Selective and collective actuation in active solids
Active solids consist of elastically coupled out-of-equilibrium units performing work 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 – 13 . They are central to autonomous processes, such as locomotion, self-oscillations and rectification, in biological systems 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21...
Uložené v:
| Vydané v: | Nature physics Ročník 18; číslo 10; s. 1234 - 1239 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Nature Publishing Group UK
01.10.2022
Nature Publishing Group Nature Publishing Group [2005-....] |
| Predmet: | |
| ISSN: | 1745-2473, 1745-2481 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Active solids consist of elastically coupled out-of-equilibrium units performing work
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
–
13
. They are central to autonomous processes, such as locomotion, self-oscillations and rectification, in biological systems
14
,
15
,
16
,
17
,
18
,
19
,
20
,
21
,
22
,
23
,
24
–
25
, designer materials
26
and robotics
27
,
28
,
29
,
30
–
31
. Yet, the feedback mechanism between elastic and active forces as well as the possible emergence of collective behaviours in a mechanically stable elastic solid remains elusive. Here we introduce a minimal realization of an active elastic solid in which we characterize the emergence of selective and collective actuation resulting from the interplay between activity and elasticity. Polar active agents exert forces on the nodes of a two-dimensional elastic lattice. The resulting displacement field nonlinearly reorients the active agents. For a large-enough coupling, a collective oscillation of the lattice nodes around their equilibrium position emerges. Only a few elastic modes are actuated and crucially, they are not necessarily the lowest energy ones. By combining experiments with the numerical and theoretical analyses of an agent’s model, we unveil the bifurcation scenario and selection mechanism by which the collective actuation takes place. Our findings may provide a new mechanism for oscillatory dynamics in biological systems
14
,
19
,
21
,
24
and the opportunity for bona fide autonomy in metamaterials
32
,
33
.
In active solids, work is performed by elastically coupled units. By studying a minimal experimental model of an active solid, actuation mechanisms resulting in a collectively oscillating displacement field that drives work cycles are now identified. |
|---|---|
| AbstractList | Active solids consist of elastically coupled out-of-equilibrium units performing work
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
–
13
. They are central to autonomous processes, such as locomotion, self-oscillations and rectification, in biological systems
14
,
15
,
16
,
17
,
18
,
19
,
20
,
21
,
22
,
23
,
24
–
25
, designer materials
26
and robotics
27
,
28
,
29
,
30
–
31
. Yet, the feedback mechanism between elastic and active forces as well as the possible emergence of collective behaviours in a mechanically stable elastic solid remains elusive. Here we introduce a minimal realization of an active elastic solid in which we characterize the emergence of selective and collective actuation resulting from the interplay between activity and elasticity. Polar active agents exert forces on the nodes of a two-dimensional elastic lattice. The resulting displacement field nonlinearly reorients the active agents. For a large-enough coupling, a collective oscillation of the lattice nodes around their equilibrium position emerges. Only a few elastic modes are actuated and crucially, they are not necessarily the lowest energy ones. By combining experiments with the numerical and theoretical analyses of an agent’s model, we unveil the bifurcation scenario and selection mechanism by which the collective actuation takes place. Our findings may provide a new mechanism for oscillatory dynamics in biological systems
14
,
19
,
21
,
24
and the opportunity for bona fide autonomy in metamaterials
32
,
33
.
In active solids, work is performed by elastically coupled units. By studying a minimal experimental model of an active solid, actuation mechanisms resulting in a collectively oscillating displacement field that drives work cycles are now identified. Active solids consist of elastically coupled out-of-equilibrium units performing work1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12–13. They are central to autonomous processes, such as locomotion, self-oscillations and rectification, in biological systems14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24–25, designer materials26 and robotics27, 28, 29, 30–31. Yet, the feedback mechanism between elastic and active forces as well as the possible emergence of collective behaviours in a mechanically stable elastic solid remains elusive. Here we introduce a minimal realization of an active elastic solid in which we characterize the emergence of selective and collective actuation resulting from the interplay between activity and elasticity. Polar active agents exert forces on the nodes of a two-dimensional elastic lattice. The resulting displacement field nonlinearly reorients the active agents. For a large-enough coupling, a collective oscillation of the lattice nodes around their equilibrium position emerges. Only a few elastic modes are actuated and crucially, they are not necessarily the lowest energy ones. By combining experiments with the numerical and theoretical analyses of an agent’s model, we unveil the bifurcation scenario and selection mechanism by which the collective actuation takes place. Our findings may provide a new mechanism for oscillatory dynamics in biological systems14,19,21,24 and the opportunity for bona fide autonomy in metamaterials32,33.In active solids, work is performed by elastically coupled units. By studying a minimal experimental model of an active solid, actuation mechanisms resulting in a collectively oscillating displacement field that drives work cycles are now identified. |
| Author | Baconnier, P. Dauchot, O. Démery, V. López, C. Hernández Shohat, D. Düring, G. Coulais, C. |
| Author_xml | – sequence: 1 givenname: P. orcidid: 0000-0003-3526-7605 surname: Baconnier fullname: Baconnier, P. email: paul.baconnier@espci.fr organization: Gulliver UMR CNRS 7083, ESPCI Paris, Université PSL – sequence: 2 givenname: D. surname: Shohat fullname: Shohat, D. organization: Gulliver UMR CNRS 7083, ESPCI Paris, Université PSL, School of Physics and Astronomy, Tel Aviv University – sequence: 3 givenname: C. Hernández surname: López fullname: López, C. Hernández organization: Instituto de Física, Pontificia Universidad Católica de Chile, ANID—Millenium Nucleus of Soft Smart Mechanical Metamaterials – sequence: 4 givenname: C. orcidid: 0000-0002-3174-5836 surname: Coulais fullname: Coulais, C. organization: Van der Waals-Zeeman Institute, Institute of Physics, Universiteit van Amsterdam – sequence: 5 givenname: V. orcidid: 0000-0001-7546-0384 surname: Démery fullname: Démery, V. organization: Gulliver UMR CNRS 7083, ESPCI Paris, Université PSL, Univ Lyon, ENSL, CNRS, Laboratoire de Physique – sequence: 6 givenname: G. surname: Düring fullname: Düring, G. organization: Instituto de Física, Pontificia Universidad Católica de Chile, ANID—Millenium Nucleus of Soft Smart Mechanical Metamaterials – sequence: 7 givenname: O. orcidid: 0000-0002-7039-5787 surname: Dauchot fullname: Dauchot, O. email: olivier.dauchot@espci.fr organization: Gulliver UMR CNRS 7083, ESPCI Paris, Université PSL |
| BackLink | https://hal.science/hal-03840718$$DView record in HAL |
| BookMark | eNp9kEtLAzEUhYNUsK3-AVcFVy6iuXlvS1ErFFyo65DJpJoyTmoyLfXfO9PRCi66ug--czn3jNCgjrVH6BLIDRCmbzMHIRUmlGICinC8O0FDUFxgyjUMDr1iZ2iU84oQTiWwIWLPvvKuCVs_sXU5cbE6jK7Z2CbEehLqbuh2OVahzOfodGmr7C9-6hi93t-9zOZ48fTwOJsusGOCNdhzyVzJtSdW04J6cF5aVRSeLAUTllMnWQlaMF9IVUjQEgSVkhdcUFqUwMbour_7biuzTuHDpi8TbTDz6cJ0u_ZzThTobcde9ew6xc-Nz41ZxU2qW3uGKkoJBQEdpXvKpZhz8kvjQrN_skk2VAaI6eI0fZymjdPs4zS7Vkr_SX8dHRWxXpRbuH7z6c_VEdU3YeeIQQ |
| CitedBy_id | crossref_primary_10_1038_s41467_025_61896_7 crossref_primary_10_1088_1361_648X_adac98 crossref_primary_10_1016_j_physa_2024_130344 crossref_primary_10_1103_RevModPhys_97_015007 crossref_primary_10_1038_s41467_024_50226_y crossref_primary_10_1038_s41467_024_50937_2 crossref_primary_10_1038_s41586_025_08646_3 crossref_primary_10_1119_5_0125111 crossref_primary_10_1038_s42005_024_01637_2 crossref_primary_10_1080_00268976_2024_2407009 crossref_primary_10_1038_s41567_022_01735_4 crossref_primary_10_1063_5_0141556 crossref_primary_10_1103_PhysRevX_14_021014 crossref_primary_10_1103_PhysRevE_111_015404 crossref_primary_10_1073_pnas_2502211122 crossref_primary_10_1039_D5SM00627A crossref_primary_10_1088_1361_648X_accd36 crossref_primary_10_1103_t7st_flj2 crossref_primary_10_1016_j_bios_2025_117157 crossref_primary_10_1088_1751_8121_ad02cc crossref_primary_10_1039_D5SM00109A crossref_primary_10_1038_s41467_023_39660_6 crossref_primary_10_1038_s41467_023_41432_1 crossref_primary_10_1016_j_ijengsci_2024_104170 crossref_primary_10_1088_1361_648X_adb46e crossref_primary_10_1103_pv3d_7s54 crossref_primary_10_1103_PhysRevResearch_6_023255 crossref_primary_10_1103_PhysRevE_111_035105 crossref_primary_10_1103_c2y9_3cc9 crossref_primary_10_1103_PhysRevE_107_044605 crossref_primary_10_3390_act13040148 crossref_primary_10_1073_pnas_2421327122 crossref_primary_10_1038_s41586_024_08514_6 crossref_primary_10_1016_j_cpc_2024_109483 crossref_primary_10_1088_1742_5468_ad6133 crossref_primary_10_1038_s41567_022_01862_y crossref_primary_10_1038_s42005_024_01835_y crossref_primary_10_1038_s42005_024_01540_w crossref_primary_10_1126_scirobotics_abo6140 crossref_primary_10_1103_PhysRevX_15_011010 crossref_primary_10_1088_1367_2630_add366 crossref_primary_10_1016_j_matt_2023_08_012 crossref_primary_10_1038_s41467_025_62626_9 crossref_primary_10_1038_s41567_022_01836_0 crossref_primary_10_1017_jfm_2024_162 crossref_primary_10_1140_epjb_s10051_022_00421_x crossref_primary_10_1038_s41567_025_02957_y crossref_primary_10_1146_annurev_conmatphys_040821_125506 crossref_primary_10_1073_pnas_2410654121 crossref_primary_10_1063_5_0274454 crossref_primary_10_1088_1361_648X_adebd3 crossref_primary_10_1016_j_physa_2025_130845 |
| Cites_doi | 10.1073/pnas.1521151113 10.1109/MRS.2019.8901061 10.1038/ncomms5351 10.1103/PhysRevLett.123.248004 10.1038/natrevmats.2017.66 10.1038/s41586-020-2626-9 10.1103/PhysRevLett.75.4326 10.1103/RevModPhys.85.1143 10.1126/science.1134404 10.1038/s41467-020-15164-5 10.1002/advs.202001384 10.1038/s41467-019-12599-3 10.1103/PhysRevLett.121.178001 10.1073/pnas.1514208113 10.1103/PhysRevLett.123.238001 10.1103/PhysRevLett.120.208001 10.1103/PhysRevE.84.040301 10.1038/natrevmats.2017.48 10.1126/scirobotics.abe4385 10.1038/nphys2592 10.1103/PhysRevLett.111.268302 10.1073/pnas.0903974106 10.1103/PhysRevLett.110.055702 10.1038/nature12673 10.1016/0014-4827(54)90176-7 10.5281/zenodo.6653906 10.1038/nphys3224 10.1103/PhysRevLett.122.068002 10.1038/nature20817 10.1016/j.bpj.2019.06.013 10.1140/epjst/e2014-02193-y 10.1039/C8SM00126J 10.1016/j.physrep.2012.03.004 10.1103/PhysRevE.74.061908 10.1038/s41586-021-03375-9 10.1073/pnas.1801759115 10.1038/s41586-019-1022-9 10.1038/s41567-020-0795-y 10.1103/PhysRevLett.114.228101 10.1007/s11721-012-0075-2 10.1073/pnas.2017015118 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2022 corrected publication 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Nature Publishing Group Oct 2022 licence_http://creativecommons.org/publicdomain/zero |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2022 corrected publication 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Nature Publishing Group Oct 2022 – notice: licence_http://creativecommons.org/publicdomain/zero |
| DBID | AAYXX CITATION 3V. 7U5 7XB 88I 8FD 8FE 8FG 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO GNUQQ HCIFZ L7M M2P P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 1XC VOOES |
| DOI | 10.1038/s41567-022-01704-x |
| DatabaseName | CrossRef ProQuest Central (Corporate) Solid State and Superconductivity Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection Natural Science Collection ProQuest Earth, Atmospheric & Aquatic Science Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection Advanced Technologies Database with Aerospace Science Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | ProQuest Central Student |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1745-2481 |
| EndPage | 1239 |
| ExternalDocumentID | oai:HAL:hal-03840718v1 10_1038_s41567_022_01704_x |
| GrantInformation_xml | – fundername: EDPIF – fundername: ESPCI – fundername: No relevant funding – fundername: Chateaubriand Fellowship – fundername: UvA – fundername: Fondecyt Grant No. 1210656 and ANID - Millenium Science Initiative Program - Code NCN17_092. – fundername: CNRS |
| GroupedDBID | 0R~ 123 29M 39C 3V. 4.4 5BI 5M7 6OB 70F 88I 8FE 8FG 8FH 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJNI ABLJU ABUWG ABZEH ACBWK ACGFO ACGFS ACGOD ACMJI ACUHS ADBBV ADFRT AENEX AEUYN AFBBN AFKRA AFSHS AFWHJ AGAYW AGHTU AHBCP AHOSX AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BENPR BGLVJ BHPHI BKKNO BKSAR BPHCQ CCPQU DB5 DU5 DWQXO EBS EE. EJD ESX EXGXG F5P FEDTE FQGFK FSGXE GNUQQ HCIFZ HVGLF HZ~ I-F LGEZI LK5 LOTEE M2P M7R N9A NADUK NNMJJ NXXTH O9- ODYON P2P P62 PCBAR PQQKQ PROAC Q2X RNS RNT RNTTT SHXYY SIXXV SJN SNYQT SOJ TAOOD TBHMF TDRGL TSG TUS ~8M AAYXX ABFSG ACSTC AEZWR AFANA AFFHD AFHIU AGSTI AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT PQGLB 7U5 7XB 8FD 8FK L7M PKEHL PQEST PQUKI PRINS PUEGO Q9U 1XC NFIDA VOOES |
| ID | FETCH-LOGICAL-c353t-e463cd48e0a82b2e1ce6a7bbe0f535a42c63d1853eb67b6186152664b4522bd13 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 85 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000847187900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1745-2473 |
| IngestDate | Wed Nov 26 06:48:38 EST 2025 Sat Aug 23 14:32:59 EDT 2025 Sat Nov 29 01:38:11 EST 2025 Tue Nov 18 22:33:30 EST 2025 Fri Feb 21 02:36:32 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c353t-e463cd48e0a82b2e1ce6a7bbe0f535a42c63d1853eb67b6186152664b4522bd13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3174-5836 0000-0002-7039-5787 0000-0001-7546-0384 0000-0003-3526-7605 |
| OpenAccessLink | https://hal.science/hal-03840718 |
| PQID | 2722021511 |
| PQPubID | 27545 |
| PageCount | 6 |
| ParticipantIDs | hal_primary_oai_HAL_hal_03840718v1 proquest_journals_2722021511 crossref_citationtrail_10_1038_s41567_022_01704_x crossref_primary_10_1038_s41567_022_01704_x springer_journals_10_1038_s41567_022_01704_x |
| PublicationCentury | 2000 |
| PublicationDate | 2022-10-01 |
| PublicationDateYYYYMMDD | 2022-10-01 |
| PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | Nature physics |
| PublicationTitleAbbrev | Nat. Phys |
| PublicationYear | 2022 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Publishing Group [2005-....] |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Publishing Group [2005-....] |
| References | A Peshkov (1704_CR39) 2014; 223 D Mizuno (1704_CR17) 2007; 315 C Chen (1704_CR21) 2017; 542 J Toner (1704_CR34) 1995; 75 A Maitra (1704_CR12) 2019; 123 M Pishvar (1704_CR33) 2020; 7 GH Koenderink (1704_CR1) 2009; 106 A Bricard (1704_CR36) 2013; 503 N Klongvessa (1704_CR11) 2019; 123 AM Menzel (1704_CR3) 2013; 110 L Berthier (1704_CR4) 2013; 9 C Scheibner (1704_CR13) 2020; 16 G Peyret (1704_CR24) 2019; 117 1704_CR28 D Needleman (1704_CR22) 2017; 2 FG Woodhouse (1704_CR8) 2018; 121 P Ronceray (1704_CR7) 2016; 113 M Brambilla (1704_CR27) 2013; 7 S Li (1704_CR29) 2019; 567 1704_CR43 S Banerjee (1704_CR18) 2015; 114 M Brandenbourger (1704_CR26) 2019; 10 O Dauchot (1704_CR40) 2019; 122 M Fruchart (1704_CR41) 2021; 592 K Bertoldi (1704_CR32) 2017; 2 J Prost (1704_CR6) 2015; 11 M Abercrombie (1704_CR14) 1954; 6 B Smeets (1704_CR19) 2016; 113 T Vicsek (1704_CR35) 2012; 517 G Briand (1704_CR9) 2018; 120 MZ Miskin (1704_CR42) 2020; 584 S Henkes (1704_CR2) 2011; 84 MC Marchetti (1704_CR37) 2013; 85 1704_CR38 E Ferrante (1704_CR5) 2013; 111 S Henkes (1704_CR25) 2020; 11 1704_CR31 1704_CR30 D Bi (1704_CR20) 2016; 6 F Giavazzi (1704_CR10) 2018; 14 A Vilfan (1704_CR15) 2005; 17 B Szabo (1704_CR16) 2006; 74 DF Holmes (1704_CR23) 2018; 115 |
| References_xml | – volume: 113 start-page: 14621 year: 2016 ident: 1704_CR19 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1521151113 – ident: 1704_CR28 doi: 10.1109/MRS.2019.8901061 – ident: 1704_CR38 doi: 10.1038/ncomms5351 – volume: 123 start-page: 248004 year: 2019 ident: 1704_CR11 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.248004 – volume: 2 start-page: 17066 year: 2017 ident: 1704_CR32 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2017.66 – volume: 584 start-page: 557 year: 2020 ident: 1704_CR42 publication-title: Nature doi: 10.1038/s41586-020-2626-9 – volume: 75 start-page: 4326 year: 1995 ident: 1704_CR34 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.75.4326 – volume: 85 start-page: 1143 year: 2013 ident: 1704_CR37 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.85.1143 – volume: 315 start-page: 370 year: 2007 ident: 1704_CR17 publication-title: Science doi: 10.1126/science.1134404 – volume: 11 start-page: 1405 year: 2020 ident: 1704_CR25 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15164-5 – volume: 7 start-page: 2001384 year: 2020 ident: 1704_CR33 publication-title: Adv. Sci. doi: 10.1002/advs.202001384 – volume: 10 start-page: 4608 year: 2019 ident: 1704_CR26 publication-title: Nat. Commun. doi: 10.1038/s41467-019-12599-3 – volume: 121 start-page: 178001 year: 2018 ident: 1704_CR8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.178001 – volume: 113 start-page: 2827 year: 2016 ident: 1704_CR7 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1514208113 – volume: 123 start-page: 238001 year: 2019 ident: 1704_CR12 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.238001 – volume: 120 start-page: 208001 year: 2018 ident: 1704_CR9 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.208001 – volume: 84 start-page: 040301 year: 2011 ident: 1704_CR2 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.84.040301 – volume: 2 start-page: 17048 year: 2017 ident: 1704_CR22 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2017.48 – ident: 1704_CR30 doi: 10.1126/scirobotics.abe4385 – volume: 9 start-page: 310 year: 2013 ident: 1704_CR4 publication-title: Nat. Phys. doi: 10.1038/nphys2592 – volume: 111 start-page: 268302 year: 2013 ident: 1704_CR5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.268302 – volume: 106 start-page: 15192 year: 2009 ident: 1704_CR1 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0903974106 – volume: 110 start-page: 055702 year: 2013 ident: 1704_CR3 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.055702 – volume: 503 start-page: 95 year: 2013 ident: 1704_CR36 publication-title: Nature doi: 10.1038/nature12673 – volume: 6 start-page: 293 year: 1954 ident: 1704_CR14 publication-title: Exp. Cell Res. doi: 10.1016/0014-4827(54)90176-7 – ident: 1704_CR43 doi: 10.5281/zenodo.6653906 – volume: 11 start-page: 111 year: 2015 ident: 1704_CR6 publication-title: Nat. Phys. doi: 10.1038/nphys3224 – volume: 122 start-page: 068002 year: 2019 ident: 1704_CR40 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.068002 – volume: 542 start-page: 210 year: 2017 ident: 1704_CR21 publication-title: Nature doi: 10.1038/nature20817 – volume: 117 start-page: 464 year: 2019 ident: 1704_CR24 publication-title: Biophys. J. doi: 10.1016/j.bpj.2019.06.013 – volume: 223 start-page: 1315 year: 2014 ident: 1704_CR39 publication-title: Eur. Phys. J. Spec. Top. doi: 10.1140/epjst/e2014-02193-y – volume: 17 start-page: S3901 year: 2005 ident: 1704_CR15 publication-title: J. Phys.: Condens. Matter – volume: 14 start-page: 3471 year: 2018 ident: 1704_CR10 publication-title: Soft Matter doi: 10.1039/C8SM00126J – volume: 517 start-page: 71 year: 2012 ident: 1704_CR35 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2012.03.004 – volume: 74 start-page: 061908 year: 2006 ident: 1704_CR16 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.74.061908 – volume: 6 start-page: 021011 year: 2016 ident: 1704_CR20 publication-title: Phys. Rev. X – volume: 592 start-page: 363 year: 2021 ident: 1704_CR41 publication-title: Nature doi: 10.1038/s41586-021-03375-9 – volume: 115 start-page: E9288 year: 2018 ident: 1704_CR23 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1801759115 – volume: 567 start-page: 361 year: 2019 ident: 1704_CR29 publication-title: Nature doi: 10.1038/s41586-019-1022-9 – volume: 16 start-page: 475 year: 2020 ident: 1704_CR13 publication-title: Nat. Phys. doi: 10.1038/s41567-020-0795-y – volume: 114 start-page: 228101 year: 2015 ident: 1704_CR18 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.228101 – volume: 7 start-page: 1 year: 2013 ident: 1704_CR27 publication-title: Swarm Intell. doi: 10.1007/s11721-012-0075-2 – ident: 1704_CR31 doi: 10.1073/pnas.2017015118 |
| SSID | ssj0042613 |
| Score | 2.6853738 |
| Snippet | Active solids consist of elastically coupled out-of-equilibrium units performing work
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
–
13
. They are central... Active solids consist of elastically coupled out-of-equilibrium units performing work1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12–13. They are central to autonomous... |
| SourceID | hal proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1234 |
| SubjectTerms | 639/766/530/2803 639/766/530/2804 Actuation Atomic Autonomy Bifurcation theory Classical and Continuum Physics Complex Systems Condensed Matter Condensed Matter Physics Equilibrium Lattice vibration Locomotion Mathematical and Computational Physics Molecular Nodes Optical and Plasma Physics Physics Physics and Astronomy Simulation Soft Condensed Matter Solids Symmetry Theoretical |
| Title | Selective and collective actuation in active solids |
| URI | https://link.springer.com/article/10.1038/s41567-022-01704-x https://www.proquest.com/docview/2722021511 https://hal.science/hal-03840718 |
| Volume | 18 |
| WOSCitedRecordID | wos000847187900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1745-2481 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0042613 issn: 1745-2473 databaseCode: P5Z dateStart: 20220101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1745-2481 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0042613 issn: 1745-2473 databaseCode: PCBAR dateStart: 20220101 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1745-2481 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0042613 issn: 1745-2473 databaseCode: BENPR dateStart: 20220101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1745-2481 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0042613 issn: 1745-2473 databaseCode: M2P dateStart: 20220101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6xUKReCi2gboFVVHErFontxNkTAgTiQFerAhLqxfJjLFZC4ZEF8fPJeBOgleDC0Y6dWPnGMx57_A3AVmFSzE1AFgIGJgMiG6bWscxKI9DQItrHZBNqNCovLobjdsOtbsMqO50YFbW_drRHvsMV59E-Zbs3t4yyRtHpaptCowcLxJJAE3Oc_-00MXkHYnYhMmdcKtFemklFuVOT46IYxbITg4xkj_8Ypt4lhUW-WnP-d0warc_R0kfHvQxf2nVnsjcTlK8wh9U3WIzxn65eAXEa8-E0qi8xlU9IOroi3TAh9JJJRQWqa-R14utVOD86PDs4Zm0-BeZELqYMZSGclyWmpuSWY-awMMpaTEMuciO5K4Qn-422UJaI9BvjXhTSEuu69ZlYg_nqusLvkGQWfRimLqQOpXLKepW7YA2WJcrc8T5k3c_UriUbp5wXVzoeeotSzwDQDQA6AqAf-_Druc_NjGrj3dY_G4yeGxJL9vHeiaa6pgO5qeVD1oeNDhTdzs1avyDSh-0O1pfHb3_yx_tvW4fPnOQpRvptwPz07h434ZN7mE7quwEs7B-Oxn8G0PvNx4Mop0-n1Oqp |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61WxBceCMWCkQIuIDVxHZi74HDUqi26rKqoEi9GT_GYiWUlmYp5U_xG8l4kxaQ6K0HjnZsR8l8nvF4XgBPK5tjaSOyGDEyGRHZKHeeFU5agZYO0SEVm1Czmd7fH-2uwM8-FobcKnuemBh1OPB0R77BFedJPhWdB-UO_vje6mfNq-03LTGfcb71dm9zwroSAsyLUiwYykr4IDXmVnPHsfBYWeUc5rEUpZXcVyKQyEJXKUe541t5VlXSUaJxFwrRrvv88CujKlVkze1KdqzCmq5GpRzA2u7m6_H7nveTPiKWIZgl41KJLkwnF3qjIVVJMfKep5w1kp38IQpXP5Mj5m-n3L8Ms0nebV3_3_7UDbjWnayz8XIr3IQVrG_B5eTh6pvbID6kij8tc89sHTLCf9-kGBrCZzavqUF97Y6ch-YOfLyQj7gLg_qgxnuQFQ5DHOU-5h6l8soFVfroLGqNsvR8CEVPPOO7dOpU1eOLSWZ9oc2S4KYluEkENydDeHE653CZTOTc0U9aTJwOpDzgk_HUUF87gRRxfVwMYb0Hgem4T2POEDCElz2Mzh7_-5X3z1_tMVyZ7L2bmun2bOcBXOWE5eTXuA6DxdE3fAiX_PFi3hw96vZFBp8uGnO_ALQRRSc |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB615SEuvFEXCkQITmBtYjtx9oBQRVm1arVaCZAqLsaPsVipSkuzlPLX-HV4nKQFJHrrgaMd24ky38x47HkAPK9MjqUJyELAwGRAZJPcOlZYaQQa2kT7VGxCzWb1_v5kvgI_h1gYcqscZGIS1P7Q0Rn5mCvOk34qxqF3i5hvTd8cfWVUQYpuWodyGh1EdvHH92i-ta93tiKtX3A-fffh7TbrKwwwJ0qxZCgr4bysMTc1txwLh5VR1mIeSlEayV0lPGk0tJWylFo-qruqkpbykFtfiLjuKlxR0cYkw29efhq0AFkmogvGLBmXSvQBO7moxy0ZTYqRHz1lr5Hs9A-luPqFXDJ_2-_-dUWbNN_01v_8z27DzX6_nW12DHIHVrC5C9eS36tr74F4n-oARZGfmcZnxBVDkyJrCLXZoqEG9UU-Xfj2Pny8lC9-AGvNYYPrkBUWfZjkLuQOpXLKelW6YA3WNcrS8REUAyG165OsU62PA50u-0WtO-LrSHydiK9PR_DybM5Rl2LkwtHPIj7OBlJ28O3NPU19cQKZ5_VJMYKNARC6l0mtPkfDCF4NkDp__O9XPrx4tadwPaJK7-3Mdh_BDU6wTs6OG7C2PP6Gj-GqO1ku2uMniUEy-HzZ6PoFrBBM0A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selective+and+collective+actuation+in+active+solids&rft.jtitle=Nature+physics&rft.date=2022-10-01&rft.pub=Nature+Publishing+Group&rft.issn=1745-2473&rft.eissn=1745-2481&rft.volume=18&rft.issue=10&rft.spage=1234&rft.epage=1239&rft_id=info:doi/10.1038%2Fs41567-022-01704-x&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon |