Topological Recursion for Orlov–Scherbin Tau Functions, and Constellations with Internal Faces
We study the correlators W g , n arising from Orlov–Scherbin 2-Toda tau functions with rational content-weight G ( z ), at arbitrary values of the two sets of time parameters. Combinatorially, they correspond to generating functions of weighted Hurwitz numbers and ( m , r )-factorisations of permut...
Saved in:
| Published in: | Communications in mathematical physics Vol. 405; no. 8; p. 189 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.08.2024
Springer Nature B.V Springer Verlag |
| Subjects: | |
| ISSN: | 0010-3616, 1432-0916 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We study the correlators
W
g
,
n
arising from Orlov–Scherbin 2-Toda tau functions with rational content-weight
G
(
z
), at arbitrary values of the two sets of time parameters. Combinatorially, they correspond to generating functions of weighted Hurwitz numbers and (
m
,
r
)-factorisations of permutations. When the weight function is polynomial, they are generating functions of constellations on surfaces in which two full sets of degrees (black/white) are entirely controlled, and in which internal faces are allowed in addition to boundaries. We give the spectral curve (the “disk” function
W
0
,
1
, and the “cylinder” function
W
0
,
2
) for this model, generalising Eynard’s solution of the 2-matrix model which corresponds to
G
(
z
)
=
1
+
z
, by the addition of arbitrarily many free parameters. Our method relies both on the Albenque–Bouttier combinatorial proof of Eynard’s result by slice decompositions, which is strong enough to handle the polynomial case, and on algebraic arguments. Building on this, we establish the topological recursion (TR) for the model. Our proof relies on the fact that TR is already known at time zero (or, combinatorially, when the underlying graphs have only boundaries, and no internal faces) by work of Bychkov–Dunin-Barkowski–Kazarian–Shadrin (or Alexandrov–Chapuy–Eynard–Harnad for the polynomial case), and on the general idea of deformation of spectral curves due to Eynard and Orantin, which we make explicit in this case. As a result of TR, we obtain strong structure results for all fixed-genus generating functions. Our techniques also cover the case where
G
(
z
) is a rational function times an exponential (containing in particular the case of classical Hurwitz numbers). |
|---|---|
| AbstractList | We study the correlators $W_{g,n}$ arising from Orlov-Scherbin 2-Toda tau functions with rational content-weight $G(z)$, at arbitrary values of the two sets of time parameters. Combinatorially, they correspond to generating functions of weighted Hurwitz numbers and $(m,r)$-factorisations of permutations. When the weight function is polynomial, they are generating functions of constellations on surfaces in which two full sets of degrees (black/white) are entirely controlled, and in which internal faces are allowed in addition to boundaries. We give the spectral curve (the "disk" function $W_{0,1}$, and the "cylinder" function $W_{0,2}$) for this model, generalising Eynard's solution of the 2-matrix model which corresponds to $G(z)=1+z$, by the addition of arbitrarily many free parameters. Our method relies both on the Albenque-Bouttier combinatorial proof of Eynard's result by slice decompositions, which is strong enough to handle the polynomial case, and on algebraic arguments. Building on this, we establish the topological recursion (TR) for the model. Our proof relies on the fact that TR is already known at time zero (or, combinatorially, when the underlying graphs have only boundaries, and no internal faces) by work of Bychkov-Dunin-Barkowski-Kazarian-Shadrin (or Alexandrov-Chapuy-Eynard-Harnad for the polynomial case), and on the general idea of deformation of spectral curves due to Eynard and Orantin, which we make explicit in this case. As a result of TR, we obtain strong structure results for all fixed-genus generating functions. We study the correlators Wg,n arising from Orlov–Scherbin 2-Toda tau functions with rational content-weight G(z), at arbitrary values of the two sets of time parameters. Combinatorially, they correspond to generating functions of weighted Hurwitz numbers and (m, r)-factorisations of permutations. When the weight function is polynomial, they are generating functions of constellations on surfaces in which two full sets of degrees (black/white) are entirely controlled, and in which internal faces are allowed in addition to boundaries. We give the spectral curve (the “disk” function W0,1, and the “cylinder” function W0,2) for this model, generalising Eynard’s solution of the 2-matrix model which corresponds to G(z)=1+z, by the addition of arbitrarily many free parameters. Our method relies both on the Albenque–Bouttier combinatorial proof of Eynard’s result by slice decompositions, which is strong enough to handle the polynomial case, and on algebraic arguments. Building on this, we establish the topological recursion (TR) for the model. Our proof relies on the fact that TR is already known at time zero (or, combinatorially, when the underlying graphs have only boundaries, and no internal faces) by work of Bychkov–Dunin-Barkowski–Kazarian–Shadrin (or Alexandrov–Chapuy–Eynard–Harnad for the polynomial case), and on the general idea of deformation of spectral curves due to Eynard and Orantin, which we make explicit in this case. As a result of TR, we obtain strong structure results for all fixed-genus generating functions. Our techniques also cover the case where G(z) is a rational function times an exponential (containing in particular the case of classical Hurwitz numbers). We study the correlators W g , n arising from Orlov–Scherbin 2-Toda tau functions with rational content-weight G ( z ), at arbitrary values of the two sets of time parameters. Combinatorially, they correspond to generating functions of weighted Hurwitz numbers and ( m , r )-factorisations of permutations. When the weight function is polynomial, they are generating functions of constellations on surfaces in which two full sets of degrees (black/white) are entirely controlled, and in which internal faces are allowed in addition to boundaries. We give the spectral curve (the “disk” function W 0 , 1 , and the “cylinder” function W 0 , 2 ) for this model, generalising Eynard’s solution of the 2-matrix model which corresponds to G ( z ) = 1 + z , by the addition of arbitrarily many free parameters. Our method relies both on the Albenque–Bouttier combinatorial proof of Eynard’s result by slice decompositions, which is strong enough to handle the polynomial case, and on algebraic arguments. Building on this, we establish the topological recursion (TR) for the model. Our proof relies on the fact that TR is already known at time zero (or, combinatorially, when the underlying graphs have only boundaries, and no internal faces) by work of Bychkov–Dunin-Barkowski–Kazarian–Shadrin (or Alexandrov–Chapuy–Eynard–Harnad for the polynomial case), and on the general idea of deformation of spectral curves due to Eynard and Orantin, which we make explicit in this case. As a result of TR, we obtain strong structure results for all fixed-genus generating functions. Our techniques also cover the case where G ( z ) is a rational function times an exponential (containing in particular the case of classical Hurwitz numbers). |
| ArticleNumber | 189 |
| Author | Charbonnier, Séverin Garcia-Failde, Elba Bonzom, Valentin Chapuy, Guillaume |
| Author_xml | – sequence: 1 givenname: Valentin surname: Bonzom fullname: Bonzom, Valentin organization: Université Sorbonne Paris Nord, LIPN – sequence: 2 givenname: Guillaume surname: Chapuy fullname: Chapuy, Guillaume organization: Université Paris Cité, IRIF – sequence: 3 givenname: Séverin surname: Charbonnier fullname: Charbonnier, Séverin organization: Université Paris Cité, IRIF – sequence: 4 givenname: Elba orcidid: 0000-0001-7901-5819 surname: Garcia-Failde fullname: Garcia-Failde, Elba email: elba.garcia-failde@imj-prg.fr organization: Sorbonne Université, IMJ-PRG |
| BackLink | https://hal.science/hal-03720818$$DView record in HAL |
| BookMark | eNp9kM9KAzEQxoMoWP-8gKeAJ8HVSbLJpkcpVoWCoPUcs2nWrqxJTXZbvPkOvqFPYtpVBA-eZhh-38w33x7adt5ZhI4InBGA4jwCUAoZ0DwDDrnMVltoQHJGMxgSsY0GAAQyJojYRXsxPgPAkAoxQI9Tv_CNf6qNbvCdNV2ItXe48gHfhsYvP98_7s3chrJ2eKo7PO6caRMRT7F2MzxKXWubRm9meFW3c3zjWhtcWjfWxsYDtFPpJtrD77qPHsaX09F1Nrm9uhldTDLDOGszmxxpIHI2JNLkPDkvaV7mBQGhZVESanjBqJU2vVDwQs4kF5pbyqgoecUqto9O-r1z3ahFqF90eFNe1-r6YqLWM2AFBUnkkiT2uGcXwb92Nrbq2Xdry1ExyvN0QTCaKNlTJvgYg62UqdvNo23QdaMIqHX2qs9epezVJnu1SlL6R_rj6F8R60Uxwe7Jhl9X_6i-AL-umI0 |
| CitedBy_id | crossref_primary_10_1007_s11005_025_01939_8 crossref_primary_10_1016_j_geomphys_2024_105329 |
| Cites_doi | 10.1016/0021-8693(81)90205-2 10.4153/CJM-1962-002-9 10.1016/0095-8956(91)90079-Y 10.1016/0012-365X(93)90006-F 10.1007/s00220-008-0620-4 10.1016/j.aim.2008.06.013 10.4007/annals.2006.163.517 10.1137/S0895480190177650 10.1016/j.jcta.2012.03.007 10.1007/978-3-7643-8797-6 10.1093/imrn/rnx047 10.1112/jlms.12686 10.1093/imrn/rnz142 10.1088/1126-6708/2005/12/034 10.1088/1126-6708/2004/11/031 10.4153/CJM-1954-010-9 10.4310/CNTP.2014.v8.n3.a4 10.1088/1126-6708/2006/12/026 10.1017/S0963548309009808 10.1007/s11232-014-0229-z 10.1088/1126-6708/2006/12/053 10.4310/CNTP.2007.v1.n2.a4 10.1002/cpa.3160120310 10.37236/1822 10.46298/dmtcs.3084 10.1006/aama.1999.0673 10.37236/10149 10.1007/s00220-020-03717-0 10.1007/s00220-017-3065-9 10.4310/ATMP.2019.v23.n8.a2 10.1090/memo/0464 10.5802/jep.58 10.5802/ahl.143 10.4171/qt/60 10.1007/978-3-540-38361-1 10.1007/s00220-024-04997-6 10.4153/CJM-1997-045-9 10.1017/S0963548314000340 10.1007/s00220-011-1401-z 10.1007/s11005-015-0771-0 10.5802/jep.202 10.1063/1.4996574 10.4171/aihpd/104 10.1090/jams/934 10.1002/prop.200410212 10.1007/s00220-014-1887-2 10.1016/j.aim.2005.01.008 10.1155/S1073792800000532 10.1016/0097-3165(86)90065-8 10.1093/imrn/rnac177 10.2977/prims/47 10.1016/j.aim.2013.01.012 10.1007/s00026-017-0341-5 10.1007/s00440-018-0865-6 10.1007/s002220100164 10.1090/tran/8851 10.1016/j.geomphys.2018.07.004 10.1016/j.jcta.2019.01.005 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. licence_http://creativecommons.org/publicdomain/zero |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. – notice: licence_http://creativecommons.org/publicdomain/zero |
| DBID | AAYXX CITATION 7XB 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M2P M7S P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 1XC |
| DOI | 10.1007/s00220-024-05048-w |
| DatabaseName | CrossRef ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Science Database (ProQuest) Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central Database Suite (ProQuest) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Mathematics Physics |
| EISSN | 1432-0916 |
| ExternalDocumentID | oai:HAL:hal-03720818v1 10_1007_s00220_024_05048_w |
| GrantInformation_xml | – fundername: HORIZON EUROPE European Research Council grantid: ERC-2016-STG 716083 funderid: http://dx.doi.org/10.13039/100019180 |
| GroupedDBID | -54 -5F -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 199 1N0 1SB 203 28- 29F 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2WC 2~H 30V 4.4 406 408 409 40D 40E 41~ 5GY 5QI 5VS 67Z 692 6NX 6TJ 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIPV ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFFOW AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 E3Z EAD EAP EAS EBLON EBS EIOEI EJD EMI EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GPTSA GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KQ8 LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OK1 P19 P2P P9T PF0 PT4 PT5 QOK QOS R4E R89 R9I RBV REI RHV RIG RNI RNS ROL RPE RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SDM SGB SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TR2 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 WS9 XJT YLTOR Z45 Z7R Z7S Z7U Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8R Z8S Z8T Z8W Z92 ZY4 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ARAPS ATHPR AYFIA AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU CITATION DWQXO GNUQQ HCIFZ K7- M2P M7S PCBAR PHGZM PHGZT PQGLB PTHSS 7XB 8FE 8FG JQ2 L6V P62 PKEHL PQEST PQQKQ PQUKI PRINS Q9U 1XC AGGLG |
| ID | FETCH-LOGICAL-c353t-e000a018d918c45432b24b47106a87b12c5732e8e6167578d856a5e2326b5f3f3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001280297500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0010-3616 |
| IngestDate | Wed Dec 10 12:30:41 EST 2025 Fri Sep 26 03:12:17 EDT 2025 Sat Nov 29 06:18:13 EST 2025 Tue Nov 18 21:11:10 EST 2025 Fri Feb 21 02:38:16 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c353t-e000a018d918c45432b24b47106a87b12c5732e8e6167578d856a5e2326b5f3f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7901-5819 |
| PQID | 3254167632 |
| PQPubID | 2043584 |
| ParticipantIDs | hal_primary_oai_HAL_hal_03720818v1 proquest_journals_3254167632 crossref_citationtrail_10_1007_s00220_024_05048_w crossref_primary_10_1007_s00220_024_05048_w springer_journals_10_1007_s00220_024_05048_w |
| PublicationCentury | 2000 |
| PublicationDate | 2024-08-01 |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Communications in mathematical physics |
| PublicationTitleAbbrev | Commun. Math. Phys |
| PublicationYear | 2024 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V Springer Verlag |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: Springer Verlag |
| References | Orlov, A.Y., Scherbin, D.M.: Fermionic representation for basic hypergeometric functions related to Schur polynomials (2000). Preprint arXiv:nlin/0001001 EynardBOrantinNInvariants of algebraic curves and topological expansionCommun. Number Theory Phys.200712347452234657510.4310/CNTP.2007.v1.n2.a4 KazarianMZografPVirasoro constraints and topological recursion for Grothendieck’s dessin countingLett. Math. Phys.2015105810571084336612010.1007/s11005-015-0771-0 Bonzom, V., Nador, V.: Constraints for b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b$$\end{document}-deformed constellations (2023). Preprint arXiv:2312.10752 GouldenIPJacksonDMMaps in locally orientable surfaces and integrals over real symmetric surfacesCan. J. Math.1997495865882160410610.4153/CJM-1997-045-9 Lando, S.K., Zvonkin, A.K.: Graphs on Surfaces and Their Applications. Encyclopaedia of Mathematical Sciences, vol. 141. Springer, Berlin (2004). With an appendix by Don B. Zagier Andersen, J.E., Borot, G., Charbonnier, S., Delecroix, V., Giacchetto, A., Lewański, D., Wheeler, C.: Topological recursion for Masur–Veech volumes (2019). J. Lond. Math. Soc. 107, 254-332 (2023) BaragliaDHuangZSpecial Kähler geometry of the Hitchin system and topological recursionAdv. Theor. Math. Phys.201923819812024410165810.4310/ATMP.2019.v23.n8.a2 TutteWTA census of planar triangulationsCan. J. Math1962141213813084110.4153/CJM-1962-002-9 BychkovB Dunin-BarkowskiPKazarianMShadrinSExplicit closed algebraic formulas for Orlov–Scherbin n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-point functionsJ. Ec. Polytech. Math.2022911211158445341210.5802/jep.202 Dunin-BarkowskiPOrantinNShadrinSSpitzLIdentification of the Givental formula with the spectral curve topological recursion procedureCommun. Math. Phys.20143282669700319999610.1007/s00220-014-1887-2 BouttierJGuitterEOn irreducible maps and slicesComb. Probab. Comput.2014236914972326583410.1017/S0963548314000340 Ambjørn, J., Chekhov, L.O.: A matrix model for hypergeometric Hurwitz numbers. Theor. Math. Phys. 181(3), 1486–1498 (2014). Translation of Teoret. Mat. Fiz. 181 (2014), no. 3, 421–435 EynardBGarcia-FaildeEMarchalOOrantinNQuantization of classical spectral curves via topological recursionCommun. Math. Phys.2024405116473729110.1007/s00220-024-04997-6 Chaimanowong, W., Norbury, P., Swaddle, M., Tavakol, M.: Airy structures and deformations of curves in surfaces (2020). Preprint arXiv:2012.00254 MurphyGA new construction of Young’s seminormal representation of the symmetric groupJ. Algebra19816928729161707910.1016/0021-8693(81)90205-2 BouchardVEynardBReconstructing WKB from topological recursionJ. Éc. Polytech. Math.20174845908369409710.5802/jep.58 OkounkovAPandharipandeRGromov–Witten theory, Hurwitz theory, and completed cyclesAnn. Math. (2)20061632517560219922510.4007/annals.2006.163.517 Ben DaliH Integrality in the Matching-Jack conjecture and the Farahat–Higman algebraTrans. Am. Math. Soc.2023376536413662457734310.1090/tran/8851 Bychkov, B., Dunin-Barkowski, P., Kazarian, M., Shadrin, S.: Topological recursion for Kadomtsev-Petviashvili tau functions of hypergeometric type (2020). Preprint arXiv:2012.14723 Bouttier, J., Guitter, E., Miermont, G.: Bijective enumeration of planar bipartite maps with three tight boundaries, or how to slice pairs of pants (2021). Preprint arXiv:2104.10084 EynardBOrantinNTopological expansion of the 2-matrix model correlation functions: diagrammatic rules for a residue formulaJHEP200512034219703410.1088/1126-6708/2005/12/034 GouldenIPGuay-PaquetMNovakJPolynomiality of monotone Hurwitz numbers in higher generaAdv. Math.2013238123303362810.1016/j.aim.2013.01.012 Bychkov, B., Dunin-Barkowski, P., Kazarian, M., Shadrin, S.: Symplectic duality for topological recursion (2022). Preprint arXiv:2206.14792 Chapuy, G., Dołęga, M.: Non-orientable branched coverings, b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b$$\end{document}-Hurwitz numbers, and positivity for multiparametric Jack expansions (2020). Preprint arXiv:2004.07824 FangBLiuC-CMZongZOn the remodeling conjecture for toric Calabi–Yau 3-orbifoldsJ. Am. Math. Soc.2020331135222406647410.1090/jams/934 ChekhovLEynardBMatrix eigenvalue model: Feynman graph technique for all generaJ. High Energy Phys.2006200612129227671510.1088/1126-6708/2006/12/026 GouldenIPGuay-PaquetMNovakJOn the convergence of monotone Hurwitz generating functionsAnn. Comb.20172117381361344510.1007/s00026-017-0341-5 BorotGEynardBEnumeration of maps with self-avoiding loops and the O(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {O}({\mathfrak{n} })$$\end{document} model on random lattices of all topologiesJ. Stat. Mech. Theory Exp.20111P01010, 622770626 ChapuyG Asymptotic enumeration of constellations and related families of maps on orientable surfacesComb. Probab. Comput.2009184477516250773410.1017/S0963548309009808 Albenque, M., Lepoutre, M.: Blossoming bijection for higher-genus maps, and bivariate rationality (2019). Preprint arXiv:2007.07692 Ben Dali, H., Dołęga, M.: Positive formula for Jack polynomials, Jack characters and proof of Lassalle’s conjecture (2023). Preprint arXiv:2305.07966 AlexandrovAChapuyGEynardBHarnadJWeighted Hurwitz numbers and topological recursionCommun. Math. Phys.20203751237305408218310.1007/s00220-020-03717-0 Borot, G., Charbonnier, S., Garcia-Failde, E.: Topological recursion for fully simple maps from ciliated maps (2021), accepted in J. Comb. Theory Ser. A (2024). Preprint arXiv:2106.09002 BenderEACanfieldERThe number of degree-restricted rooted maps on the sphereSIAM J. Discrete Math.199471915125900510.1137/S0895480190177650 EynardBMulaseMSafnukBThe Laplace transform of the cut-and-join equation and the Bouchard–Mariño conjecture on Hurwitz numbersPubl. Res. Inst. Math. Sci.2011472629670284964510.2977/prims/47 GaoZThe number of degree restricted maps on general surfacesDiscrete Math.19931231–34763125608110.1016/0012-365X(93)90006-F EynardBTopological expansion for the 1-Hermitian matrix model correlation functionsJ. High Energy Phys.2004200411031211880710.1088/1126-6708/2004/11/031 EkedahlTLandoSShapiroMVainshteinAHurwitz numbers and intersections on moduli spaces of curvesInvent. Math.20011462297327186401810.1007/s002220100164 BorotGEynardBAll order asymptotics of hyperbolic knot invariants from non-perturbative topological recursion of A-polynomialsQuantum Topol.20156139138333500610.4171/qt/60 AmbjørnJChekhovLOSpectral curves for hypergeometric Hurwitz numbersJ. Geom. Phys.2018132382392383678810.1016/j.geomphys.2018.07.004 ChekhovLEynardBOrantinNFree energy topological expansion for the 2-matrix modelJ. High Energy Phys.2006200612053227669910.1088/1126-6708/2006/12/053 Dunin-BarkowskiP OrantinNPopolitovAShadrinSCombinatorics of loop equations for branched covers of sphereInt. Math. Res. Not.201720181856385662386211610.1093/imrn/rnx047 EynardBA short overview of the “topological recursion”Proc. Int. Congr. Math. Seoul201420143106310853256864 EynardBLarge n expansion of the 2-matrix modelJHEP200203012003051 Fay, J.D.: Kernel functions, analytic torsion, and moduli spaces. Memoirs of the American Mathematical Society 96, 0–0 (1992) Chidambaram, N.K., Garcia-Failde, E., Giacchetto, A.: Relations on M¯g,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\cal{M}}_{g,n}$$\end{document} and the negative r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document}-spin Witten conjecture (2022). Preprint arXiv:2205.15621 GouldenIPJacksonDMThe KP hierarchy, branched covers, and triangulationsAdv. Math.20082193932951244205710.1016/j.aim.2008.06.013 ChapuyGFangWGenerating functions of bipartite maps on orientable surfacesElectron. J. Comb.2016233Paper 3.31, 373558068 EynardBInvariants of spectral curves and intersection theory of moduli spaces of complex curvesCommun. Number Theory Phys.20148541588328299510.4310/CNTP.2014.v8.n3.a4 GouldenIPJacksonDMVakilRTowards the geometry of double Hurwitz numbersAdv. Math.200519814392218325010.1016/j.aim.2005.01.008 Albenque, M., Bouttier, J.: On the slice decomposition of planar hypermaps (2022) ChapuyGOn tessellations of random maps and the tg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_g$$\end{document}-recurrenceProbab. Theory Relat. Fields20191741–247750010.1007/s00440-018-0865-6 Harnad, J., Runov, B.: Constellations and τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}-functions for rationally weighted Hurwitz numbers. Ann. Inst. H. Poincaré D 8(1), 119–158 (2021) BertolaMKorotkinDSpaces of Abelian differentials and Hitchin’s spectral coversInt. Math. Res. 5048_CR46 P Dunin-Barkowski (5048_CR45) 2014; 328 5048_CR3 O Bernardi (5048_CR26) 2012; 119 B Eynard (5048_CR53) 2002; 0301 5048_CR4 B Eynard (5048_CR50) 2005; 12 5048_CR1 L Chekhov (5048_CR37) 2006; 2006 5048_CR2 M Albenque (5048_CR10) 2015; 22 G Borot (5048_CR24) 2015; 6 5048_CR8 A Alexandrov (5048_CR9) 2005; 53 EA Bender (5048_CR11) 1986; 43 5048_CR40 A Alexandrov (5048_CR7) 2020; 375 A Alexandrov (5048_CR6) 2018; 360 D Baraglia (5048_CR30) 2019; 23 G Chapuy (5048_CR41) 2009; 18 5048_CR43 5048_CR57 WT Tutte (5048_CR77) 1954; 6 G Borot (5048_CR23) 2011; 1 5048_CR15 IP Goulden (5048_CR61) 2013; 238 5048_CR58 G Borot (5048_CR35) 2013; 1 5048_CR16 5048_CR19 B Eynard (5048_CR47) 2024; 405 5048_CR18 B Fang (5048_CR59) 2020; 33 V Bouchard (5048_CR25) 2017; 4 IP Goulden (5048_CR64) 2008; 219 M Bousquet-Mélou (5048_CR33) 2000; 24 A Jucys (5048_CR68) 1966; I J Bouttier (5048_CR27) 2011; 309 5048_CR52 L Chekhov (5048_CR38) 2006; 2006 M Bertola (5048_CR31) 2019; 2021 5048_CR67 M Kazarian (5048_CR69) 2015; 105 A Okounkov (5048_CR73) 2006; 163 H Ben Dali (5048_CR17) 2023; 376 A Okounkov (5048_CR72) 2000; 20 5048_CR29 G Chapuy (5048_CR42) 2019; 174 IP Goulden (5048_CR62) 2017; 21 B Eynard (5048_CR56) 2014; 2014 Z Gao (5048_CR60) 1993; 123 B Eynard (5048_CR54) 2004; 2004 M Guay-Paquet (5048_CR66) 2017; 58 V Bouchard (5048_CR32) 2009; 287 5048_CR22 B Eynard (5048_CR51) 2007; 1 5048_CR21 5048_CR34 EA Bender (5048_CR13) 1994; 7 5048_CR36 T Ekedahl (5048_CR48) 2001; 146 B Eynard (5048_CR55) 2014; 8 J Bouttier (5048_CR28) 2014; 23 J Ambjørn (5048_CR5) 2018; 132 B Eynard (5048_CR49) 2011; 47 HE Rauch (5048_CR75) 1959; 12 J Bouttier (5048_CR14) 2021; 28 IP Goulden (5048_CR65) 2005; 198 G Murphy (5048_CR71) 1981; 69 EA Bender (5048_CR12) 1991; 53 B Bychkov (5048_CR20) 2022; 9 5048_CR70 P Dunin-Barkowski (5048_CR44) 2017; 2018 WT Tutte (5048_CR78) 1962; 14 G Chapuy (5048_CR39) 2016; 23 5048_CR74 IP Goulden (5048_CR63) 1997; 49 5048_CR76 |
| References_xml | – reference: TutteWTA census of planar triangulationsCan. J. Math1962141213813084110.4153/CJM-1962-002-9 – reference: EynardBOrantinNTopological expansion of the 2-matrix model correlation functions: diagrammatic rules for a residue formulaJHEP200512034219703410.1088/1126-6708/2005/12/034 – reference: BouttierJGuitterEOn irreducible maps and slicesComb. Probab. Comput.2014236914972326583410.1017/S0963548314000340 – reference: Bousquet-MélouMSchaefferGEnumeration of planar constellationsAdv. Appl. Math.2000244337368176177710.1006/aama.1999.0673 – reference: Bychkov, B., Dunin-Barkowski, P., Kazarian, M., Shadrin, S.: Generalised ordinary vs fully simple duality for n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-point functions and a proof of the Borot–Garcia-Failde conjecture (2021). Preprint arXiv:2106.08368 – reference: Eynard, B.: Counting Surfaces. Progress in Mathematical Physics, vol. 70. Birkhäuser/Springer, Cham (2016). CRM Aisenstadt chair lectures – reference: EynardBMulaseMSafnukBThe Laplace transform of the cut-and-join equation and the Bouchard–Mariño conjecture on Hurwitz numbersPubl. Res. Inst. Math. Sci.2011472629670284964510.2977/prims/47 – reference: GaoZThe number of degree restricted maps on general surfacesDiscrete Math.19931231–34763125608110.1016/0012-365X(93)90006-F – reference: EynardBTopological expansion for the 1-Hermitian matrix model correlation functionsJ. High Energy Phys.2004200411031211880710.1088/1126-6708/2004/11/031 – reference: Dunin-BarkowskiPOrantinNShadrinSSpitzLIdentification of the Givental formula with the spectral curve topological recursion procedureCommun. Math. Phys.20143282669700319999610.1007/s00220-014-1887-2 – reference: MurphyGA new construction of Young’s seminormal representation of the symmetric groupJ. Algebra19816928729161707910.1016/0021-8693(81)90205-2 – reference: Guay-PaquetMHarnadJGenerating functions for weighted Hurwitz numbersJ. Math. Phys.2017588083503368383310.1063/1.4996574 – reference: KazarianMZografPVirasoro constraints and topological recursion for Grothendieck’s dessin countingLett. Math. Phys.2015105810571084336612010.1007/s11005-015-0771-0 – reference: BenderEACanfieldERThe number of degree-restricted rooted maps on the sphereSIAM J. Discrete Math.199471915125900510.1137/S0895480190177650 – reference: Ruzza, G.: Jacobi beta ensemble and b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b$$\end{document}-Hurwitz numbers. Symmetry, Integrability and Geometry: Methods and Applications (2023) – reference: Albenque, M., Lepoutre, M.: Blossoming bijection for higher-genus maps, and bivariate rationality (2019). Preprint arXiv:2007.07692 – reference: BouttierJCarranceAEnumeration of planar constellations with an alternating boundaryElectron. J. Comb.2021283Paper No. 3.21, 214287700 – reference: Bonzom, V., Chapuy, G., Dołęga, M.: b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b$$\end{document}-monotone Hurwitz numbers: Virasoro constraints, BKP hierarchy, and O(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(N)$$\end{document}-BGW integral. Int. Math. Res. Notices (2022, to appear). See arXiv:2109.01499 – reference: Ben DaliH Integrality in the Matching-Jack conjecture and the Farahat–Higman algebraTrans. Am. Math. Soc.2023376536413662457734310.1090/tran/8851 – reference: Chapuy, G., Dołęga, M.: Non-orientable branched coverings, b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b$$\end{document}-Hurwitz numbers, and positivity for multiparametric Jack expansions (2020). Preprint arXiv:2004.07824 – reference: Eynard, B., Orantin, N.: Weil–Petersson volume of moduli spaces, Mirzakhani’s recursion and matrix models. Preprint arXiv:0705.3600v1 (2007) – reference: BouttierJGuitterEPlanar maps and continued fractionsCommun. Math. Phys.20113093623662288560310.1007/s00220-011-1401-z – reference: Lando, S.K., Zvonkin, A.K.: Graphs on Surfaces and Their Applications. Encyclopaedia of Mathematical Sciences, vol. 141. Springer, Berlin (2004). With an appendix by Don B. Zagier – reference: OkounkovARandom matrices and random permutationsInt. Math. Res. Not.20002010431095180253010.1155/S1073792800000532 – reference: BaragliaDHuangZSpecial Kähler geometry of the Hitchin system and topological recursionAdv. Theor. Math. Phys.201923819812024410165810.4310/ATMP.2019.v23.n8.a2 – reference: BenderEACanfieldERThe number of rooted maps on an orientable surfaceJ. Comb. Theory Ser. B1991532293299112955610.1016/0095-8956(91)90079-Y – reference: Bouttier, J., Di Francesco, P., Guitter, E.: Planar maps as labelled mobiles. Electron. J. Comb. 11(1), R69 (2004) – reference: Bouttier, J., Guitter, E., Miermont, G.: Bijective enumeration of planar bipartite maps with three tight boundaries, or how to slice pairs of pants (2021). Preprint arXiv:2104.10084 – reference: ChekhovLEynardBOrantinNFree energy topological expansion for the 2-matrix modelJ. High Energy Phys.2006200612053227669910.1088/1126-6708/2006/12/053 – reference: Chidambaram, N.K., Garcia-Failde, E., Giacchetto, A.: Relations on M¯g,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\cal{M}}_{g,n}$$\end{document} and the negative r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document}-spin Witten conjecture (2022). Preprint arXiv:2205.15621 – reference: BychkovB Dunin-BarkowskiPKazarianMShadrinSExplicit closed algebraic formulas for Orlov–Scherbin n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-point functionsJ. Ec. Polytech. Math.2022911211158445341210.5802/jep.202 – reference: AlexandrovAMironovAMorozovASolving Virasoro constraints in matrix modelsFortschr. Phys.2005535–6512521214533410.1002/prop.200410212 – reference: BorotGFormal multidimensional integrals, stuffed maps, and topological recursionAIHPD2013107 – reference: BouchardVEynardBReconstructing WKB from topological recursionJ. Éc. Polytech. Math.20174845908369409710.5802/jep.58 – reference: BouchardVKlemmAMariñoMPasquettiSRemodeling the B-modelCommun. Math. Phys.20092871117178248074410.1007/s00220-008-0620-4 – reference: ChapuyGFangWGenerating functions of bipartite maps on orientable surfacesElectron. J. Comb.2016233Paper 3.31, 373558068 – reference: OkounkovAPandharipandeRGromov–Witten theory, Hurwitz theory, and completed cyclesAnn. Math. (2)20061632517560219922510.4007/annals.2006.163.517 – reference: Fay, J.D.: Kernel functions, analytic torsion, and moduli spaces. Memoirs of the American Mathematical Society 96, 0–0 (1992) – reference: Andersen, J.E., Borot, G., Charbonnier, S., Delecroix, V., Giacchetto, A., Lewański, D., Wheeler, C.: Topological recursion for Masur–Veech volumes (2019). J. Lond. Math. Soc. 107, 254-332 (2023) – reference: GouldenIPGuay-PaquetMNovakJOn the convergence of monotone Hurwitz generating functionsAnn. Comb.20172117381361344510.1007/s00026-017-0341-5 – reference: GouldenIPJacksonDMVakilRTowards the geometry of double Hurwitz numbersAdv. Math.200519814392218325010.1016/j.aim.2005.01.008 – reference: Ambjørn, J., Chekhov, L.O.: A matrix model for hypergeometric Hurwitz numbers. Theor. Math. Phys. 181(3), 1486–1498 (2014). Translation of Teoret. Mat. Fiz. 181 (2014), no. 3, 421–435 – reference: RauchHEWeierstrass points, branch points, and moduli of Riemann surfacesCommun. Pure Appl. Math.19591254356011079810.1002/cpa.3160120310 – reference: AlexandrovAChapuyGEynardBHarnadJWeighted Hurwitz numbers and topological recursionCommun. Math. Phys.20203751237305408218310.1007/s00220-020-03717-0 – reference: Bychkov, B., Dunin-Barkowski, P., Kazarian, M., Shadrin, S.: Topological recursion for Kadomtsev-Petviashvili tau functions of hypergeometric type (2020). Preprint arXiv:2012.14723 – reference: GouldenIPGuay-PaquetMNovakJPolynomiality of monotone Hurwitz numbers in higher generaAdv. Math.2013238123303362810.1016/j.aim.2013.01.012 – reference: Bychkov, B., Dunin-Barkowski, P., Kazarian, M., Shadrin, S.: Symplectic duality for topological recursion (2022). Preprint arXiv:2206.14792 – reference: Albenque, M., Bouttier, J.: On the slice decomposition of planar hypermaps (2022) – reference: AlexandrovAChapuyGEynardBHarnadJFermionic approach to weighted Hurwitz numbers and topological recursionCommun. Math. Phys.20183602777826380079810.1007/s00220-017-3065-9 – reference: EynardBOrantinNInvariants of algebraic curves and topological expansionCommun. Number Theory Phys.200712347452234657510.4310/CNTP.2007.v1.n2.a4 – reference: GouldenIPJacksonDMMaps in locally orientable surfaces and integrals over real symmetric surfacesCan. J. Math.1997495865882160410610.4153/CJM-1997-045-9 – reference: ChapuyG Asymptotic enumeration of constellations and related families of maps on orientable surfacesComb. Probab. Comput.2009184477516250773410.1017/S0963548309009808 – reference: BenderEACanfieldERThe asymptotic number of rooted maps on a surfaceJ. Comb. Theory Ser. A198643224425786765010.1016/0097-3165(86)90065-8 – reference: BernardiOFusyÉUnified bijections for maps with prescribed degrees and girthJ. Comb. Theory Ser. A2012119613511387291565110.1016/j.jcta.2012.03.007 – reference: BertolaMKorotkinDSpaces of Abelian differentials and Hitchin’s spectral coversInt. Math. Res. Not.20192021151124611269429411710.1093/imrn/rnz142 – reference: Borot, G., Charbonnier, S., Garcia-Failde, E.: Topological recursion for fully simple maps from ciliated maps (2021), accepted in J. Comb. Theory Ser. A (2024). Preprint arXiv:2106.09002 – reference: Chaimanowong, W., Norbury, P., Swaddle, M., Tavakol, M.: Airy structures and deformations of curves in surfaces (2020). Preprint arXiv:2012.00254 – reference: AlbenqueMPoulalhonDA generic method for bijections between blossoming trees and planar mapsElectron. J. Comb.2015222Paper 2.38, 443359941 – reference: JucysA On the Young operators of the symmetric groupsLith. J. Phys. V1966I2180189 – reference: EynardBInvariants of spectral curves and intersection theory of moduli spaces of complex curvesCommun. Number Theory Phys.20148541588328299510.4310/CNTP.2014.v8.n3.a4 – reference: Dunin-BarkowskiP OrantinNPopolitovAShadrinSCombinatorics of loop equations for branched covers of sphereInt. Math. Res. Not.201720181856385662386211610.1093/imrn/rnx047 – reference: TutteWT A contribution to the theory of chromatic polynomialsCan. J. Math.1954680916136610.4153/CJM-1954-010-9 – reference: Harnad, J., Runov, B.: Constellations and τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}-functions for rationally weighted Hurwitz numbers. Ann. Inst. H. Poincaré D 8(1), 119–158 (2021) – reference: Bonzom, V., Nador, V.: Constraints for b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b$$\end{document}-deformed constellations (2023). Preprint arXiv:2312.10752 – reference: EynardBA short overview of the “topological recursion”Proc. Int. Congr. Math. Seoul201420143106310853256864 – reference: ChekhovLEynardBMatrix eigenvalue model: Feynman graph technique for all generaJ. High Energy Phys.2006200612129227671510.1088/1126-6708/2006/12/026 – reference: BorotGEynardBAll order asymptotics of hyperbolic knot invariants from non-perturbative topological recursion of A-polynomialsQuantum Topol.20156139138333500610.4171/qt/60 – reference: EynardBGarcia-FaildeEMarchalOOrantinNQuantization of classical spectral curves via topological recursionCommun. Math. Phys.2024405116473729110.1007/s00220-024-04997-6 – reference: EkedahlTLandoSShapiroMVainshteinAHurwitz numbers and intersections on moduli spaces of curvesInvent. Math.20011462297327186401810.1007/s002220100164 – reference: Albenque, M., Bouttier, J.: Constellations and multicontinued fractions: application to Eulerian triangulations. In: 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012), Discrete Math. Theor. Comput. Sci. Proc., AR, pp. 805–816. Assoc. Discrete Math. Theor. Comput. Sci., Nancy (2012) – reference: EynardBLarge n expansion of the 2-matrix modelJHEP200203012003051 – reference: FangBLiuC-CMZongZOn the remodeling conjecture for toric Calabi–Yau 3-orbifoldsJ. Am. Math. Soc.2020331135222406647410.1090/jams/934 – reference: Ben Dali, H., Dołęga, M.: Positive formula for Jack polynomials, Jack characters and proof of Lassalle’s conjecture (2023). Preprint arXiv:2305.07966 – reference: Orlov, A.Y., Scherbin, D.M.: Fermionic representation for basic hypergeometric functions related to Schur polynomials (2000). Preprint arXiv:nlin/0001001 – reference: GouldenIPJacksonDMThe KP hierarchy, branched covers, and triangulationsAdv. Math.20082193932951244205710.1016/j.aim.2008.06.013 – reference: AmbjørnJChekhovLOSpectral curves for hypergeometric Hurwitz numbersJ. Geom. Phys.2018132382392383678810.1016/j.geomphys.2018.07.004 – reference: BorotGEynardBEnumeration of maps with self-avoiding loops and the O(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {O}({\mathfrak{n} })$$\end{document} model on random lattices of all topologiesJ. Stat. Mech. Theory Exp.20111P01010, 622770626 – reference: ChapuyGOn tessellations of random maps and the tg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_g$$\end{document}-recurrenceProbab. Theory Relat. Fields20191741–247750010.1007/s00440-018-0865-6 – volume: 69 start-page: 287 year: 1981 ident: 5048_CR71 publication-title: J. Algebra doi: 10.1016/0021-8693(81)90205-2 – volume: 14 start-page: 21 issue: 1 year: 1962 ident: 5048_CR78 publication-title: Can. J. Math doi: 10.4153/CJM-1962-002-9 – ident: 5048_CR46 – volume: 53 start-page: 293 issue: 2 year: 1991 ident: 5048_CR12 publication-title: J. Comb. Theory Ser. B doi: 10.1016/0095-8956(91)90079-Y – volume: 123 start-page: 47 issue: 1–3 year: 1993 ident: 5048_CR60 publication-title: Discrete Math. doi: 10.1016/0012-365X(93)90006-F – volume: 287 start-page: 117 issue: 1 year: 2009 ident: 5048_CR32 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-008-0620-4 – volume: 219 start-page: 932 issue: 3 year: 2008 ident: 5048_CR64 publication-title: Adv. Math. doi: 10.1016/j.aim.2008.06.013 – volume: 163 start-page: 517 issue: 2 year: 2006 ident: 5048_CR73 publication-title: Ann. Math. (2) doi: 10.4007/annals.2006.163.517 – volume: 7 start-page: 9 issue: 1 year: 1994 ident: 5048_CR13 publication-title: SIAM J. Discrete Math. doi: 10.1137/S0895480190177650 – volume: 119 start-page: 1351 issue: 6 year: 2012 ident: 5048_CR26 publication-title: J. Comb. Theory Ser. A doi: 10.1016/j.jcta.2012.03.007 – volume: 1 start-page: 07 year: 2013 ident: 5048_CR35 publication-title: AIHPD – ident: 5048_CR57 doi: 10.1007/978-3-7643-8797-6 – volume: 23 start-page: Paper 3.31, 37 issue: 3 year: 2016 ident: 5048_CR39 publication-title: Electron. J. Comb. – ident: 5048_CR52 – volume: I start-page: 180 issue: 2 year: 1966 ident: 5048_CR68 publication-title: Lith. J. Phys. V – volume: 2018 start-page: 5638 issue: 18 year: 2017 ident: 5048_CR44 publication-title: Int. Math. Res. Not. doi: 10.1093/imrn/rnx047 – ident: 5048_CR3 doi: 10.1112/jlms.12686 – volume: 2021 start-page: 11246 issue: 15 year: 2019 ident: 5048_CR31 publication-title: Int. Math. Res. Not. doi: 10.1093/imrn/rnz142 – ident: 5048_CR76 – volume: 12 start-page: 034 year: 2005 ident: 5048_CR50 publication-title: JHEP doi: 10.1088/1126-6708/2005/12/034 – volume: 2004 start-page: 031 issue: 11 year: 2004 ident: 5048_CR54 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2004/11/031 – volume: 6 start-page: 80 year: 1954 ident: 5048_CR77 publication-title: Can. J. Math. doi: 10.4153/CJM-1954-010-9 – volume: 8 start-page: 541 year: 2014 ident: 5048_CR55 publication-title: Commun. Number Theory Phys. doi: 10.4310/CNTP.2014.v8.n3.a4 – ident: 5048_CR34 – volume: 2006 start-page: 1 issue: 12 year: 2006 ident: 5048_CR37 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2006/12/026 – volume: 18 start-page: 477 issue: 4 year: 2009 ident: 5048_CR41 publication-title: Comb. Probab. Comput. doi: 10.1017/S0963548309009808 – ident: 5048_CR4 doi: 10.1007/s11232-014-0229-z – volume: 1 start-page: P01010, 62 year: 2011 ident: 5048_CR23 publication-title: J. Stat. Mech. Theory Exp. – volume: 0301 start-page: 051 issue: 2003 year: 2002 ident: 5048_CR53 publication-title: JHEP – ident: 5048_CR21 – volume: 2006 start-page: 053 issue: 12 year: 2006 ident: 5048_CR38 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2006/12/053 – ident: 5048_CR19 – volume: 1 start-page: 347 issue: 2 year: 2007 ident: 5048_CR51 publication-title: Commun. Number Theory Phys. doi: 10.4310/CNTP.2007.v1.n2.a4 – volume: 12 start-page: 543 year: 1959 ident: 5048_CR75 publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.3160120310 – ident: 5048_CR22 doi: 10.37236/1822 – ident: 5048_CR1 doi: 10.46298/dmtcs.3084 – volume: 24 start-page: 337 issue: 4 year: 2000 ident: 5048_CR33 publication-title: Adv. Appl. Math. doi: 10.1006/aama.1999.0673 – ident: 5048_CR40 – volume: 28 start-page: Paper No. 3.21, issue: 3 year: 2021 ident: 5048_CR14 publication-title: Electron. J. Comb. doi: 10.37236/10149 – volume: 375 start-page: 237 issue: 1 year: 2020 ident: 5048_CR7 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-020-03717-0 – volume: 360 start-page: 777 issue: 2 year: 2018 ident: 5048_CR6 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-017-3065-9 – volume: 23 start-page: 1981 issue: 8 year: 2019 ident: 5048_CR30 publication-title: Adv. Theor. Math. Phys. doi: 10.4310/ATMP.2019.v23.n8.a2 – ident: 5048_CR58 doi: 10.1090/memo/0464 – volume: 4 start-page: 845 year: 2017 ident: 5048_CR25 publication-title: J. Éc. Polytech. Math. doi: 10.5802/jep.58 – ident: 5048_CR29 doi: 10.5802/ahl.143 – volume: 6 start-page: 39 issue: 1 year: 2015 ident: 5048_CR24 publication-title: Quantum Topol. doi: 10.4171/qt/60 – ident: 5048_CR70 doi: 10.1007/978-3-540-38361-1 – volume: 405 start-page: 116 year: 2024 ident: 5048_CR47 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-024-04997-6 – volume: 49 start-page: 865 issue: 5 year: 1997 ident: 5048_CR63 publication-title: Can. J. Math. doi: 10.4153/CJM-1997-045-9 – volume: 2014 start-page: 1063 issue: 3 year: 2014 ident: 5048_CR56 publication-title: Proc. Int. Congr. Math. Seoul – ident: 5048_CR16 – volume: 23 start-page: 914 issue: 6 year: 2014 ident: 5048_CR28 publication-title: Comb. Probab. Comput. doi: 10.1017/S0963548314000340 – volume: 22 start-page: Paper 2.38, 44 issue: 2 year: 2015 ident: 5048_CR10 publication-title: Electron. J. Comb. – volume: 309 start-page: 623 issue: 3 year: 2011 ident: 5048_CR27 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-011-1401-z – volume: 105 start-page: 1057 issue: 8 year: 2015 ident: 5048_CR69 publication-title: Lett. Math. Phys. doi: 10.1007/s11005-015-0771-0 – volume: 9 start-page: 1121 year: 2022 ident: 5048_CR20 publication-title: J. Ec. Polytech. Math. doi: 10.5802/jep.202 – volume: 58 start-page: 083503 issue: 8 year: 2017 ident: 5048_CR66 publication-title: J. Math. Phys. doi: 10.1063/1.4996574 – ident: 5048_CR67 doi: 10.4171/aihpd/104 – volume: 33 start-page: 135 issue: 1 year: 2020 ident: 5048_CR59 publication-title: J. Am. Math. Soc. doi: 10.1090/jams/934 – ident: 5048_CR18 – ident: 5048_CR43 – volume: 53 start-page: 512 issue: 5–6 year: 2005 ident: 5048_CR9 publication-title: Fortschr. Phys. doi: 10.1002/prop.200410212 – volume: 328 start-page: 669 issue: 2 year: 2014 ident: 5048_CR45 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-014-1887-2 – volume: 198 start-page: 43 issue: 1 year: 2005 ident: 5048_CR65 publication-title: Adv. Math. doi: 10.1016/j.aim.2005.01.008 – volume: 20 start-page: 1043 year: 2000 ident: 5048_CR72 publication-title: Int. Math. Res. Not. doi: 10.1155/S1073792800000532 – ident: 5048_CR74 – volume: 43 start-page: 244 issue: 2 year: 1986 ident: 5048_CR11 publication-title: J. Comb. Theory Ser. A doi: 10.1016/0097-3165(86)90065-8 – ident: 5048_CR15 doi: 10.1093/imrn/rnac177 – volume: 47 start-page: 629 issue: 2 year: 2011 ident: 5048_CR49 publication-title: Publ. Res. Inst. Math. Sci. doi: 10.2977/prims/47 – volume: 238 start-page: 1 year: 2013 ident: 5048_CR61 publication-title: Adv. Math. doi: 10.1016/j.aim.2013.01.012 – ident: 5048_CR36 – volume: 21 start-page: 73 issue: 1 year: 2017 ident: 5048_CR62 publication-title: Ann. Comb. doi: 10.1007/s00026-017-0341-5 – volume: 174 start-page: 477 issue: 1–2 year: 2019 ident: 5048_CR42 publication-title: Probab. Theory Relat. Fields doi: 10.1007/s00440-018-0865-6 – volume: 146 start-page: 297 issue: 2 year: 2001 ident: 5048_CR48 publication-title: Invent. Math. doi: 10.1007/s002220100164 – volume: 376 start-page: 3641 issue: 5 year: 2023 ident: 5048_CR17 publication-title: Trans. Am. Math. Soc. doi: 10.1090/tran/8851 – ident: 5048_CR2 – volume: 132 start-page: 382 year: 2018 ident: 5048_CR5 publication-title: J. Geom. Phys. doi: 10.1016/j.geomphys.2018.07.004 – ident: 5048_CR8 doi: 10.1016/j.jcta.2019.01.005 |
| SSID | ssj0009266 |
| Score | 2.4774034 |
| Snippet | We study the correlators
W
g
,
n
arising from Orlov–Scherbin 2-Toda tau functions with rational content-weight
G
(
z
), at arbitrary values of the two sets of... We study the correlators Wg,n arising from Orlov–Scherbin 2-Toda tau functions with rational content-weight G(z), at arbitrary values of the two sets of time... We study the correlators $W_{g,n}$ arising from Orlov-Scherbin 2-Toda tau functions with rational content-weight $G(z)$, at arbitrary values of the two sets of... |
| SourceID | hal proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 189 |
| SubjectTerms | Boundaries Classical and Quantum Gravitation Combinatorial analysis Combinatorics Complex Systems Geometry Mathematical and Computational Physics Mathematical Physics Parameters Permutations Physics Physics and Astronomy Polynomials Quantum Physics Rational functions Relativity Theory Theoretical Topology Weighting functions |
| SummonAdditionalLinks | – databaseName: Science Database (ProQuest) dbid: M2P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB71AVI5UCigLrTIQtyoRfxKnBOqEKseaKlgkXoLseMVSKvddrPdXvsf-If9JZ1xvLuA1F44JnEe8jfOfB6P5wN4i27BuFx4rh1asNbBc5s3hlvfFEUmfS2si2ITxcmJPTsrT1PArU1plYt_YvxRNxNPMfL3CmcyIsfRID-cX3BSjaLV1SShsQ6byGwEpXQdy9NV0V3ZrVXSgq_KRZ42zcStc-S8Mo4eimcGrZhf_eWY1n9SWuQfnPOfZdLoffrb__vdT-Bx4p3ssDOUp7AWxjuwnTgoSyO83YFHx8s6rnj0MCaI-vYZ_Bh0agqEKftKQXoKszGkvOzLdDSZ31z__kb440SbDepL1kd_GU36gNXjhpEuKO1X6eKDjKK_LAUjR6xPaWHP4Xv_0-DjEU_qDNwro2Y8YAfXmbBNKazXRivppHbo67K8toUT0ptCyWADdjwVzW-syWsTkMHlzgzVUL2AjfFkHHaBDZEDlrXUyjellllROp8J5zXOPYXwIvRALKCpfCpdTgoao2pZdDnCWSGcVYSzuurBu-U9513hjntbv0HElw2p5vbR4eeKzmWk44O0Zi56sLeAuEojva1W-PbgYGEkq8t3v_Ll_U97BVsyWiflGu7Bxmx6GfbhgZ_PfrXT19HObwEeNwBJ priority: 102 providerName: ProQuest |
| Title | Topological Recursion for Orlov–Scherbin Tau Functions, and Constellations with Internal Faces |
| URI | https://link.springer.com/article/10.1007/s00220-024-05048-w https://www.proquest.com/docview/3254167632 https://hal.science/hal-03720818 |
| Volume | 405 |
| WOSCitedRecordID | wos001280297500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1432-0916 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0009266 issn: 0010-3616 databaseCode: P5Z dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database (ProQuest) customDbUrl: eissn: 1432-0916 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0009266 issn: 0010-3616 databaseCode: K7- dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1432-0916 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0009266 issn: 0010-3616 databaseCode: PCBAR dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1432-0916 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0009266 issn: 0010-3616 databaseCode: M7S dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Database Suite (ProQuest) customDbUrl: eissn: 1432-0916 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0009266 issn: 0010-3616 databaseCode: BENPR dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (ProQuest) customDbUrl: eissn: 1432-0916 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0009266 issn: 0010-3616 databaseCode: M2P dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLink Journals customDbUrl: eissn: 1432-0916 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009266 issn: 0010-3616 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6RFiQ4tFBAhJZohbjRlbwve30sVaNK0BAlAVVcjHe9EUhRiuI0vfIf-If8Emb8KkWABJeVHK9je2bW3-w8AV4gLBgXC8-1QwnWOnhu48Jw64skiaTPhXVVs4lkNLLn5-m4SQor22j31iVZfam7ZDeCm4gjpvDIoNzxqx5sI9xZatgwmb6_LrUraw8luXlVLOImVeb3_3EDjnqfKBjyJ03zF-dohTnD3f972vuw0-iY7KgWigdwKyz3YLfRN1mzmss9uHfW1WzFoztVMKgvH8LHWd05gfjHJmSQJ5MaQ_WWvV0tLjbfv36bEq9xU81m-SUbIjZW4nvI8mXBqAco5abUtkBGll7WGB4XbEghYI_g3fBkdnzKm04M3Cuj1jwgWfNI2CIV1mujlXRSO8S1KM5t4oT0JlEy2IDkpgL5hTVxbgJqa7EzczVXj2FrebEMT4DNUd9Lc6mVL1ItoyR1PhLOa9xnCuFF6INoGZL5pkw5dctYZF2B5Yq0GZI2q0ibXfXhZXfNl7pIx19nP0c-dxOpvvbp0ZuMfouoZw-qMBvRh4NWDLJmVZeZwt00vmCsZB8OW7Zfn_7zLZ_-2_R9uCsryaE4wwPYWq8uwzO47Tfrz-VqANuvTkbjyQB6rxOO45kc05hMcRybD4NqNfwAEtD8Nw |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL1qCwhYUGhBBAqMEKzoCM94_FogVAFRqqahgiB1N_WMJ6JS5JQ4TcSOf-A_-Ci-hHvHdgJIdNcFS9vzkO1zH3OfAM9QLEQmFpYrgwhWylmexkXEU1skSSBtLlLjm00kg0F6fJwdrcGPNheGwipbnugZdTGxZCN_GeJJRsRIDfL12RdOXaPIu9q20KhhceC-LvDIVr3af4v_97mU3XfDNz3edBXgNozCGXfIBPJApEUmUqsiFUojlUEeHcR5mhghbZSE0qUuxu0Qz0UaxXnkUPOITTQKRyGuuw5XFFUWo1BBebQq8itr3yg5mEOc3iTp-FQ9EpYBR4nIgwiphi_-EITrnykM8zcd9y-3rJd23c3_7TvdhluNXs32akK4A2uu3ILNRsdmDQertuDm4bJOLV5d8wGwttqGk2HdLYIwyz6QE4LMiAxVevZ-Op7Mf377_pHwbU5LNszPWRf1AU-yuywvC0Z9Tykfp7Z_MrJus8bYOmZdCnu7C58u5f3vwUY5Kd19YCPUcbNcqtAWmZJBkhkbCGMRQihqrHAdEC0UtG1Ks1OHkLFeFpX28NEIH-3hoxcdeLGcc1YXJrlw9FNE2HIg1RTv7fU13QuoTxGqbXPRgZ0WUrrhZJVe4akDuy0oV4__veWDi1d7Atd7w8O-7u8PDh7CDekpg-Iqd2BjNj13j-Cqnc9Oq-ljT2MMTi4brL8AMnBY2w |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7R8hAcKJQithSwEDdqNX7lcayAqIiyVHRBvZnY8apIq7Ta3W6v_Af-Ib-kM042LQiQEMckzmv8WfPwzDcAL1AtGJcKz7VDBGsdPM_T2vDc11mWSF-J3MVmE9lwmB8dFQdXqvhjtvtyS7KtaSCWpma-c1qPd_rCN1I9CUf9whODGOTnK3BdUyI9-euHny9pd2W7W0lbvioVaVc28_tn_KSaVo4pMfKK1fnLRmnUP-Xa_3_5Pbjb2Z5stwXLfbgWmnVY6-xQ1q3y2Trced9zueLRzZgk6mcP4Muo7ahA88o-UqCeQm0MzV72YTo5Wfz49v2QMIDONhtVZ6xEnRlhvc2qpmbUG5RqVtoYIaMIMOsCkhNWUmrYBnwq34xe7fGuQwP3yqg5DyjiKhF5XYjca6OVdFI71HdJWuWZE9KbTMmQBxQ9EefXuUkrE9CKS50Zq7F6CKvNSRMeARujHVhUUitfF1omWeF8IpzX6H8K4UUYgFhOjvUdfTl10ZjYnng5itaiaG0UrT0fwMv-ntOWvOOvo5_jnPcDiXd7b3ff0rmEevmgabMQA9haQsJ2q31mFXrZ-IOpkgPYXkLg8vKfX7n5b8Ofwa2D16Xdfzt89xhuywgiSkXcgtX59Cw8gRt-Mf86mz6Ni-ACwCgCvA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topological+Recursion+for+Orlov%E2%80%93Scherbin+Tau+Functions%2C+and+Constellations+with+Internal+Faces&rft.jtitle=Communications+in+mathematical+physics&rft.au=Bonzom%2C+Valentin&rft.au=Chapuy%2C+Guillaume&rft.au=Charbonnier%2C+S%C3%A9verin&rft.au=Garcia-Failde%2C+Elba&rft.date=2024-08-01&rft.issn=0010-3616&rft.eissn=1432-0916&rft.volume=405&rft.issue=8&rft_id=info:doi/10.1007%2Fs00220-024-05048-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00220_024_05048_w |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-3616&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-3616&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-3616&client=summon |