Distributed algorithms for convex problems with linear coupling constraints
Distributed and parallel algorithms have been frequently investigated in the recent years, in particular in applications like machine learning. Nonetheless, only a small subclass of the optimization algorithms in the literature can be easily distributed, for the presence, e.g., of coupling constrain...
Uloženo v:
| Vydáno v: | Journal of global optimization Ročník 77; číslo 1; s. 53 - 73 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.05.2020
Springer Springer Nature B.V |
| Témata: | |
| ISSN: | 0925-5001, 1573-2916 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Distributed and parallel algorithms have been frequently investigated in the recent years, in particular in applications like machine learning. Nonetheless, only a small subclass of the optimization algorithms in the literature can be easily distributed, for the presence, e.g., of coupling constraints that make all the variables dependent from each other with respect to the feasible set. Augmented Lagrangian methods are among the most used techniques to get rid of the coupling constraints issue, namely by moving such constraints to the objective function in a structured, well-studied manner. Unfortunately, standard augmented Lagrangian methods need the solution of a nested problem by needing to (at least inexactly) solve a subproblem at each iteration, therefore leading to potential inefficiency of the algorithm. To fill this gap, we propose an augmented Lagrangian method to solve convex problems with linear coupling constraints that can be distributed and requires a single gradient projection step at every iteration. We give a formal convergence proof to at least
ε
-approximate solutions of the problem and a detailed analysis of how the parameters of the algorithm influence the value of the approximating parameter
ε
. Furthermore, we introduce a distributed version of the algorithm allowing to partition the data and perform the distribution of the computation in a parallel fashion. |
|---|---|
| AbstractList | Distributed and parallel algorithms have been frequently investigated in the recent years, in particular in applications like machine learning. Nonetheless, only a small subclass of the optimization algorithms in the literature can be easily distributed, for the presence, e.g., of coupling constraints that make all the variables dependent from each other with respect to the feasible set. Augmented Lagrangian methods are among the most used techniques to get rid of the coupling constraints issue, namely by moving such constraints to the objective function in a structured, well-studied manner. Unfortunately, standard augmented Lagrangian methods need the solution of a nested problem by needing to (at least inexactly) solve a subproblem at each iteration, therefore leading to potential inefficiency of the algorithm. To fill this gap, we propose an augmented Lagrangian method to solve convex problems with linear coupling constraints that can be distributed and requires a single gradient projection step at every iteration. We give a formal convergence proof to at least
ε
-approximate solutions of the problem and a detailed analysis of how the parameters of the algorithm influence the value of the approximating parameter
ε
. Furthermore, we introduce a distributed version of the algorithm allowing to partition the data and perform the distribution of the computation in a parallel fashion. Distributed and parallel algorithms have been frequently investigated in the recent years, in particular in applications like machine learning. Nonetheless, only a small subclass of the optimization algorithms in the literature can be easily distributed, for the presence, e.g., of coupling constraints that make all the variables dependent from each other with respect to the feasible set. Augmented Lagrangian methods are among the most used techniques to get rid of the coupling constraints issue, namely by moving such constraints to the objective function in a structured, well-studied manner. Unfortunately, standard augmented Lagrangian methods need the solution of a nested problem by needing to (at least inexactly) solve a subproblem at each iteration, therefore leading to potential inefficiency of the algorithm. To fill this gap, we propose an augmented Lagrangian method to solve convex problems with linear coupling constraints that can be distributed and requires a single gradient projection step at every iteration. We give a formal convergence proof to at least [Formula omitted]-approximate solutions of the problem and a detailed analysis of how the parameters of the algorithm influence the value of the approximating parameter [Formula omitted]. Furthermore, we introduce a distributed version of the algorithm allowing to partition the data and perform the distribution of the computation in a parallel fashion. Distributed and parallel algorithms have been frequently investigated in the recent years, in particular in applications like machine learning. Nonetheless, only a small subclass of the optimization algorithms in the literature can be easily distributed, for the presence, e.g., of coupling constraints that make all the variables dependent from each other with respect to the feasible set. Augmented Lagrangian methods are among the most used techniques to get rid of the coupling constraints issue, namely by moving such constraints to the objective function in a structured, well-studied manner. Unfortunately, standard augmented Lagrangian methods need the solution of a nested problem by needing to (at least inexactly) solve a subproblem at each iteration, therefore leading to potential inefficiency of the algorithm. To fill this gap, we propose an augmented Lagrangian method to solve convex problems with linear coupling constraints that can be distributed and requires a single gradient projection step at every iteration. We give a formal convergence proof to at least ε-approximate solutions of the problem and a detailed analysis of how the parameters of the algorithm influence the value of the approximating parameter ε. Furthermore, we introduce a distributed version of the algorithm allowing to partition the data and perform the distribution of the computation in a parallel fashion. |
| Audience | Academic |
| Author | Sagratella, Simone Colombo, Tommaso |
| Author_xml | – sequence: 1 givenname: Tommaso surname: Colombo fullname: Colombo, Tommaso organization: Department of Computer, Control and Management Engineering Antonio Ruberti, Sapienza University of Rome – sequence: 2 givenname: Simone orcidid: 0000-0001-5888-1953 surname: Sagratella fullname: Sagratella, Simone email: sagratella@diag.uniroma1.it organization: Department of Computer, Control and Management Engineering Antonio Ruberti, Sapienza University of Rome |
| BookMark | eNp9kMtOwzAQRS0EEm3hB1hFYp0ytuskXlblKSqxgbWV2uPgKk2KnfDo1-MQJHbIC3tm7hlf3Sk5btoGCbmgMKcA-VWgUMgiBSrTWEqWHo7IhIqcp0zS7JhMQDKRCgB6SqYhbAFAFoJNyOO1C513m75Dk5R11XrXve5CYluf6LZ5x89k79tNjbH3EUdJ7Rosh1m_j89qEMUFpWu6cEZObFkHPP-9Z-Tl9uZ5dZ-un-4eVst1qrngXYqZETwHS3FDdSZFboywmUW-4CyTGYKQxm7QaKu5iVpghc61LinVgAs0fEYux73R2VuPoVPbtvdN_FIxxikVhQSIqvmoqsoalWtsG23qeAzuXHSN1sX-MqfFghWLYgDYCGjfhuDRqr13u9J_KQpqSFmNKauYsvpJWR0ixEcoRHFTof_z8g_1Deysg9g |
| Cites_doi | 10.1007/BF00939685 10.1109/TSP.2016.2637314 10.1109/TSP.2015.2399858 10.1007/978-3-642-99789-1_13 10.1137/S1052623497321894 10.1007/978-1-4899-0289-4_7 10.1007/s10288-007-0054-4 10.1016/j.ejor.2013.05.049 10.1007/s10107-016-1034-2 10.1007/s10589-014-9686-4 10.1137/1.9781611973365 10.1137/0312021 10.1007/s11590-010-0218-6 10.1007/s10957-008-9489-9 10.1007/s10589-018-9987-0 10.1007/s10589-017-9927-4 10.1007/s10898-014-0236-5 10.1007/s10589-007-9044-x 10.1007/s00186-016-0565-x 10.1109/TSP.2016.2637317 10.1007/s10288-018-0378-2 10.1137/1.9781611971309 10.1007/s10287-008-0090-3 10.1080/0233193031000079856 10.1109/CAMSAP.2017.8313161 10.1109/ICASSP.2014.6853715 10.1109/IJCNN.2016.7727590 10.1137/1.9781611972801.22 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 COPYRIGHT 2020 Springer Springer Science+Business Media, LLC, part of Springer Nature 2019. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: COPYRIGHT 2020 Springer – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 88I 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M2O M2P M7S MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1007/s10898-019-00792-z |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database (ProQuest) ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Collection (ProQuest) Computing Database Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics Sciences (General) Computer Science |
| EISSN | 1573-2916 |
| EndPage | 73 |
| ExternalDocumentID | A718428480 10_1007_s10898_019_00792_z |
| GrantInformation_xml | – fundername: Sapienza Università di Roma (IT) grantid: RP11816432902D1E |
| GroupedDBID | -52 -57 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29K 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 7WY 88I 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYQZM AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IJ- IKXTQ ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M2O M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9M PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SBE SCLPG SDD SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8T Z8U Z8W Z92 ZMTXR ZWQNP ZY4 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c353t-e6d5370f1eb1c6957dd5f6fe3432696e059dfbedcfc3d6d5028c7cca11c0e4ed3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000529229900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-5001 |
| IngestDate | Tue Nov 04 23:09:22 EST 2025 Sat Nov 29 10:09:50 EST 2025 Sat Nov 29 01:59:35 EST 2025 Fri Feb 21 02:42:29 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Lagrangian methods Parallel algorithms Distributed algorithms Nonlinear optimization |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c353t-e6d5370f1eb1c6957dd5f6fe3432696e059dfbedcfc3d6d5028c7cca11c0e4ed3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5888-1953 |
| OpenAccessLink | http://hdl.handle.net/11573/1283222 |
| PQID | 2231158900 |
| PQPubID | 29930 |
| PageCount | 21 |
| ParticipantIDs | proquest_journals_2231158900 gale_infotracacademiconefile_A718428480 crossref_primary_10_1007_s10898_019_00792_z springer_journals_10_1007_s10898_019_00792_z |
| PublicationCentury | 2000 |
| PublicationDate | 20200500 2020-5-00 20200501 |
| PublicationDateYYYYMMDD | 2020-05-01 |
| PublicationDate_xml | – month: 5 year: 2020 text: 20200500 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | An International Journal Dealing with Theoretical and Computational Aspects of Seeking Global Optima and Their Applications in Science, Management and Engineering |
| PublicationTitle | Journal of global optimization |
| PublicationTitleAbbrev | J Glob Optim |
| PublicationYear | 2020 |
| Publisher | Springer US Springer Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
| References | Woodsend, Gondzio (CR40) 2009; 10 García, Marín, Patriksson (CR19) 2003; 52 Boyd, Parikh, Chu, Peleato, Eckstein (CR6) 2011; 3 Cassioli, Di Lorenzo, Sciandrone (CR8) 2013; 231 Aussel, Sagratella (CR1) 2017; 85 Rockafellar, Wets (CR35) 2009 CR39 Birgin, Martinez (CR5) 2014 Scutari, Facchinei, Lampariello (CR37) 2016; 65 Chang, Lin (CR9) 2011; 2 Lucidi, Palagi, Risi, Sciandrone (CR28) 2007; 38 Bertsekas, Tsitsiklis (CR4) 1989 CR11 CR32 CR31 Mangasarian, Fischer, Riedmüller, Schäffler (CR29) 1996 Facchinei, Sagratella (CR17) 2011; 5 Piccialli, Sciandrone (CR33) 2018; 16 Facchinei, Pang (CR16) 2007 Hong, Luo (CR22) 2017; 162 Gondzio, Grothey (CR20) 2009; 6 Clarke (CR10) 1990 Rockafellar (CR34) 1974; 12 Di Pillo, Lucidi, Di Pillo, Giannessi (CR12) 1996 Jaggi (CR23) 2013; 1 Bertsekas (CR3) 2015 CR7 Facchinei, Scutari, Sagratella (CR18) 2015; 63 Latorre, Sagratella (CR25) 2016; 64 CR24 Lin, Lucidi, Palagi, Risi, Sciandrone (CR26) 2009; 141 CR21 Lucidi (CR27) 1988; 58 Bertsekas (CR2) 1999 Facchinei, Kanzow (CR14) 2007; 5 Di Pillo, Lucidi (CR13) 2002; 12 Scutari, Facchinei, Lampariello, Sardellitti, Song (CR38) 2016; 65 Facchinei, Kanzow, Karl, Sagratella (CR15) 2015; 62 Manno, Palagi, Sagratella (CR30) 2018; 71 Sagratella (CR36) 2017; 68 CC Chang (792_CR9) 2011; 2 F Facchinei (792_CR16) 2007 RT Rockafellar (792_CR34) 1974; 12 V Latorre (792_CR25) 2016; 64 RT Rockafellar (792_CR35) 2009 F Facchinei (792_CR15) 2015; 62 R García (792_CR19) 2003; 52 G Scutari (792_CR38) 2016; 65 S Lucidi (792_CR28) 2007; 38 792_CR31 792_CR32 792_CR11 G Di Pillo (792_CR12) 1996 DP Bertsekas (792_CR4) 1989 792_CR24 EG Birgin (792_CR5) 2014 K Woodsend (792_CR40) 2009; 10 S Boyd (792_CR6) 2011; 3 O Mangasarian (792_CR29) 1996 A Cassioli (792_CR8) 2013; 231 FH Clarke (792_CR10) 1990 792_CR7 D Aussel (792_CR1) 2017; 85 F Facchinei (792_CR17) 2011; 5 S Sagratella (792_CR36) 2017; 68 G Scutari (792_CR37) 2016; 65 F Facchinei (792_CR14) 2007; 5 CJ Lin (792_CR26) 2009; 141 A Manno (792_CR30) 2018; 71 J Gondzio (792_CR20) 2009; 6 G Di Pillo (792_CR13) 2002; 12 S Lucidi (792_CR27) 1988; 58 792_CR21 M Hong (792_CR22) 2017; 162 M Jaggi (792_CR23) 2013; 1 DP Bertsekas (792_CR3) 2015 792_CR39 F Facchinei (792_CR18) 2015; 63 DP Bertsekas (792_CR2) 1999 V Piccialli (792_CR33) 2018; 16 |
| References_xml | – volume: 58 start-page: 259 issue: 2 year: 1988 end-page: 282 ident: CR27 article-title: New results on a class of exact augmented lagrangians publication-title: J. Optim. Theory Appl. doi: 10.1007/BF00939685 – volume: 65 start-page: 1945 issue: 8 year: 2016 end-page: 1960 ident: CR38 article-title: Parallel and distributed methods for constrained nonconvex optimization—part II: applications in communications and machine learning publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2016.2637314 – volume: 63 start-page: 1874 issue: 7 year: 2015 end-page: 1889 ident: CR18 article-title: Parallel selective algorithms for nonconvex big data optimization publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2015.2399858 – start-page: 175 year: 1996 end-page: 188 ident: CR29 article-title: Machine learning via polyhedral concave minimization publication-title: Applied Mathematics and Parallel Computing doi: 10.1007/978-3-642-99789-1_13 – year: 2015 ident: CR3 publication-title: Convex Optimization Algorithms – volume: 3 start-page: 1 issue: 1 year: 2011 end-page: 122 ident: CR6 article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers publication-title: Found. Trends® Mach. Learn. – ident: CR39 – volume: 12 start-page: 376 issue: 2 year: 2002 end-page: 406 ident: CR13 article-title: An augmented lagrangian function with improved exactness properties publication-title: SIAM J. Optim. doi: 10.1137/S1052623497321894 – start-page: 85 year: 1996 end-page: 100 ident: CR12 article-title: On exact augmented lagrangian functions in nonlinear programming publication-title: Nonlinear Optimization and Applications doi: 10.1007/978-1-4899-0289-4_7 – volume: 5 start-page: 173 issue: 3 year: 2007 end-page: 210 ident: CR14 article-title: Generalized Nash equilibrium problems publication-title: 4OR doi: 10.1007/s10288-007-0054-4 – volume: 2 start-page: 27 issue: 3 year: 2011 ident: CR9 article-title: Libsvm: a library for support vector machines publication-title: ACM Trans. Intell. Syst. Technol. (TIST) – volume: 231 start-page: 274 issue: 2 year: 2013 end-page: 281 ident: CR8 article-title: On the convergence of inexact block coordinate descent methods for constrained optimization publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2013.05.049 – volume: 162 start-page: 165 issue: 1–2 year: 2017 end-page: 199 ident: CR22 article-title: On the linear convergence of the alternating direction method of multipliers publication-title: Math. Program. doi: 10.1007/s10107-016-1034-2 – volume: 62 start-page: 85 issue: 1 year: 2015 end-page: 109 ident: CR15 article-title: The semismooth Newton method for the solution of quasi-variational inequalities publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-014-9686-4 – year: 2014 ident: CR5 publication-title: Practical Augmented Lagrangian Methods for Constrained Optimization doi: 10.1137/1.9781611973365 – volume: 12 start-page: 268 issue: 2 year: 1974 end-page: 285 ident: CR34 article-title: Augmented Lagrange multiplier functions and duality in nonconvex programming publication-title: SIAM J. Control doi: 10.1137/0312021 – ident: CR21 – volume: 10 start-page: 1937 issue: Aug year: 2009 end-page: 1953 ident: CR40 article-title: Hybrid MPI/OpenMP parallel linear support vector machine training publication-title: J. Mach. Learn. Res. – volume: 5 start-page: 531 issue: 3 year: 2011 end-page: 547 ident: CR17 article-title: On the computation of all solutions of jointly convex generalized Nash equilibrium problems publication-title: Optim. Lett. doi: 10.1007/s11590-010-0218-6 – volume: 141 start-page: 107 issue: 1 year: 2009 end-page: 126 ident: CR26 article-title: Decomposition algorithm model for singly linearly-constrained problems subject to lower and upper bounds publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-008-9489-9 – volume: 71 start-page: 115 issue: 1 year: 2018 end-page: 145 ident: CR30 article-title: Parallel decomposition methods for linearly constrained problems subject to simple bound with application to the SVMs training publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-018-9987-0 – volume: 68 start-page: 689 issue: 3 year: 2017 end-page: 717 ident: CR36 article-title: Algorithms for generalized potential games with mixed-integer variables publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-017-9927-4 – ident: CR31 – volume: 64 start-page: 433 issue: 3 year: 2016 end-page: 449 ident: CR25 article-title: A canonical duality approach for the solution of affine quasi-variational inequalities publication-title: J. Global Optim. doi: 10.1007/s10898-014-0236-5 – ident: CR11 – year: 1989 ident: CR4 publication-title: Parallel and Distributed Computation: Numerical Methods – volume: 38 start-page: 217 issue: 2 year: 2007 end-page: 234 ident: CR28 article-title: A convergent decomposition algorithm for support vector machines publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-007-9044-x – ident: CR32 – volume: 85 start-page: 3 issue: 1 year: 2017 end-page: 18 ident: CR1 article-title: Sufficient conditions to compute any solution of a quasivariational inequality via a variational inequality publication-title: Math. Methods Oper. Res. doi: 10.1007/s00186-016-0565-x – year: 2009 ident: CR35 publication-title: Variational Analysis – volume: 1 start-page: 427 year: 2013 end-page: 435 ident: CR23 article-title: Revisiting Frank-Wolfe: projection-free sparse convex optimization publication-title: ICML – volume: 65 start-page: 1929 issue: 8 year: 2016 end-page: 1944 ident: CR37 article-title: Parallel and distributed methods for constrained nonconvex optimization—part I: theory publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2016.2637317 – volume: 16 start-page: 111 issue: 2 year: 2018 end-page: 149 ident: CR33 article-title: Nonlinear optimization and support vector machines publication-title: 4OR doi: 10.1007/s10288-018-0378-2 – ident: CR7 – year: 1990 ident: CR10 publication-title: Optimization and Nonsmooth Analysis doi: 10.1137/1.9781611971309 – year: 1999 ident: CR2 publication-title: Nonlinear Programming – year: 2007 ident: CR16 publication-title: Finite-Dimensional Variational Inequalities and Complementarity Problems – ident: CR24 – volume: 6 start-page: 135 issue: 2 year: 2009 end-page: 160 ident: CR20 article-title: Exploiting structure in parallel implementation of interior point methods for optimization publication-title: Comput. Manag. Sci. doi: 10.1007/s10287-008-0090-3 – volume: 52 start-page: 171 issue: 2 year: 2003 end-page: 200 ident: CR19 article-title: Column generation algorithms for nonlinear optimization, I: convergence analysis publication-title: Optimization doi: 10.1080/0233193031000079856 – volume: 231 start-page: 274 issue: 2 year: 2013 ident: 792_CR8 publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2013.05.049 – start-page: 175 volume-title: Applied Mathematics and Parallel Computing year: 1996 ident: 792_CR29 doi: 10.1007/978-3-642-99789-1_13 – ident: 792_CR7 doi: 10.1109/CAMSAP.2017.8313161 – volume: 3 start-page: 1 issue: 1 year: 2011 ident: 792_CR6 publication-title: Found. Trends® Mach. Learn. – volume: 6 start-page: 135 issue: 2 year: 2009 ident: 792_CR20 publication-title: Comput. Manag. Sci. doi: 10.1007/s10287-008-0090-3 – volume-title: Optimization and Nonsmooth Analysis year: 1990 ident: 792_CR10 doi: 10.1137/1.9781611971309 – volume: 141 start-page: 107 issue: 1 year: 2009 ident: 792_CR26 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-008-9489-9 – volume-title: Practical Augmented Lagrangian Methods for Constrained Optimization year: 2014 ident: 792_CR5 doi: 10.1137/1.9781611973365 – volume-title: Nonlinear Programming year: 1999 ident: 792_CR2 – volume: 12 start-page: 268 issue: 2 year: 1974 ident: 792_CR34 publication-title: SIAM J. Control doi: 10.1137/0312021 – volume: 1 start-page: 427 year: 2013 ident: 792_CR23 publication-title: ICML – ident: 792_CR39 doi: 10.1109/ICASSP.2014.6853715 – ident: 792_CR24 – volume: 5 start-page: 531 issue: 3 year: 2011 ident: 792_CR17 publication-title: Optim. Lett. doi: 10.1007/s11590-010-0218-6 – volume: 58 start-page: 259 issue: 2 year: 1988 ident: 792_CR27 publication-title: J. Optim. Theory Appl. doi: 10.1007/BF00939685 – ident: 792_CR31 doi: 10.1109/IJCNN.2016.7727590 – volume: 63 start-page: 1874 issue: 7 year: 2015 ident: 792_CR18 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2015.2399858 – volume-title: Variational Analysis year: 2009 ident: 792_CR35 – volume: 52 start-page: 171 issue: 2 year: 2003 ident: 792_CR19 publication-title: Optimization doi: 10.1080/0233193031000079856 – volume: 12 start-page: 376 issue: 2 year: 2002 ident: 792_CR13 publication-title: SIAM J. Optim. doi: 10.1137/S1052623497321894 – ident: 792_CR32 doi: 10.1137/1.9781611972801.22 – volume-title: Convex Optimization Algorithms year: 2015 ident: 792_CR3 – volume: 162 start-page: 165 issue: 1–2 year: 2017 ident: 792_CR22 publication-title: Math. Program. doi: 10.1007/s10107-016-1034-2 – volume: 65 start-page: 1929 issue: 8 year: 2016 ident: 792_CR37 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2016.2637317 – ident: 792_CR11 – volume: 38 start-page: 217 issue: 2 year: 2007 ident: 792_CR28 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-007-9044-x – volume: 65 start-page: 1945 issue: 8 year: 2016 ident: 792_CR38 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2016.2637314 – volume: 16 start-page: 111 issue: 2 year: 2018 ident: 792_CR33 publication-title: 4OR doi: 10.1007/s10288-018-0378-2 – ident: 792_CR21 – volume: 10 start-page: 1937 issue: Aug year: 2009 ident: 792_CR40 publication-title: J. Mach. Learn. Res. – volume: 85 start-page: 3 issue: 1 year: 2017 ident: 792_CR1 publication-title: Math. Methods Oper. Res. doi: 10.1007/s00186-016-0565-x – start-page: 85 volume-title: Nonlinear Optimization and Applications year: 1996 ident: 792_CR12 doi: 10.1007/978-1-4899-0289-4_7 – volume: 68 start-page: 689 issue: 3 year: 2017 ident: 792_CR36 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-017-9927-4 – volume: 62 start-page: 85 issue: 1 year: 2015 ident: 792_CR15 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-014-9686-4 – volume-title: Finite-Dimensional Variational Inequalities and Complementarity Problems year: 2007 ident: 792_CR16 – volume: 64 start-page: 433 issue: 3 year: 2016 ident: 792_CR25 publication-title: J. Global Optim. doi: 10.1007/s10898-014-0236-5 – volume: 2 start-page: 27 issue: 3 year: 2011 ident: 792_CR9 publication-title: ACM Trans. Intell. Syst. Technol. (TIST) – volume: 71 start-page: 115 issue: 1 year: 2018 ident: 792_CR30 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-018-9987-0 – volume: 5 start-page: 173 issue: 3 year: 2007 ident: 792_CR14 publication-title: 4OR doi: 10.1007/s10288-007-0054-4 – volume-title: Parallel and Distributed Computation: Numerical Methods year: 1989 ident: 792_CR4 |
| SSID | ssj0009852 |
| Score | 2.2461154 |
| Snippet | Distributed and parallel algorithms have been frequently investigated in the recent years, in particular in applications like machine learning. Nonetheless,... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 53 |
| SubjectTerms | Algorithms Analysis Computer Science Coupling Dependent variables Iterative methods Machine learning Mathematical optimization Mathematics Mathematics and Statistics Nonlinear programming Operations Research/Decision Theory Optimization Parameters Production scheduling Real Functions |
| SummonAdditionalLinks | – databaseName: Computer Science Database (ProQuest) dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT90wEB5R4FAObAXx2ORDJUDFwkm8xCeEWIREhTgA4mYltgNI8FgSEOLX4zF-erSIXnq2FSeZ8cx4-b4P4KcXWlRWMeq4ZpTXsqHaFQ3NXK5qwRrvozbg-W91fFxeXOiTtOHWpmuVg5gYA7W7s7hHvhXSWCheSs3Y9v0DRdUoPF1NEhrfYCzL8wz9_EjRIeluGRV3mM4FFSEeJ9BMgs6VCC5DCA9TOqevfySmv8Pzp3PSmH4Opv73xadhMhWeZOfdU2ZgxPdnYeIDHeEszKSJ3pL1xEa98QOO9pBaF1WxvCPVzWV4dHd125JQ7JJ4Zf2FJFGaluCmLsG6tcK2JwT7XmKnNgpRdO0cnB3sn-4e0qTAQG0hio566UShWJOFiG6lFso50cjGIxpVaulDbeaa2jvb2MKFvqFYsSr4RJZZ5rl3xTyM9u_6fgFIybMq54XkYQXIbVlVqpa59bUUvJKl8j34Nfj95v6daMMMKZXRWCYYy0RjmdcerKGFDM7C8Am2SmCCMBbyWZmdkHLDwoqXrAfLA7OYND1bM7RJDzYHhh02fz3u4r-ftgTfc1yPxwuRyzDaPT75FRi3z911-7ganfMNX8jrAw priority: 102 providerName: ProQuest |
| Title | Distributed algorithms for convex problems with linear coupling constraints |
| URI | https://link.springer.com/article/10.1007/s10898-019-00792-z https://www.proquest.com/docview/2231158900 |
| Volume | 77 |
| WOSCitedRecordID | wos000529229900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer LINK customDbUrl: eissn: 1573-2916 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009852 issn: 0925-5001 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dTxQxEJ8I-CAPIqfGE7z0wUSNNul-9OsREWKCnBdQRF82u20XSOAw18UQ_nqnpevh14O-TNJ0st3tdD667fwG4KnjmtdGMmpLzWjZiJZqW7Q0s7lsOGudi7UBD97J8VgdHupJSgrz_W33_kgyWuobyW4qpIOFpBsmdU6vFmAJ3Z0K6ri3fzCH2lWxzg7TOaccrXBKlfnzM35yR78a5d9OR6PT2V75v9e9B3dTkEk2rlfFKtxy0wGs9AUcSNLnASzfQCPE1u4PCFc_gNXE5cnzBE394j7svAk4u6FElrOkPj06n510x2eeYORL4v31S5Iq1HgS_vCSEMTWoe8iZP4eBSYfq1J0_gF83N76sPmWpnIM1BS86KgTlheStRmadyM0l9byVrQupKYKLRwGarZtnDWtKSzyYuRiJC6QLDPMlc4WD2Fxej51j4CoMqvzshAlbgdLo-paNiI3rhG8rIWSbggve6lUX69RN6o5vnKY2AontooTW10N4VkQXBVUEj_B1CmzAMcK4FbVBvpf3GWVig1hvZdtlXTVVxggYVisNMPuV70s591_H_fxv7GvwZ08bNbjbcl1WOxmF-4J3DbfuhM_G8GC_PR5BEuvt8aTPWztSIp0l20Gmr-PdBKo3Ec64V9GcdV_B3RL9Ww |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQcgBYQCwV8AAECCyfxIz4gVLVUrXZZcSioN5PYTkGCbWlSHv1R_EZmvImWh-DWA-dYthx_nhnb880HcC8qqypvBA_SCi5r3XAbioZnITe1Ek2MSRvwzcRMp-Xenn21BN8HLgylVQ42MRnqcODpjvwpujEMXkorxPPDT5xUo-h1dZDQmMNiHL99wSNb-2xnE9f3fp5vvdjd2Oa9qgD3hSo6HnVQhRFNhlbKa6tMCKrRTSSGpbY6YrwRmjoG3_giYFt0wN7gPLPMiyhjKLDfM3BWStwOlCooNhZFfsuk8CNsrrhC-9-TdHqqXklkNqIMCWNzfvKLI_zdHfzxLpvc3dbl_-1HXYFLfWDN1uc7YQWW4mwVLv5UbnEVVnpD1rKHfbXtR1dhvEmlg0n1KwZWfdjHqXTvPrYMg3mWUvK_sl50p2V0ac0oLq_o2zGRmfepUZuENrr2Grw-lSleh-XZwSzeAFbKrMploSWecKUvq8rUOvex1kpWujRxBI-H5XaH80IiblEymsDhEBwugcOdjOABIcKRlcEp-KonS-BYVK_LrWNIgQdHWYoRrA0wcL35ad0CAyN4MgBp8fnv4978d2934fz27suJm-xMx7fgQk53Dyn5cw2Wu6PjeBvO-c_d-_boTtoYDN6eNsB-AL4HS0I |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghAcgBYQWwr4AAIEVp2H7eRQoYplRbXVag-AKi5uYjsFCbalSQv0p_HrOuN1tDwEtx44x7I18ed52DPzATz0spSV1YK7vBQ8r1XDS5c1PHGprqVovA_cgO929GRS7O6W0yX40dfCUFplrxODonYHlu7IN9CMofNSlEJsNDEtYjocvTj8wolBil5aezqNOUTG_vtXDN_aze0h7vWjNB29evPyNY8MA9xmMuu4V05mWjQJaiyrSqmdk41qPFVbqlJ59D1cU3tnG5s5HIvG2GqUOUms8Ll3Gc57AS5qjDEp8JvK94uGv0Vg-xFlKrlEWxALdmLZXkGFbVQ-JHSZ8tNfjOLvpuGPN9pg-kbX_-efdgOuRYebbc1PyAos-dkqXP2pDeMqrEQF17InsQv305swHlJLYWID845Vn_ZRlO7D55ahk89Cqv43Fsl4WkaX2Yz89Yq-HVOR8z4NagMBR9fegrfnIuJtWJ4dzPwdYEWeVGmeqRwj39wWVaVrlVpfK5lXqtB-AM_6rTeH8wYjZtFKmoBiECgmAMWcDuAxocOQ9kERbBWLKHAt6uNlttDVwIAyL8QA1ntImKiWWrPAwwCe96BafP77umv_nu0BXEZcmZ3tyfguXEnpSiLkhK7Dcnd07O_BJXvSfWyP7oczwmDvvPF1BppqVFM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+algorithms+for+convex+problems+with+linear+coupling+constraints&rft.jtitle=Journal+of+global+optimization&rft.au=Colombo%2C+Tommaso&rft.au=Sagratella%2C+Simone&rft.date=2020-05-01&rft.pub=Springer&rft.issn=0925-5001&rft.volume=77&rft.issue=1&rft.spage=53&rft_id=info:doi/10.1007%2Fs10898-019-00792-z&rft.externalDocID=A718428480 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-5001&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-5001&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-5001&client=summon |