Topological Recursion for Orlov–Scherbin Tau Functions, and Constellations with Internal Faces

We study the correlators W g , n arising from Orlov–Scherbin 2-Toda tau functions with rational content-weight G ( z ), at arbitrary values of the two sets of time parameters. Combinatorially, they correspond to generating functions of weighted Hurwitz numbers and ( m ,  r )-factorisations of permut...

Full description

Saved in:
Bibliographic Details
Published in:Communications in mathematical physics Vol. 405; no. 8; p. 189
Main Authors: Bonzom, Valentin, Chapuy, Guillaume, Charbonnier, Séverin, Garcia-Failde, Elba
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2024
Springer Nature B.V
Springer Verlag
Subjects:
ISSN:0010-3616, 1432-0916
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We study the correlators W g , n arising from Orlov–Scherbin 2-Toda tau functions with rational content-weight G ( z ), at arbitrary values of the two sets of time parameters. Combinatorially, they correspond to generating functions of weighted Hurwitz numbers and ( m ,  r )-factorisations of permutations. When the weight function is polynomial, they are generating functions of constellations on surfaces in which two full sets of degrees (black/white) are entirely controlled, and in which internal faces are allowed in addition to boundaries. We give the spectral curve (the “disk” function W 0 , 1 , and the “cylinder” function W 0 , 2 ) for this model, generalising Eynard’s solution of the 2-matrix model which corresponds to G ( z ) = 1 + z , by the addition of arbitrarily many free parameters. Our method relies both on the Albenque–Bouttier combinatorial proof of Eynard’s result by slice decompositions, which is strong enough to handle the polynomial case, and on algebraic arguments. Building on this, we establish the topological recursion (TR) for the model. Our proof relies on the fact that TR is already known at time zero (or, combinatorially, when the underlying graphs have only boundaries, and no internal faces) by work of Bychkov–Dunin-Barkowski–Kazarian–Shadrin (or Alexandrov–Chapuy–Eynard–Harnad for the polynomial case), and on the general idea of deformation of spectral curves due to Eynard and Orantin, which we make explicit in this case. As a result of TR, we obtain strong structure results for all fixed-genus generating functions. Our techniques also cover the case where G ( z ) is a rational function times an exponential (containing in particular the case of classical Hurwitz numbers).
AbstractList We study the correlators $W_{g,n}$ arising from Orlov-Scherbin 2-Toda tau functions with rational content-weight $G(z)$, at arbitrary values of the two sets of time parameters. Combinatorially, they correspond to generating functions of weighted Hurwitz numbers and $(m,r)$-factorisations of permutations. When the weight function is polynomial, they are generating functions of constellations on surfaces in which two full sets of degrees (black/white) are entirely controlled, and in which internal faces are allowed in addition to boundaries. We give the spectral curve (the "disk" function $W_{0,1}$, and the "cylinder" function $W_{0,2}$) for this model, generalising Eynard's solution of the 2-matrix model which corresponds to $G(z)=1+z$, by the addition of arbitrarily many free parameters. Our method relies both on the Albenque-Bouttier combinatorial proof of Eynard's result by slice decompositions, which is strong enough to handle the polynomial case, and on algebraic arguments. Building on this, we establish the topological recursion (TR) for the model. Our proof relies on the fact that TR is already known at time zero (or, combinatorially, when the underlying graphs have only boundaries, and no internal faces) by work of Bychkov-Dunin-Barkowski-Kazarian-Shadrin (or Alexandrov-Chapuy-Eynard-Harnad for the polynomial case), and on the general idea of deformation of spectral curves due to Eynard and Orantin, which we make explicit in this case. As a result of TR, we obtain strong structure results for all fixed-genus generating functions.
We study the correlators Wg,n arising from Orlov–Scherbin 2-Toda tau functions with rational content-weight G(z), at arbitrary values of the two sets of time parameters. Combinatorially, they correspond to generating functions of weighted Hurwitz numbers and (m, r)-factorisations of permutations. When the weight function is polynomial, they are generating functions of constellations on surfaces in which two full sets of degrees (black/white) are entirely controlled, and in which internal faces are allowed in addition to boundaries. We give the spectral curve (the “disk” function W0,1, and the “cylinder” function W0,2) for this model, generalising Eynard’s solution of the 2-matrix model which corresponds to G(z)=1+z, by the addition of arbitrarily many free parameters. Our method relies both on the Albenque–Bouttier combinatorial proof of Eynard’s result by slice decompositions, which is strong enough to handle the polynomial case, and on algebraic arguments. Building on this, we establish the topological recursion (TR) for the model. Our proof relies on the fact that TR is already known at time zero (or, combinatorially, when the underlying graphs have only boundaries, and no internal faces) by work of Bychkov–Dunin-Barkowski–Kazarian–Shadrin (or Alexandrov–Chapuy–Eynard–Harnad for the polynomial case), and on the general idea of deformation of spectral curves due to Eynard and Orantin, which we make explicit in this case. As a result of TR, we obtain strong structure results for all fixed-genus generating functions. Our techniques also cover the case where G(z) is a rational function times an exponential (containing in particular the case of classical Hurwitz numbers).
We study the correlators W g , n arising from Orlov–Scherbin 2-Toda tau functions with rational content-weight G ( z ), at arbitrary values of the two sets of time parameters. Combinatorially, they correspond to generating functions of weighted Hurwitz numbers and ( m ,  r )-factorisations of permutations. When the weight function is polynomial, they are generating functions of constellations on surfaces in which two full sets of degrees (black/white) are entirely controlled, and in which internal faces are allowed in addition to boundaries. We give the spectral curve (the “disk” function W 0 , 1 , and the “cylinder” function W 0 , 2 ) for this model, generalising Eynard’s solution of the 2-matrix model which corresponds to G ( z ) = 1 + z , by the addition of arbitrarily many free parameters. Our method relies both on the Albenque–Bouttier combinatorial proof of Eynard’s result by slice decompositions, which is strong enough to handle the polynomial case, and on algebraic arguments. Building on this, we establish the topological recursion (TR) for the model. Our proof relies on the fact that TR is already known at time zero (or, combinatorially, when the underlying graphs have only boundaries, and no internal faces) by work of Bychkov–Dunin-Barkowski–Kazarian–Shadrin (or Alexandrov–Chapuy–Eynard–Harnad for the polynomial case), and on the general idea of deformation of spectral curves due to Eynard and Orantin, which we make explicit in this case. As a result of TR, we obtain strong structure results for all fixed-genus generating functions. Our techniques also cover the case where G ( z ) is a rational function times an exponential (containing in particular the case of classical Hurwitz numbers).
ArticleNumber 189
Author Charbonnier, Séverin
Garcia-Failde, Elba
Bonzom, Valentin
Chapuy, Guillaume
Author_xml – sequence: 1
  givenname: Valentin
  surname: Bonzom
  fullname: Bonzom, Valentin
  organization: Université Sorbonne Paris Nord, LIPN
– sequence: 2
  givenname: Guillaume
  surname: Chapuy
  fullname: Chapuy, Guillaume
  organization: Université Paris Cité, IRIF
– sequence: 3
  givenname: Séverin
  surname: Charbonnier
  fullname: Charbonnier, Séverin
  organization: Université Paris Cité, IRIF
– sequence: 4
  givenname: Elba
  orcidid: 0000-0001-7901-5819
  surname: Garcia-Failde
  fullname: Garcia-Failde, Elba
  email: elba.garcia-failde@imj-prg.fr
  organization: Sorbonne Université, IMJ-PRG
BackLink https://hal.science/hal-03720818$$DView record in HAL
BookMark eNp9kM9KAzEQxoMoWP-8gKeAJ8HVSbLJpkcpVoWCoPUcs2nWrqxJTXZbvPkOvqFPYtpVBA-eZhh-38w33x7adt5ZhI4InBGA4jwCUAoZ0DwDDrnMVltoQHJGMxgSsY0GAAQyJojYRXsxPgPAkAoxQI9Tv_CNf6qNbvCdNV2ItXe48gHfhsYvP98_7s3chrJ2eKo7PO6caRMRT7F2MzxKXWubRm9meFW3c3zjWhtcWjfWxsYDtFPpJtrD77qPHsaX09F1Nrm9uhldTDLDOGszmxxpIHI2JNLkPDkvaV7mBQGhZVESanjBqJU2vVDwQs4kF5pbyqgoecUqto9O-r1z3ahFqF90eFNe1-r6YqLWM2AFBUnkkiT2uGcXwb92Nrbq2Xdry1ExyvN0QTCaKNlTJvgYg62UqdvNo23QdaMIqHX2qs9epezVJnu1SlL6R_rj6F8R60Uxwe7Jhl9X_6i-AL-umI0
CitedBy_id crossref_primary_10_1007_s11005_025_01939_8
crossref_primary_10_1016_j_geomphys_2024_105329
Cites_doi 10.1016/0021-8693(81)90205-2
10.4153/CJM-1962-002-9
10.1016/0095-8956(91)90079-Y
10.1016/0012-365X(93)90006-F
10.1007/s00220-008-0620-4
10.1016/j.aim.2008.06.013
10.4007/annals.2006.163.517
10.1137/S0895480190177650
10.1016/j.jcta.2012.03.007
10.1007/978-3-7643-8797-6
10.1093/imrn/rnx047
10.1112/jlms.12686
10.1093/imrn/rnz142
10.1088/1126-6708/2005/12/034
10.1088/1126-6708/2004/11/031
10.4153/CJM-1954-010-9
10.4310/CNTP.2014.v8.n3.a4
10.1088/1126-6708/2006/12/026
10.1017/S0963548309009808
10.1007/s11232-014-0229-z
10.1088/1126-6708/2006/12/053
10.4310/CNTP.2007.v1.n2.a4
10.1002/cpa.3160120310
10.37236/1822
10.46298/dmtcs.3084
10.1006/aama.1999.0673
10.37236/10149
10.1007/s00220-020-03717-0
10.1007/s00220-017-3065-9
10.4310/ATMP.2019.v23.n8.a2
10.1090/memo/0464
10.5802/jep.58
10.5802/ahl.143
10.4171/qt/60
10.1007/978-3-540-38361-1
10.1007/s00220-024-04997-6
10.4153/CJM-1997-045-9
10.1017/S0963548314000340
10.1007/s00220-011-1401-z
10.1007/s11005-015-0771-0
10.5802/jep.202
10.1063/1.4996574
10.4171/aihpd/104
10.1090/jams/934
10.1002/prop.200410212
10.1007/s00220-014-1887-2
10.1016/j.aim.2005.01.008
10.1155/S1073792800000532
10.1016/0097-3165(86)90065-8
10.1093/imrn/rnac177
10.2977/prims/47
10.1016/j.aim.2013.01.012
10.1007/s00026-017-0341-5
10.1007/s00440-018-0865-6
10.1007/s002220100164
10.1090/tran/8851
10.1016/j.geomphys.2018.07.004
10.1016/j.jcta.2019.01.005
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024.
licence_http://creativecommons.org/publicdomain/zero
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024.
– notice: licence_http://creativecommons.org/publicdomain/zero
DBID AAYXX
CITATION
7XB
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M2P
M7S
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
1XC
DOI 10.1007/s00220-024-05048-w
DatabaseName CrossRef
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Science Database (ProQuest)
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central Database Suite (ProQuest)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Physics
EISSN 1432-0916
ExternalDocumentID oai:HAL:hal-03720818v1
10_1007_s00220_024_05048_w
GrantInformation_xml – fundername: HORIZON EUROPE European Research Council
  grantid: ERC-2016-STG 716083
  funderid: http://dx.doi.org/10.13039/100019180
GroupedDBID -54
-5F
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
199
1N0
1SB
203
28-
29F
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2WC
2~H
30V
4.4
406
408
409
40D
40E
41~
5GY
5QI
5VS
67Z
692
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIPV
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFFOW
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
E3Z
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMI
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GPTSA
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KQ8
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OK1
P19
P2P
P9T
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RBV
REI
RHV
RIG
RNI
RNS
ROL
RPE
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SDM
SGB
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TR2
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
WS9
XJT
YLTOR
Z45
Z7R
Z7S
Z7U
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8W
Z92
ZY4
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ARAPS
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
K7-
M2P
M7S
PCBAR
PHGZM
PHGZT
PQGLB
PTHSS
7XB
8FE
8FG
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
1XC
AGGLG
ID FETCH-LOGICAL-c353t-e000a018d918c45432b24b47106a87b12c5732e8e6167578d856a5e2326b5f3f3
IEDL.DBID RSV
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001280297500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0010-3616
IngestDate Wed Dec 10 12:30:41 EST 2025
Fri Sep 26 03:12:17 EDT 2025
Sat Nov 29 06:18:13 EST 2025
Tue Nov 18 21:11:10 EST 2025
Fri Feb 21 02:38:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c353t-e000a018d918c45432b24b47106a87b12c5732e8e6167578d856a5e2326b5f3f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7901-5819
PQID 3254167632
PQPubID 2043584
ParticipantIDs hal_primary_oai_HAL_hal_03720818v1
proquest_journals_3254167632
crossref_citationtrail_10_1007_s00220_024_05048_w
crossref_primary_10_1007_s00220_024_05048_w
springer_journals_10_1007_s00220_024_05048_w
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Communications in mathematical physics
PublicationTitleAbbrev Commun. Math. Phys
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: Springer Verlag
References Orlov, A.Y., Scherbin, D.M.: Fermionic representation for basic hypergeometric functions related to Schur polynomials (2000). Preprint arXiv:nlin/0001001
EynardBOrantinNInvariants of algebraic curves and topological expansionCommun. Number Theory Phys.200712347452234657510.4310/CNTP.2007.v1.n2.a4
KazarianMZografPVirasoro constraints and topological recursion for Grothendieck’s dessin countingLett. Math. Phys.2015105810571084336612010.1007/s11005-015-0771-0
Bonzom, V., Nador, V.: Constraints for b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b$$\end{document}-deformed constellations (2023). Preprint arXiv:2312.10752
GouldenIPJacksonDMMaps in locally orientable surfaces and integrals over real symmetric surfacesCan. J. Math.1997495865882160410610.4153/CJM-1997-045-9
Lando, S.K., Zvonkin, A.K.: Graphs on Surfaces and Their Applications. Encyclopaedia of Mathematical Sciences, vol. 141. Springer, Berlin (2004). With an appendix by Don B. Zagier
Andersen, J.E., Borot, G., Charbonnier, S., Delecroix, V., Giacchetto, A., Lewański, D., Wheeler, C.: Topological recursion for Masur–Veech volumes (2019). J. Lond. Math. Soc. 107, 254-332 (2023)
BaragliaDHuangZSpecial Kähler geometry of the Hitchin system and topological recursionAdv. Theor. Math. Phys.201923819812024410165810.4310/ATMP.2019.v23.n8.a2
TutteWTA census of planar triangulationsCan. J. Math1962141213813084110.4153/CJM-1962-002-9
BychkovB Dunin-BarkowskiPKazarianMShadrinSExplicit closed algebraic formulas for Orlov–Scherbin n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-point functionsJ. Ec. Polytech. Math.2022911211158445341210.5802/jep.202
Dunin-BarkowskiPOrantinNShadrinSSpitzLIdentification of the Givental formula with the spectral curve topological recursion procedureCommun. Math. Phys.20143282669700319999610.1007/s00220-014-1887-2
BouttierJGuitterEOn irreducible maps and slicesComb. Probab. Comput.2014236914972326583410.1017/S0963548314000340
Ambjørn, J., Chekhov, L.O.: A matrix model for hypergeometric Hurwitz numbers. Theor. Math. Phys. 181(3), 1486–1498 (2014). Translation of Teoret. Mat. Fiz. 181 (2014), no. 3, 421–435
EynardBGarcia-FaildeEMarchalOOrantinNQuantization of classical spectral curves via topological recursionCommun. Math. Phys.2024405116473729110.1007/s00220-024-04997-6
Chaimanowong, W., Norbury, P., Swaddle, M., Tavakol, M.: Airy structures and deformations of curves in surfaces (2020). Preprint arXiv:2012.00254
MurphyGA new construction of Young’s seminormal representation of the symmetric groupJ. Algebra19816928729161707910.1016/0021-8693(81)90205-2
BouchardVEynardBReconstructing WKB from topological recursionJ. Éc. Polytech. Math.20174845908369409710.5802/jep.58
OkounkovAPandharipandeRGromov–Witten theory, Hurwitz theory, and completed cyclesAnn. Math. (2)20061632517560219922510.4007/annals.2006.163.517
Ben DaliH Integrality in the Matching-Jack conjecture and the Farahat–Higman algebraTrans. Am. Math. Soc.2023376536413662457734310.1090/tran/8851
Bychkov, B., Dunin-Barkowski, P., Kazarian, M., Shadrin, S.: Topological recursion for Kadomtsev-Petviashvili tau functions of hypergeometric type (2020). Preprint arXiv:2012.14723
Bouttier, J., Guitter, E., Miermont, G.: Bijective enumeration of planar bipartite maps with three tight boundaries, or how to slice pairs of pants (2021). Preprint arXiv:2104.10084
EynardBOrantinNTopological expansion of the 2-matrix model correlation functions: diagrammatic rules for a residue formulaJHEP200512034219703410.1088/1126-6708/2005/12/034
GouldenIPGuay-PaquetMNovakJPolynomiality of monotone Hurwitz numbers in higher generaAdv. Math.2013238123303362810.1016/j.aim.2013.01.012
Bychkov, B., Dunin-Barkowski, P., Kazarian, M., Shadrin, S.: Symplectic duality for topological recursion (2022). Preprint arXiv:2206.14792
Chapuy, G., Dołęga, M.: Non-orientable branched coverings, b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b$$\end{document}-Hurwitz numbers, and positivity for multiparametric Jack expansions (2020). Preprint arXiv:2004.07824
FangBLiuC-CMZongZOn the remodeling conjecture for toric Calabi–Yau 3-orbifoldsJ. Am. Math. Soc.2020331135222406647410.1090/jams/934
ChekhovLEynardBMatrix eigenvalue model: Feynman graph technique for all generaJ. High Energy Phys.2006200612129227671510.1088/1126-6708/2006/12/026
GouldenIPGuay-PaquetMNovakJOn the convergence of monotone Hurwitz generating functionsAnn. Comb.20172117381361344510.1007/s00026-017-0341-5
BorotGEynardBEnumeration of maps with self-avoiding loops and the O(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {O}({\mathfrak{n} })$$\end{document} model on random lattices of all topologiesJ. Stat. Mech. Theory Exp.20111P01010, 622770626
ChapuyG Asymptotic enumeration of constellations and related families of maps on orientable surfacesComb. Probab. Comput.2009184477516250773410.1017/S0963548309009808
Albenque, M., Lepoutre, M.: Blossoming bijection for higher-genus maps, and bivariate rationality (2019). Preprint arXiv:2007.07692
Ben Dali, H., Dołęga, M.: Positive formula for Jack polynomials, Jack characters and proof of Lassalle’s conjecture (2023). Preprint arXiv:2305.07966
AlexandrovAChapuyGEynardBHarnadJWeighted Hurwitz numbers and topological recursionCommun. Math. Phys.20203751237305408218310.1007/s00220-020-03717-0
Borot, G., Charbonnier, S., Garcia-Failde, E.: Topological recursion for fully simple maps from ciliated maps (2021), accepted in J. Comb. Theory Ser. A (2024). Preprint arXiv:2106.09002
BenderEACanfieldERThe number of degree-restricted rooted maps on the sphereSIAM J. Discrete Math.199471915125900510.1137/S0895480190177650
EynardBMulaseMSafnukBThe Laplace transform of the cut-and-join equation and the Bouchard–Mariño conjecture on Hurwitz numbersPubl. Res. Inst. Math. Sci.2011472629670284964510.2977/prims/47
GaoZThe number of degree restricted maps on general surfacesDiscrete Math.19931231–34763125608110.1016/0012-365X(93)90006-F
EynardBTopological expansion for the 1-Hermitian matrix model correlation functionsJ. High Energy Phys.2004200411031211880710.1088/1126-6708/2004/11/031
EkedahlTLandoSShapiroMVainshteinAHurwitz numbers and intersections on moduli spaces of curvesInvent. Math.20011462297327186401810.1007/s002220100164
BorotGEynardBAll order asymptotics of hyperbolic knot invariants from non-perturbative topological recursion of A-polynomialsQuantum Topol.20156139138333500610.4171/qt/60
AmbjørnJChekhovLOSpectral curves for hypergeometric Hurwitz numbersJ. Geom. Phys.2018132382392383678810.1016/j.geomphys.2018.07.004
ChekhovLEynardBOrantinNFree energy topological expansion for the 2-matrix modelJ. High Energy Phys.2006200612053227669910.1088/1126-6708/2006/12/053
Dunin-BarkowskiP OrantinNPopolitovAShadrinSCombinatorics of loop equations for branched covers of sphereInt. Math. Res. Not.201720181856385662386211610.1093/imrn/rnx047
EynardBA short overview of the “topological recursion”Proc. Int. Congr. Math. Seoul201420143106310853256864
EynardBLarge n expansion of the 2-matrix modelJHEP200203012003051
Fay, J.D.: Kernel functions, analytic torsion, and moduli spaces. Memoirs of the American Mathematical Society 96, 0–0 (1992)
Chidambaram, N.K., Garcia-Failde, E., Giacchetto, A.: Relations on M¯g,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\cal{M}}_{g,n}$$\end{document} and the negative r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document}-spin Witten conjecture (2022). Preprint arXiv:2205.15621
GouldenIPJacksonDMThe KP hierarchy, branched covers, and triangulationsAdv. Math.20082193932951244205710.1016/j.aim.2008.06.013
ChapuyGFangWGenerating functions of bipartite maps on orientable surfacesElectron. J. Comb.2016233Paper 3.31, 373558068
EynardBInvariants of spectral curves and intersection theory of moduli spaces of complex curvesCommun. Number Theory Phys.20148541588328299510.4310/CNTP.2014.v8.n3.a4
GouldenIPJacksonDMVakilRTowards the geometry of double Hurwitz numbersAdv. Math.200519814392218325010.1016/j.aim.2005.01.008
Albenque, M., Bouttier, J.: On the slice decomposition of planar hypermaps (2022)
ChapuyGOn tessellations of random maps and the tg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_g$$\end{document}-recurrenceProbab. Theory Relat. Fields20191741–247750010.1007/s00440-018-0865-6
Harnad, J., Runov, B.: Constellations and τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}-functions for rationally weighted Hurwitz numbers. Ann. Inst. H. Poincaré D 8(1), 119–158 (2021)
BertolaMKorotkinDSpaces of Abelian differentials and Hitchin’s spectral coversInt. Math. Res.
5048_CR46
P Dunin-Barkowski (5048_CR45) 2014; 328
5048_CR3
O Bernardi (5048_CR26) 2012; 119
B Eynard (5048_CR53) 2002; 0301
5048_CR4
B Eynard (5048_CR50) 2005; 12
5048_CR1
L Chekhov (5048_CR37) 2006; 2006
5048_CR2
M Albenque (5048_CR10) 2015; 22
G Borot (5048_CR24) 2015; 6
5048_CR8
A Alexandrov (5048_CR9) 2005; 53
EA Bender (5048_CR11) 1986; 43
5048_CR40
A Alexandrov (5048_CR7) 2020; 375
A Alexandrov (5048_CR6) 2018; 360
D Baraglia (5048_CR30) 2019; 23
G Chapuy (5048_CR41) 2009; 18
5048_CR43
5048_CR57
WT Tutte (5048_CR77) 1954; 6
G Borot (5048_CR23) 2011; 1
5048_CR15
IP Goulden (5048_CR61) 2013; 238
5048_CR58
G Borot (5048_CR35) 2013; 1
5048_CR16
5048_CR19
B Eynard (5048_CR47) 2024; 405
5048_CR18
B Fang (5048_CR59) 2020; 33
V Bouchard (5048_CR25) 2017; 4
IP Goulden (5048_CR64) 2008; 219
M Bousquet-Mélou (5048_CR33) 2000; 24
A Jucys (5048_CR68) 1966; I
J Bouttier (5048_CR27) 2011; 309
5048_CR52
L Chekhov (5048_CR38) 2006; 2006
M Bertola (5048_CR31) 2019; 2021
5048_CR67
M Kazarian (5048_CR69) 2015; 105
A Okounkov (5048_CR73) 2006; 163
H Ben Dali (5048_CR17) 2023; 376
A Okounkov (5048_CR72) 2000; 20
5048_CR29
G Chapuy (5048_CR42) 2019; 174
IP Goulden (5048_CR62) 2017; 21
B Eynard (5048_CR56) 2014; 2014
Z Gao (5048_CR60) 1993; 123
B Eynard (5048_CR54) 2004; 2004
M Guay-Paquet (5048_CR66) 2017; 58
V Bouchard (5048_CR32) 2009; 287
5048_CR22
B Eynard (5048_CR51) 2007; 1
5048_CR21
5048_CR34
EA Bender (5048_CR13) 1994; 7
5048_CR36
T Ekedahl (5048_CR48) 2001; 146
B Eynard (5048_CR55) 2014; 8
J Bouttier (5048_CR28) 2014; 23
J Ambjørn (5048_CR5) 2018; 132
B Eynard (5048_CR49) 2011; 47
HE Rauch (5048_CR75) 1959; 12
J Bouttier (5048_CR14) 2021; 28
IP Goulden (5048_CR65) 2005; 198
G Murphy (5048_CR71) 1981; 69
EA Bender (5048_CR12) 1991; 53
B Bychkov (5048_CR20) 2022; 9
5048_CR70
P Dunin-Barkowski (5048_CR44) 2017; 2018
WT Tutte (5048_CR78) 1962; 14
G Chapuy (5048_CR39) 2016; 23
5048_CR74
IP Goulden (5048_CR63) 1997; 49
5048_CR76
References_xml – reference: TutteWTA census of planar triangulationsCan. J. Math1962141213813084110.4153/CJM-1962-002-9
– reference: EynardBOrantinNTopological expansion of the 2-matrix model correlation functions: diagrammatic rules for a residue formulaJHEP200512034219703410.1088/1126-6708/2005/12/034
– reference: BouttierJGuitterEOn irreducible maps and slicesComb. Probab. Comput.2014236914972326583410.1017/S0963548314000340
– reference: Bousquet-MélouMSchaefferGEnumeration of planar constellationsAdv. Appl. Math.2000244337368176177710.1006/aama.1999.0673
– reference: Bychkov, B., Dunin-Barkowski, P., Kazarian, M., Shadrin, S.: Generalised ordinary vs fully simple duality for n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-point functions and a proof of the Borot–Garcia-Failde conjecture (2021). Preprint arXiv:2106.08368
– reference: Eynard, B.: Counting Surfaces. Progress in Mathematical Physics, vol. 70. Birkhäuser/Springer, Cham (2016). CRM Aisenstadt chair lectures
– reference: EynardBMulaseMSafnukBThe Laplace transform of the cut-and-join equation and the Bouchard–Mariño conjecture on Hurwitz numbersPubl. Res. Inst. Math. Sci.2011472629670284964510.2977/prims/47
– reference: GaoZThe number of degree restricted maps on general surfacesDiscrete Math.19931231–34763125608110.1016/0012-365X(93)90006-F
– reference: EynardBTopological expansion for the 1-Hermitian matrix model correlation functionsJ. High Energy Phys.2004200411031211880710.1088/1126-6708/2004/11/031
– reference: Dunin-BarkowskiPOrantinNShadrinSSpitzLIdentification of the Givental formula with the spectral curve topological recursion procedureCommun. Math. Phys.20143282669700319999610.1007/s00220-014-1887-2
– reference: MurphyGA new construction of Young’s seminormal representation of the symmetric groupJ. Algebra19816928729161707910.1016/0021-8693(81)90205-2
– reference: Guay-PaquetMHarnadJGenerating functions for weighted Hurwitz numbersJ. Math. Phys.2017588083503368383310.1063/1.4996574
– reference: KazarianMZografPVirasoro constraints and topological recursion for Grothendieck’s dessin countingLett. Math. Phys.2015105810571084336612010.1007/s11005-015-0771-0
– reference: BenderEACanfieldERThe number of degree-restricted rooted maps on the sphereSIAM J. Discrete Math.199471915125900510.1137/S0895480190177650
– reference: Ruzza, G.: Jacobi beta ensemble and b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b$$\end{document}-Hurwitz numbers. Symmetry, Integrability and Geometry: Methods and Applications (2023)
– reference: Albenque, M., Lepoutre, M.: Blossoming bijection for higher-genus maps, and bivariate rationality (2019). Preprint arXiv:2007.07692
– reference: BouttierJCarranceAEnumeration of planar constellations with an alternating boundaryElectron. J. Comb.2021283Paper No. 3.21, 214287700
– reference: Bonzom, V., Chapuy, G., Dołęga, M.: b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b$$\end{document}-monotone Hurwitz numbers: Virasoro constraints, BKP hierarchy, and O(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(N)$$\end{document}-BGW integral. Int. Math. Res. Notices (2022, to appear). See arXiv:2109.01499
– reference: Ben DaliH Integrality in the Matching-Jack conjecture and the Farahat–Higman algebraTrans. Am. Math. Soc.2023376536413662457734310.1090/tran/8851
– reference: Chapuy, G., Dołęga, M.: Non-orientable branched coverings, b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b$$\end{document}-Hurwitz numbers, and positivity for multiparametric Jack expansions (2020). Preprint arXiv:2004.07824
– reference: Eynard, B., Orantin, N.: Weil–Petersson volume of moduli spaces, Mirzakhani’s recursion and matrix models. Preprint arXiv:0705.3600v1 (2007)
– reference: BouttierJGuitterEPlanar maps and continued fractionsCommun. Math. Phys.20113093623662288560310.1007/s00220-011-1401-z
– reference: Lando, S.K., Zvonkin, A.K.: Graphs on Surfaces and Their Applications. Encyclopaedia of Mathematical Sciences, vol. 141. Springer, Berlin (2004). With an appendix by Don B. Zagier
– reference: OkounkovARandom matrices and random permutationsInt. Math. Res. Not.20002010431095180253010.1155/S1073792800000532
– reference: BaragliaDHuangZSpecial Kähler geometry of the Hitchin system and topological recursionAdv. Theor. Math. Phys.201923819812024410165810.4310/ATMP.2019.v23.n8.a2
– reference: BenderEACanfieldERThe number of rooted maps on an orientable surfaceJ. Comb. Theory Ser. B1991532293299112955610.1016/0095-8956(91)90079-Y
– reference: Bouttier, J., Di Francesco, P., Guitter, E.: Planar maps as labelled mobiles. Electron. J. Comb. 11(1), R69 (2004)
– reference: Bouttier, J., Guitter, E., Miermont, G.: Bijective enumeration of planar bipartite maps with three tight boundaries, or how to slice pairs of pants (2021). Preprint arXiv:2104.10084
– reference: ChekhovLEynardBOrantinNFree energy topological expansion for the 2-matrix modelJ. High Energy Phys.2006200612053227669910.1088/1126-6708/2006/12/053
– reference: Chidambaram, N.K., Garcia-Failde, E., Giacchetto, A.: Relations on M¯g,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\cal{M}}_{g,n}$$\end{document} and the negative r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document}-spin Witten conjecture (2022). Preprint arXiv:2205.15621
– reference: BychkovB Dunin-BarkowskiPKazarianMShadrinSExplicit closed algebraic formulas for Orlov–Scherbin n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-point functionsJ. Ec. Polytech. Math.2022911211158445341210.5802/jep.202
– reference: AlexandrovAMironovAMorozovASolving Virasoro constraints in matrix modelsFortschr. Phys.2005535–6512521214533410.1002/prop.200410212
– reference: BorotGFormal multidimensional integrals, stuffed maps, and topological recursionAIHPD2013107
– reference: BouchardVEynardBReconstructing WKB from topological recursionJ. Éc. Polytech. Math.20174845908369409710.5802/jep.58
– reference: BouchardVKlemmAMariñoMPasquettiSRemodeling the B-modelCommun. Math. Phys.20092871117178248074410.1007/s00220-008-0620-4
– reference: ChapuyGFangWGenerating functions of bipartite maps on orientable surfacesElectron. J. Comb.2016233Paper 3.31, 373558068
– reference: OkounkovAPandharipandeRGromov–Witten theory, Hurwitz theory, and completed cyclesAnn. Math. (2)20061632517560219922510.4007/annals.2006.163.517
– reference: Fay, J.D.: Kernel functions, analytic torsion, and moduli spaces. Memoirs of the American Mathematical Society 96, 0–0 (1992)
– reference: Andersen, J.E., Borot, G., Charbonnier, S., Delecroix, V., Giacchetto, A., Lewański, D., Wheeler, C.: Topological recursion for Masur–Veech volumes (2019). J. Lond. Math. Soc. 107, 254-332 (2023)
– reference: GouldenIPGuay-PaquetMNovakJOn the convergence of monotone Hurwitz generating functionsAnn. Comb.20172117381361344510.1007/s00026-017-0341-5
– reference: GouldenIPJacksonDMVakilRTowards the geometry of double Hurwitz numbersAdv. Math.200519814392218325010.1016/j.aim.2005.01.008
– reference: Ambjørn, J., Chekhov, L.O.: A matrix model for hypergeometric Hurwitz numbers. Theor. Math. Phys. 181(3), 1486–1498 (2014). Translation of Teoret. Mat. Fiz. 181 (2014), no. 3, 421–435
– reference: RauchHEWeierstrass points, branch points, and moduli of Riemann surfacesCommun. Pure Appl. Math.19591254356011079810.1002/cpa.3160120310
– reference: AlexandrovAChapuyGEynardBHarnadJWeighted Hurwitz numbers and topological recursionCommun. Math. Phys.20203751237305408218310.1007/s00220-020-03717-0
– reference: Bychkov, B., Dunin-Barkowski, P., Kazarian, M., Shadrin, S.: Topological recursion for Kadomtsev-Petviashvili tau functions of hypergeometric type (2020). Preprint arXiv:2012.14723
– reference: GouldenIPGuay-PaquetMNovakJPolynomiality of monotone Hurwitz numbers in higher generaAdv. Math.2013238123303362810.1016/j.aim.2013.01.012
– reference: Bychkov, B., Dunin-Barkowski, P., Kazarian, M., Shadrin, S.: Symplectic duality for topological recursion (2022). Preprint arXiv:2206.14792
– reference: Albenque, M., Bouttier, J.: On the slice decomposition of planar hypermaps (2022)
– reference: AlexandrovAChapuyGEynardBHarnadJFermionic approach to weighted Hurwitz numbers and topological recursionCommun. Math. Phys.20183602777826380079810.1007/s00220-017-3065-9
– reference: EynardBOrantinNInvariants of algebraic curves and topological expansionCommun. Number Theory Phys.200712347452234657510.4310/CNTP.2007.v1.n2.a4
– reference: GouldenIPJacksonDMMaps in locally orientable surfaces and integrals over real symmetric surfacesCan. J. Math.1997495865882160410610.4153/CJM-1997-045-9
– reference: ChapuyG Asymptotic enumeration of constellations and related families of maps on orientable surfacesComb. Probab. Comput.2009184477516250773410.1017/S0963548309009808
– reference: BenderEACanfieldERThe asymptotic number of rooted maps on a surfaceJ. Comb. Theory Ser. A198643224425786765010.1016/0097-3165(86)90065-8
– reference: BernardiOFusyÉUnified bijections for maps with prescribed degrees and girthJ. Comb. Theory Ser. A2012119613511387291565110.1016/j.jcta.2012.03.007
– reference: BertolaMKorotkinDSpaces of Abelian differentials and Hitchin’s spectral coversInt. Math. Res. Not.20192021151124611269429411710.1093/imrn/rnz142
– reference: Borot, G., Charbonnier, S., Garcia-Failde, E.: Topological recursion for fully simple maps from ciliated maps (2021), accepted in J. Comb. Theory Ser. A (2024). Preprint arXiv:2106.09002
– reference: Chaimanowong, W., Norbury, P., Swaddle, M., Tavakol, M.: Airy structures and deformations of curves in surfaces (2020). Preprint arXiv:2012.00254
– reference: AlbenqueMPoulalhonDA generic method for bijections between blossoming trees and planar mapsElectron. J. Comb.2015222Paper 2.38, 443359941
– reference: JucysA On the Young operators of the symmetric groupsLith. J. Phys. V1966I2180189
– reference: EynardBInvariants of spectral curves and intersection theory of moduli spaces of complex curvesCommun. Number Theory Phys.20148541588328299510.4310/CNTP.2014.v8.n3.a4
– reference: Dunin-BarkowskiP OrantinNPopolitovAShadrinSCombinatorics of loop equations for branched covers of sphereInt. Math. Res. Not.201720181856385662386211610.1093/imrn/rnx047
– reference: TutteWT A contribution to the theory of chromatic polynomialsCan. J. Math.1954680916136610.4153/CJM-1954-010-9
– reference: Harnad, J., Runov, B.: Constellations and τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}-functions for rationally weighted Hurwitz numbers. Ann. Inst. H. Poincaré D 8(1), 119–158 (2021)
– reference: Bonzom, V., Nador, V.: Constraints for b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b$$\end{document}-deformed constellations (2023). Preprint arXiv:2312.10752
– reference: EynardBA short overview of the “topological recursion”Proc. Int. Congr. Math. Seoul201420143106310853256864
– reference: ChekhovLEynardBMatrix eigenvalue model: Feynman graph technique for all generaJ. High Energy Phys.2006200612129227671510.1088/1126-6708/2006/12/026
– reference: BorotGEynardBAll order asymptotics of hyperbolic knot invariants from non-perturbative topological recursion of A-polynomialsQuantum Topol.20156139138333500610.4171/qt/60
– reference: EynardBGarcia-FaildeEMarchalOOrantinNQuantization of classical spectral curves via topological recursionCommun. Math. Phys.2024405116473729110.1007/s00220-024-04997-6
– reference: EkedahlTLandoSShapiroMVainshteinAHurwitz numbers and intersections on moduli spaces of curvesInvent. Math.20011462297327186401810.1007/s002220100164
– reference: Albenque, M., Bouttier, J.: Constellations and multicontinued fractions: application to Eulerian triangulations. In: 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012), Discrete Math. Theor. Comput. Sci. Proc., AR, pp. 805–816. Assoc. Discrete Math. Theor. Comput. Sci., Nancy (2012)
– reference: EynardBLarge n expansion of the 2-matrix modelJHEP200203012003051
– reference: FangBLiuC-CMZongZOn the remodeling conjecture for toric Calabi–Yau 3-orbifoldsJ. Am. Math. Soc.2020331135222406647410.1090/jams/934
– reference: Ben Dali, H., Dołęga, M.: Positive formula for Jack polynomials, Jack characters and proof of Lassalle’s conjecture (2023). Preprint arXiv:2305.07966
– reference: Orlov, A.Y., Scherbin, D.M.: Fermionic representation for basic hypergeometric functions related to Schur polynomials (2000). Preprint arXiv:nlin/0001001
– reference: GouldenIPJacksonDMThe KP hierarchy, branched covers, and triangulationsAdv. Math.20082193932951244205710.1016/j.aim.2008.06.013
– reference: AmbjørnJChekhovLOSpectral curves for hypergeometric Hurwitz numbersJ. Geom. Phys.2018132382392383678810.1016/j.geomphys.2018.07.004
– reference: BorotGEynardBEnumeration of maps with self-avoiding loops and the O(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {O}({\mathfrak{n} })$$\end{document} model on random lattices of all topologiesJ. Stat. Mech. Theory Exp.20111P01010, 622770626
– reference: ChapuyGOn tessellations of random maps and the tg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_g$$\end{document}-recurrenceProbab. Theory Relat. Fields20191741–247750010.1007/s00440-018-0865-6
– volume: 69
  start-page: 287
  year: 1981
  ident: 5048_CR71
  publication-title: J. Algebra
  doi: 10.1016/0021-8693(81)90205-2
– volume: 14
  start-page: 21
  issue: 1
  year: 1962
  ident: 5048_CR78
  publication-title: Can. J. Math
  doi: 10.4153/CJM-1962-002-9
– ident: 5048_CR46
– volume: 53
  start-page: 293
  issue: 2
  year: 1991
  ident: 5048_CR12
  publication-title: J. Comb. Theory Ser. B
  doi: 10.1016/0095-8956(91)90079-Y
– volume: 123
  start-page: 47
  issue: 1–3
  year: 1993
  ident: 5048_CR60
  publication-title: Discrete Math.
  doi: 10.1016/0012-365X(93)90006-F
– volume: 287
  start-page: 117
  issue: 1
  year: 2009
  ident: 5048_CR32
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-008-0620-4
– volume: 219
  start-page: 932
  issue: 3
  year: 2008
  ident: 5048_CR64
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2008.06.013
– volume: 163
  start-page: 517
  issue: 2
  year: 2006
  ident: 5048_CR73
  publication-title: Ann. Math. (2)
  doi: 10.4007/annals.2006.163.517
– volume: 7
  start-page: 9
  issue: 1
  year: 1994
  ident: 5048_CR13
  publication-title: SIAM J. Discrete Math.
  doi: 10.1137/S0895480190177650
– volume: 119
  start-page: 1351
  issue: 6
  year: 2012
  ident: 5048_CR26
  publication-title: J. Comb. Theory Ser. A
  doi: 10.1016/j.jcta.2012.03.007
– volume: 1
  start-page: 07
  year: 2013
  ident: 5048_CR35
  publication-title: AIHPD
– ident: 5048_CR57
  doi: 10.1007/978-3-7643-8797-6
– volume: 23
  start-page: Paper 3.31, 37
  issue: 3
  year: 2016
  ident: 5048_CR39
  publication-title: Electron. J. Comb.
– ident: 5048_CR52
– volume: I
  start-page: 180
  issue: 2
  year: 1966
  ident: 5048_CR68
  publication-title: Lith. J. Phys. V
– volume: 2018
  start-page: 5638
  issue: 18
  year: 2017
  ident: 5048_CR44
  publication-title: Int. Math. Res. Not.
  doi: 10.1093/imrn/rnx047
– ident: 5048_CR3
  doi: 10.1112/jlms.12686
– volume: 2021
  start-page: 11246
  issue: 15
  year: 2019
  ident: 5048_CR31
  publication-title: Int. Math. Res. Not.
  doi: 10.1093/imrn/rnz142
– ident: 5048_CR76
– volume: 12
  start-page: 034
  year: 2005
  ident: 5048_CR50
  publication-title: JHEP
  doi: 10.1088/1126-6708/2005/12/034
– volume: 2004
  start-page: 031
  issue: 11
  year: 2004
  ident: 5048_CR54
  publication-title: J. High Energy Phys.
  doi: 10.1088/1126-6708/2004/11/031
– volume: 6
  start-page: 80
  year: 1954
  ident: 5048_CR77
  publication-title: Can. J. Math.
  doi: 10.4153/CJM-1954-010-9
– volume: 8
  start-page: 541
  year: 2014
  ident: 5048_CR55
  publication-title: Commun. Number Theory Phys.
  doi: 10.4310/CNTP.2014.v8.n3.a4
– ident: 5048_CR34
– volume: 2006
  start-page: 1
  issue: 12
  year: 2006
  ident: 5048_CR37
  publication-title: J. High Energy Phys.
  doi: 10.1088/1126-6708/2006/12/026
– volume: 18
  start-page: 477
  issue: 4
  year: 2009
  ident: 5048_CR41
  publication-title: Comb. Probab. Comput.
  doi: 10.1017/S0963548309009808
– ident: 5048_CR4
  doi: 10.1007/s11232-014-0229-z
– volume: 1
  start-page: P01010, 62
  year: 2011
  ident: 5048_CR23
  publication-title: J. Stat. Mech. Theory Exp.
– volume: 0301
  start-page: 051
  issue: 2003
  year: 2002
  ident: 5048_CR53
  publication-title: JHEP
– ident: 5048_CR21
– volume: 2006
  start-page: 053
  issue: 12
  year: 2006
  ident: 5048_CR38
  publication-title: J. High Energy Phys.
  doi: 10.1088/1126-6708/2006/12/053
– ident: 5048_CR19
– volume: 1
  start-page: 347
  issue: 2
  year: 2007
  ident: 5048_CR51
  publication-title: Commun. Number Theory Phys.
  doi: 10.4310/CNTP.2007.v1.n2.a4
– volume: 12
  start-page: 543
  year: 1959
  ident: 5048_CR75
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.3160120310
– ident: 5048_CR22
  doi: 10.37236/1822
– ident: 5048_CR1
  doi: 10.46298/dmtcs.3084
– volume: 24
  start-page: 337
  issue: 4
  year: 2000
  ident: 5048_CR33
  publication-title: Adv. Appl. Math.
  doi: 10.1006/aama.1999.0673
– ident: 5048_CR40
– volume: 28
  start-page: Paper No. 3.21,
  issue: 3
  year: 2021
  ident: 5048_CR14
  publication-title: Electron. J. Comb.
  doi: 10.37236/10149
– volume: 375
  start-page: 237
  issue: 1
  year: 2020
  ident: 5048_CR7
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-020-03717-0
– volume: 360
  start-page: 777
  issue: 2
  year: 2018
  ident: 5048_CR6
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-017-3065-9
– volume: 23
  start-page: 1981
  issue: 8
  year: 2019
  ident: 5048_CR30
  publication-title: Adv. Theor. Math. Phys.
  doi: 10.4310/ATMP.2019.v23.n8.a2
– ident: 5048_CR58
  doi: 10.1090/memo/0464
– volume: 4
  start-page: 845
  year: 2017
  ident: 5048_CR25
  publication-title: J. Éc. Polytech. Math.
  doi: 10.5802/jep.58
– ident: 5048_CR29
  doi: 10.5802/ahl.143
– volume: 6
  start-page: 39
  issue: 1
  year: 2015
  ident: 5048_CR24
  publication-title: Quantum Topol.
  doi: 10.4171/qt/60
– ident: 5048_CR70
  doi: 10.1007/978-3-540-38361-1
– volume: 405
  start-page: 116
  year: 2024
  ident: 5048_CR47
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-024-04997-6
– volume: 49
  start-page: 865
  issue: 5
  year: 1997
  ident: 5048_CR63
  publication-title: Can. J. Math.
  doi: 10.4153/CJM-1997-045-9
– volume: 2014
  start-page: 1063
  issue: 3
  year: 2014
  ident: 5048_CR56
  publication-title: Proc. Int. Congr. Math. Seoul
– ident: 5048_CR16
– volume: 23
  start-page: 914
  issue: 6
  year: 2014
  ident: 5048_CR28
  publication-title: Comb. Probab. Comput.
  doi: 10.1017/S0963548314000340
– volume: 22
  start-page: Paper 2.38, 44
  issue: 2
  year: 2015
  ident: 5048_CR10
  publication-title: Electron. J. Comb.
– volume: 309
  start-page: 623
  issue: 3
  year: 2011
  ident: 5048_CR27
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-011-1401-z
– volume: 105
  start-page: 1057
  issue: 8
  year: 2015
  ident: 5048_CR69
  publication-title: Lett. Math. Phys.
  doi: 10.1007/s11005-015-0771-0
– volume: 9
  start-page: 1121
  year: 2022
  ident: 5048_CR20
  publication-title: J. Ec. Polytech. Math.
  doi: 10.5802/jep.202
– volume: 58
  start-page: 083503
  issue: 8
  year: 2017
  ident: 5048_CR66
  publication-title: J. Math. Phys.
  doi: 10.1063/1.4996574
– ident: 5048_CR67
  doi: 10.4171/aihpd/104
– volume: 33
  start-page: 135
  issue: 1
  year: 2020
  ident: 5048_CR59
  publication-title: J. Am. Math. Soc.
  doi: 10.1090/jams/934
– ident: 5048_CR18
– ident: 5048_CR43
– volume: 53
  start-page: 512
  issue: 5–6
  year: 2005
  ident: 5048_CR9
  publication-title: Fortschr. Phys.
  doi: 10.1002/prop.200410212
– volume: 328
  start-page: 669
  issue: 2
  year: 2014
  ident: 5048_CR45
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-014-1887-2
– volume: 198
  start-page: 43
  issue: 1
  year: 2005
  ident: 5048_CR65
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2005.01.008
– volume: 20
  start-page: 1043
  year: 2000
  ident: 5048_CR72
  publication-title: Int. Math. Res. Not.
  doi: 10.1155/S1073792800000532
– ident: 5048_CR74
– volume: 43
  start-page: 244
  issue: 2
  year: 1986
  ident: 5048_CR11
  publication-title: J. Comb. Theory Ser. A
  doi: 10.1016/0097-3165(86)90065-8
– ident: 5048_CR15
  doi: 10.1093/imrn/rnac177
– volume: 47
  start-page: 629
  issue: 2
  year: 2011
  ident: 5048_CR49
  publication-title: Publ. Res. Inst. Math. Sci.
  doi: 10.2977/prims/47
– volume: 238
  start-page: 1
  year: 2013
  ident: 5048_CR61
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2013.01.012
– ident: 5048_CR36
– volume: 21
  start-page: 73
  issue: 1
  year: 2017
  ident: 5048_CR62
  publication-title: Ann. Comb.
  doi: 10.1007/s00026-017-0341-5
– volume: 174
  start-page: 477
  issue: 1–2
  year: 2019
  ident: 5048_CR42
  publication-title: Probab. Theory Relat. Fields
  doi: 10.1007/s00440-018-0865-6
– volume: 146
  start-page: 297
  issue: 2
  year: 2001
  ident: 5048_CR48
  publication-title: Invent. Math.
  doi: 10.1007/s002220100164
– volume: 376
  start-page: 3641
  issue: 5
  year: 2023
  ident: 5048_CR17
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/tran/8851
– ident: 5048_CR2
– volume: 132
  start-page: 382
  year: 2018
  ident: 5048_CR5
  publication-title: J. Geom. Phys.
  doi: 10.1016/j.geomphys.2018.07.004
– ident: 5048_CR8
  doi: 10.1016/j.jcta.2019.01.005
SSID ssj0009266
Score 2.4774034
Snippet We study the correlators W g , n arising from Orlov–Scherbin 2-Toda tau functions with rational content-weight G ( z ), at arbitrary values of the two sets of...
We study the correlators Wg,n arising from Orlov–Scherbin 2-Toda tau functions with rational content-weight G(z), at arbitrary values of the two sets of time...
We study the correlators $W_{g,n}$ arising from Orlov-Scherbin 2-Toda tau functions with rational content-weight $G(z)$, at arbitrary values of the two sets of...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 189
SubjectTerms Boundaries
Classical and Quantum Gravitation
Combinatorial analysis
Combinatorics
Complex Systems
Geometry
Mathematical and Computational Physics
Mathematical Physics
Parameters
Permutations
Physics
Physics and Astronomy
Polynomials
Quantum Physics
Rational functions
Relativity Theory
Theoretical
Topology
Weighting functions
SummonAdditionalLinks – databaseName: Science Database (ProQuest)
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB71AVI5UCigLrTIQtyoRfxKnBOqEKseaKlgkXoLseMVSKvddrPdXvsf-If9JZ1xvLuA1F44JnEe8jfOfB6P5wN4i27BuFx4rh1asNbBc5s3hlvfFEUmfS2si2ITxcmJPTsrT1PArU1plYt_YvxRNxNPMfL3CmcyIsfRID-cX3BSjaLV1SShsQ6byGwEpXQdy9NV0V3ZrVXSgq_KRZ42zcStc-S8Mo4eimcGrZhf_eWY1n9SWuQfnPOfZdLoffrb__vdT-Bx4p3ssDOUp7AWxjuwnTgoSyO83YFHx8s6rnj0MCaI-vYZ_Bh0agqEKftKQXoKszGkvOzLdDSZ31z__kb440SbDepL1kd_GU36gNXjhpEuKO1X6eKDjKK_LAUjR6xPaWHP4Xv_0-DjEU_qDNwro2Y8YAfXmbBNKazXRivppHbo67K8toUT0ptCyWADdjwVzW-syWsTkMHlzgzVUL2AjfFkHHaBDZEDlrXUyjellllROp8J5zXOPYXwIvRALKCpfCpdTgoao2pZdDnCWSGcVYSzuurBu-U9513hjntbv0HElw2p5vbR4eeKzmWk44O0Zi56sLeAuEojva1W-PbgYGEkq8t3v_Ll_U97BVsyWiflGu7Bxmx6GfbhgZ_PfrXT19HObwEeNwBJ
  priority: 102
  providerName: ProQuest
Title Topological Recursion for Orlov–Scherbin Tau Functions, and Constellations with Internal Faces
URI https://link.springer.com/article/10.1007/s00220-024-05048-w
https://www.proquest.com/docview/3254167632
https://hal.science/hal-03720818
Volume 405
WOSCitedRecordID wos001280297500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1432-0916
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0009266
  issn: 0010-3616
  databaseCode: P5Z
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database (ProQuest)
  customDbUrl:
  eissn: 1432-0916
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0009266
  issn: 0010-3616
  databaseCode: K7-
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1432-0916
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0009266
  issn: 0010-3616
  databaseCode: PCBAR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1432-0916
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0009266
  issn: 0010-3616
  databaseCode: M7S
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Database Suite (ProQuest)
  customDbUrl:
  eissn: 1432-0916
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0009266
  issn: 0010-3616
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (ProQuest)
  customDbUrl:
  eissn: 1432-0916
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0009266
  issn: 0010-3616
  databaseCode: M2P
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink Journals
  customDbUrl:
  eissn: 1432-0916
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009266
  issn: 0010-3616
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6RFiQ4tFBAhJZohbjRlbwve30sVaNK0BAlAVVcjHe9EUhRiuI0vfIf-If8Emb8KkWABJeVHK9je2bW3-w8AV4gLBgXC8-1QwnWOnhu48Jw64skiaTPhXVVs4lkNLLn5-m4SQor22j31iVZfam7ZDeCm4gjpvDIoNzxqx5sI9xZatgwmb6_LrUraw8luXlVLOImVeb3_3EDjnqfKBjyJ03zF-dohTnD3f972vuw0-iY7KgWigdwKyz3YLfRN1mzmss9uHfW1WzFoztVMKgvH8LHWd05gfjHJmSQJ5MaQ_WWvV0tLjbfv36bEq9xU81m-SUbIjZW4nvI8mXBqAco5abUtkBGll7WGB4XbEghYI_g3fBkdnzKm04M3Cuj1jwgWfNI2CIV1mujlXRSO8S1KM5t4oT0JlEy2IDkpgL5hTVxbgJqa7EzczVXj2FrebEMT4DNUd9Lc6mVL1ItoyR1PhLOa9xnCuFF6INoGZL5pkw5dctYZF2B5Yq0GZI2q0ibXfXhZXfNl7pIx19nP0c-dxOpvvbp0ZuMfouoZw-qMBvRh4NWDLJmVZeZwt00vmCsZB8OW7Zfn_7zLZ_-2_R9uCsryaE4wwPYWq8uwzO47Tfrz-VqANuvTkbjyQB6rxOO45kc05hMcRybD4NqNfwAEtD8Nw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL1qCwhYUGhBBAqMEKzoCM94_FogVAFRqqahgiB1N_WMJ6JS5JQ4TcSOf-A_-Ci-hHvHdgJIdNcFS9vzkO1zH3OfAM9QLEQmFpYrgwhWylmexkXEU1skSSBtLlLjm00kg0F6fJwdrcGPNheGwipbnugZdTGxZCN_GeJJRsRIDfL12RdOXaPIu9q20KhhceC-LvDIVr3af4v_97mU3XfDNz3edBXgNozCGXfIBPJApEUmUqsiFUojlUEeHcR5mhghbZSE0qUuxu0Qz0UaxXnkUPOITTQKRyGuuw5XFFUWo1BBebQq8itr3yg5mEOc3iTp-FQ9EpYBR4nIgwiphi_-EITrnykM8zcd9y-3rJd23c3_7TvdhluNXs32akK4A2uu3ILNRsdmDQertuDm4bJOLV5d8wGwttqGk2HdLYIwyz6QE4LMiAxVevZ-Op7Mf377_pHwbU5LNszPWRf1AU-yuywvC0Z9Tykfp7Z_MrJus8bYOmZdCnu7C58u5f3vwUY5Kd19YCPUcbNcqtAWmZJBkhkbCGMRQihqrHAdEC0UtG1Ks1OHkLFeFpX28NEIH-3hoxcdeLGcc1YXJrlw9FNE2HIg1RTv7fU13QuoTxGqbXPRgZ0WUrrhZJVe4akDuy0oV4__veWDi1d7Atd7w8O-7u8PDh7CDekpg-Iqd2BjNj13j-Cqnc9Oq-ljT2MMTi4brL8AMnBY2w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7R8hAcKJQithSwEDdqNX7lcayAqIiyVHRBvZnY8apIq7Ta3W6v_Af-Ib-kM042LQiQEMckzmv8WfPwzDcAL1AtGJcKz7VDBGsdPM_T2vDc11mWSF-J3MVmE9lwmB8dFQdXqvhjtvtyS7KtaSCWpma-c1qPd_rCN1I9CUf9whODGOTnK3BdUyI9-euHny9pd2W7W0lbvioVaVc28_tn_KSaVo4pMfKK1fnLRmnUP-Xa_3_5Pbjb2Z5stwXLfbgWmnVY6-xQ1q3y2Trced9zueLRzZgk6mcP4Muo7ahA88o-UqCeQm0MzV72YTo5Wfz49v2QMIDONhtVZ6xEnRlhvc2qpmbUG5RqVtoYIaMIMOsCkhNWUmrYBnwq34xe7fGuQwP3yqg5DyjiKhF5XYjca6OVdFI71HdJWuWZE9KbTMmQBxQ9EefXuUkrE9CKS50Zq7F6CKvNSRMeARujHVhUUitfF1omWeF8IpzX6H8K4UUYgFhOjvUdfTl10ZjYnng5itaiaG0UrT0fwMv-ntOWvOOvo5_jnPcDiXd7b3ff0rmEevmgabMQA9haQsJ2q31mFXrZ-IOpkgPYXkLg8vKfX7n5b8Ofwa2D16Xdfzt89xhuywgiSkXcgtX59Cw8gRt-Mf86mz6Ni-ACwCgCvA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topological+Recursion+for+Orlov%E2%80%93Scherbin+Tau+Functions%2C+and+Constellations+with+Internal+Faces&rft.jtitle=Communications+in+mathematical+physics&rft.au=Bonzom%2C+Valentin&rft.au=Chapuy%2C+Guillaume&rft.au=Charbonnier%2C+S%C3%A9verin&rft.au=Garcia-Failde%2C+Elba&rft.date=2024-08-01&rft.issn=0010-3616&rft.eissn=1432-0916&rft.volume=405&rft.issue=8&rft_id=info:doi/10.1007%2Fs00220-024-05048-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00220_024_05048_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-3616&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-3616&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-3616&client=summon