAECCyfxIz4gVLVUrXZZcSioN5PYTkGCbWlSHv1R_EZmvImWh-DWA-dYthx_nhnb880HcC8qqypvBA_SCi5r3XAbioZnITe1Ek2MSRvwzcRMp-Xenn21BN8HLgylVQ42MRnqcODpjvwpujEMXkorxPPDT5xUo-h1dZDQmMNiHL99wSNb-2xnE9f3fp5vvdjd2Oa9qgD3hSo6HnVQhRFNhlbKa6tMCKrRTSSGpbY6YrwRmjoG3_giYFt0wN7gPLPMiyhjKLDfM3BWStwOlCooNhZFfsuk8CNsrrhC-9-TdHqqXklkNqIMCWNzfvKLI_zdHfzxLpvc3dbl_-1HXYFLfWDN1uc7YQWW4mwVLv5UbnEVVnpD1rKHfbXtR1dhvEmlg0n1KwZWfdjHqXTvPrYMg3mWUvK_sl50p2V0ac0oLq_o2zGRmfepUZuENrr2Grw-lSleh-XZwSzeAFbKrMploSWecKUvq8rUOvex1kpWujRxBI-H5XaH80IiblEymsDhEBwugcOdjOABIcKRlcEp-KonS-BYVK_LrWNIgQdHWYoRrA0wcL35ad0CAyN4MgBp8fnv4978d2934fz27suJm-xMx7fgQk53Dyn5cw2Wu6PjeBvO-c_d-_boTtoYDN6eNsB-AL4HS0I
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghAcgBYQWwr4AAIEVp2H7eRQoYplRbXVag-AKi5uYjsFCbalSQv0p_HrOuN1tDwEtx44x7I18ed52DPzATz0spSV1YK7vBQ8r1XDS5c1PHGprqVovA_cgO929GRS7O6W0yX40dfCUFplrxODonYHlu7IN9CMofNSlEJsNDEtYjocvTj8wolBil5aezqNOUTG_vtXDN_aze0h7vWjNB29evPyNY8MA9xmMuu4V05mWjQJaiyrSqmdk41qPFVbqlJ59D1cU3tnG5s5HIvG2GqUOUms8Ll3Gc57AS5qjDEp8JvK94uGv0Vg-xFlKrlEWxALdmLZXkGFbVQ-JHSZ8tNfjOLvpuGPN9pg-kbX_-efdgOuRYebbc1PyAos-dkqXP2pDeMqrEQF17InsQv305swHlJLYWID845Vn_ZRlO7D55ahk89Cqv43Fsl4WkaX2Yz89Yq-HVOR8z4NagMBR9fegrfnIuJtWJ4dzPwdYEWeVGmeqRwj39wWVaVrlVpfK5lXqtB-AM_6rTeH8wYjZtFKmoBiECgmAMWcDuAxocOQ9kERbBWLKHAt6uNlttDVwIAyL8QA1ntImKiWWrPAwwCe96BafP77umv_nu0BXEZcmZ3tyfguXEnpSiLkhK7Dcnd07O_BJXvSfWyP7oczwmDvvPF1BppqVFM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+algorithms+for+convex+problems+with+linear+coupling+constraints&rft.jtitle=Journal+of+global+optimization&rft.au=Colombo%2C+Tommaso&rft.au=Sagratella%2C+Simone&rft.date=2020-05-01&rft.pub=Springer&rft.issn=0925-5001&rft.volume=77&rft.issue=1&rft.spage=53&rft_id=info:doi/10.1007%2Fs10898-019-00792-z&rft.externalDocID=A718428480
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-5001&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-5001&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-5001&client=summon