Enhancing robustness of the inverted PBI scalarizing method in MOEA/D

•Search behavior of the inverted penalty-based boundary intersection (IPBI) scalarizing function in the decomposition based multi-objective evolutionary algorithm (MOEA/D) has been investigated.•Shortcomings of the IPBI scalarizing function have been discussed. In addition, both experimental and the...

Full description

Saved in:
Bibliographic Details
Published in:Applied soft computing Vol. 71; pp. 1117 - 1132
Main Authors: Qi, Yutao, Yu, Jusheng, Li, Xiaodong, Quan, Yining, Miao, Qiguang
Format: Journal Article
Language:English
Published: Elsevier B.V 01.10.2018
Subjects:
ISSN:1568-4946, 1872-9681
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Search behavior of the inverted penalty-based boundary intersection (IPBI) scalarizing function in the decomposition based multi-objective evolutionary algorithm (MOEA/D) has been investigated.•Shortcomings of the IPBI scalarizing function have been discussed. In addition, both experimental and theoretical analysis have been conducted to explain the reasons causing these shortcomings.•Two improvement strategies are proposed to enhance the robustness of the IPBI scalarizing function in MOEA/D. The scalarizing function design is an important issue influencing significantly the performance of a decomposition based multi-objective optimization algorithm (MOEA/D). Recently, an inverted penalty-based boundary intersection (IPBI) scalarizing function was proposed to improve the spread of solutions obtained by MOEA/D. Despite its effectiveness, MOEA/D with IPBI scalarizing function (MOEA/D-IPBI) still has several shortcomings: MOEA/D-IPBI often fails to obtain any solution within certain Pareto front (PF) regions. Furthermore, it may produce and retain unwanted dominated solutions outside the PF for some problems. In this work, we first analyze the reasons for the above two shortcomings of the IPBI scalarizing function, and then propose two improvement strategies, i.e., the adaptive reference point setting strategy and the adaptive subproblem replacement strategy, to overcome the two shortcomings of the IPBI scalarizing function respectively, giving rise to an enhanced MOEA/D with robust IPBI scalarizing method (R-IPBI). Experimental studies on WFG benchmark problems and the real-world reservoir flood control operation problems suggest that the two improvement strategies are very effective in overcoming the two shortcomings of the IPBI scalarizing function. As a result, the proposed R-IPBI algorithm is shown to be able to outperform the original MOEA/D-IPBI reliably.
AbstractList •Search behavior of the inverted penalty-based boundary intersection (IPBI) scalarizing function in the decomposition based multi-objective evolutionary algorithm (MOEA/D) has been investigated.•Shortcomings of the IPBI scalarizing function have been discussed. In addition, both experimental and theoretical analysis have been conducted to explain the reasons causing these shortcomings.•Two improvement strategies are proposed to enhance the robustness of the IPBI scalarizing function in MOEA/D. The scalarizing function design is an important issue influencing significantly the performance of a decomposition based multi-objective optimization algorithm (MOEA/D). Recently, an inverted penalty-based boundary intersection (IPBI) scalarizing function was proposed to improve the spread of solutions obtained by MOEA/D. Despite its effectiveness, MOEA/D with IPBI scalarizing function (MOEA/D-IPBI) still has several shortcomings: MOEA/D-IPBI often fails to obtain any solution within certain Pareto front (PF) regions. Furthermore, it may produce and retain unwanted dominated solutions outside the PF for some problems. In this work, we first analyze the reasons for the above two shortcomings of the IPBI scalarizing function, and then propose two improvement strategies, i.e., the adaptive reference point setting strategy and the adaptive subproblem replacement strategy, to overcome the two shortcomings of the IPBI scalarizing function respectively, giving rise to an enhanced MOEA/D with robust IPBI scalarizing method (R-IPBI). Experimental studies on WFG benchmark problems and the real-world reservoir flood control operation problems suggest that the two improvement strategies are very effective in overcoming the two shortcomings of the IPBI scalarizing function. As a result, the proposed R-IPBI algorithm is shown to be able to outperform the original MOEA/D-IPBI reliably.
Author Li, Xiaodong
Miao, Qiguang
Yu, Jusheng
Quan, Yining
Qi, Yutao
Author_xml – sequence: 1
  givenname: Yutao
  surname: Qi
  fullname: Qi, Yutao
  organization: School of Computer Science and Technology, Xidian University, Xi’an, China
– sequence: 2
  givenname: Jusheng
  surname: Yu
  fullname: Yu, Jusheng
  organization: School of Computer Science and Technology, Xidian University, Xi’an, China
– sequence: 3
  givenname: Xiaodong
  surname: Li
  fullname: Li, Xiaodong
  organization: School of Science, RMIT University, Melbourne, VIC, Australia
– sequence: 4
  givenname: Yining
  surname: Quan
  fullname: Quan, Yining
  organization: School of Computer Science and Technology, Xidian University, Xi’an, China
– sequence: 5
  givenname: Qiguang
  orcidid: 0000-0002-2872-388X
  surname: Miao
  fullname: Miao, Qiguang
  organization: School of Computer Science and Technology, Xidian University, Xi’an, China
BookMark eNp9kM9KAzEQh4NUsK2-gKd9gd0m2T9NwEutqxYq9aDnkE0mNqXNShIL-vRmqScPZQ4zMPMN_L4JGrneAUK3BBcEk2a2K2ToVUExmReEFJjyCzQmbE5z3jAySnPdsLziVXOFJiHscII4ZWPUtm4rnbLuI_N99xWigxCy3mRxC5l1R_ARdPZ6v8qCknvp7c9weoC47XXaZy-bdjF7uEaXRu4D3Pz1KXp_bN-Wz_l687RaLta5Kusy5rqqDeOS16bkFeWEybquaFdVnYSmYXROS9DaaEI5lkAbaspUKYbu8NwYKKeInv4q34fgwYhPbw_SfwuCxSBC7MQgQgwiBCEiiUgQ-wcpG2W0vYte2v159O6EQgp1tOBFUBacAm09qCh0b8_hv68_exI
CitedBy_id crossref_primary_10_1016_j_ins_2020_02_066
crossref_primary_10_1016_j_ins_2022_09_057
crossref_primary_10_1109_ACCESS_2022_3215131
crossref_primary_10_1109_TEVC_2019_2909636
crossref_primary_10_1109_TEVC_2021_3076514
crossref_primary_10_1016_j_asoc_2023_110162
Cites_doi 10.1109/TEVC.2015.2457616
10.1109/TEVC.2016.2608507
10.1109/TEVC.2003.810758
10.1109/TEVC.2007.892759
10.1109/TEVC.2015.2443001
10.1007/s10732-015-9301-6
10.1162/106365601750190406
10.1109/4235.797969
10.1109/TCYB.2015.2403849
10.1137/S1052623496307510
10.1007/s00158-009-0460-7
10.1016/j.ins.2016.06.005
10.1109/TEVC.2005.861417
10.1109/CEC.2015.7257248
10.1162/EVCO_a_00109
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2017.11.029
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
EndPage 1132
ExternalDocumentID 10_1016_j_asoc_2017_11_029
S1568494617306920
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c353t-d45f89a95f3942918a5542b44bae6682723eddfd1290ae262f3f3f187db07ffe3
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000445126100072&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Tue Nov 18 22:36:52 EST 2025
Sat Nov 29 07:02:01 EST 2025
Tue Jul 16 04:31:09 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Scalarizing function
Evolutionary multi-objective optimization
Decomposition method
Inverted penalty-based boundary intersection
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c353t-d45f89a95f3942918a5542b44bae6682723eddfd1290ae262f3f3f187db07ffe3
ORCID 0000-0002-2872-388X
PageCount 16
ParticipantIDs crossref_primary_10_1016_j_asoc_2017_11_029
crossref_citationtrail_10_1016_j_asoc_2017_11_029
elsevier_sciencedirect_doi_10_1016_j_asoc_2017_11_029
PublicationCentury 2000
PublicationDate 2018-10-01
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied soft computing
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ishibuchi, Akedo, Nojima (bib0015) 2013
Deb (bib0005) 2001
Marler, Arora (bib0020) 2010; 41
Deb, Beyer (bib0085) 2001; 9
Das, Dennis (bib0040) 1998; 8
Mohammadi, Omidvar, Li, Deb (bib0045) 2015
Wang, Zhang, Zhou, Gong, Jiao (bib0075) 2016; 46
Huband, Hingston, Barone, While (bib0080) 2006; 10
Yuan, Xu, Wang, Zhang, Yao (bib0035) 2016; 20
Qi, Bao, Sun, Luo, Miao (bib0095) 2016
Zitzler, Thiele (bib0105) 1999; 3
Sato (bib0055) 2014
Sato (bib0050) 2015; 21
Qi, Bao, Ma, Miao, Li (bib0100) 2016; 367-368
Trivedi, Srinivasan, Sanyal, Ghosh (bib0060) 2016; PP
Wang, Zhou, Ishibuchi, Liao, Zhang (bib0025) 2016; PP
Wang, Zhang, Zhou, Gong, Jiao (bib0065) 2016; 20
Yang, Jiang, Jiang (bib0070) 2016
Zhang, Li (bib0010) 2007; 11
Qi, Ma, Liu, Jiao, Sun, Wu (bib0030) 2014; 22
Zitzler, Thiele, Laumanns, Fonseca, da Fonseca (bib0090) 2003; 7
Ishibuchi (10.1016/j.asoc.2017.11.029_bib0015) 2013
Wang (10.1016/j.asoc.2017.11.029_bib0025) 2016; PP
Mohammadi (10.1016/j.asoc.2017.11.029_bib0045) 2015
Yang (10.1016/j.asoc.2017.11.029_bib0070) 2016
Trivedi (10.1016/j.asoc.2017.11.029_bib0060) 2016; PP
Deb (10.1016/j.asoc.2017.11.029_bib0085) 2001; 9
Zitzler (10.1016/j.asoc.2017.11.029_bib0090) 2003; 7
Huband (10.1016/j.asoc.2017.11.029_bib0080) 2006; 10
Qi (10.1016/j.asoc.2017.11.029_bib0030) 2014; 22
Zhang (10.1016/j.asoc.2017.11.029_bib0010) 2007; 11
Marler (10.1016/j.asoc.2017.11.029_bib0020) 2010; 41
Qi (10.1016/j.asoc.2017.11.029_bib0100) 2016; 367-368
Yuan (10.1016/j.asoc.2017.11.029_bib0035) 2016; 20
Wang (10.1016/j.asoc.2017.11.029_bib0065) 2016; 20
Deb (10.1016/j.asoc.2017.11.029_bib0005) 2001
Zitzler (10.1016/j.asoc.2017.11.029_bib0105) 1999; 3
Sato (10.1016/j.asoc.2017.11.029_bib0055) 2014
Das (10.1016/j.asoc.2017.11.029_bib0040) 1998; 8
Qi (10.1016/j.asoc.2017.11.029_bib0095) 2016
Wang (10.1016/j.asoc.2017.11.029_bib0075) 2016; 46
Sato (10.1016/j.asoc.2017.11.029_bib0050) 2015; 21
References_xml – start-page: 231
  year: 2013
  end-page: 246
  ident: bib0015
  article-title: A Study on the Specification of a Scalarizing Function in MOEA/D for Many-Objective Knapsack Problems
– start-page: 1
  year: 2016
  end-page: 15
  ident: bib0070
  article-title: Improving the multiobjective evolutionary algorithm based on decomposition with new penalty schemes
  publication-title: Soft Comput.
– volume: 9
  start-page: 197
  year: 2001
  end-page: 221
  ident: bib0085
  article-title: Self-adaptive genetic algorithms with simulated binary crossover
  publication-title: Evol. Comput.
– volume: 7
  start-page: 117
  year: 2003
  end-page: 132
  ident: bib0090
  article-title: Performance assessment of multiobjective optimizers: an analysis and review
  publication-title: IEEE Trans. Evol. Comput.
– volume: 8
  start-page: 631
  year: 1998
  end-page: 657
  ident: bib0040
  article-title: Normal-boundary intersection: a new method for generating the pareto surface in nonlinear multicriteria optimization problems
  publication-title: SIAM J. Optim.
– volume: 3
  start-page: 257
  year: 1999
  end-page: 271
  ident: bib0105
  article-title: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach
  publication-title: IEEE Trans. Evol. Comput.
– volume: 21
  start-page: 819
  year: 2015
  end-page: 849
  ident: bib0050
  article-title: Analysis of inverted PBI and comparison with other scalarizing functions in decomposition based MOEAs
  publication-title: J. Heurist.
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: bib0010
  article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 645
  year: 2014
  end-page: 652
  ident: bib0055
  article-title: Inverted PBI in MOEA/D and its impact on the search performance on multi and many-objective optimization
  publication-title: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, GECCO ’14
– volume: PP
  start-page: 1
  year: 2016
  end-page: 16
  ident: bib0025
  article-title: Localized weighted sum method for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 20
  start-page: 180
  year: 2016
  end-page: 198
  ident: bib0035
  article-title: Balancing convergence and diversity in decomposition-based many-objective optimizers
  publication-title: IEEE Trans. Evol. Comput.
– volume: 20
  start-page: 475
  year: 2016
  end-page: 480
  ident: bib0065
  article-title: Constrained subproblems in a decomposition-based multiobjective evolutionary algorithm
  publication-title: IEEE Trans. Evol. Comput.
– year: 2001
  ident: bib0005
  article-title: Multi-objective Optimization Using Evolutionary Algorithms
– volume: 41
  start-page: 853
  year: 2010
  end-page: 862
  ident: bib0020
  article-title: The weighted sum method for multi-objective optimization: new insights
  publication-title: Struct. Multidiscip. Optim.
– volume: PP
  start-page: 1
  year: 2016
  end-page: 25
  ident: bib0060
  article-title: A survey of multiobjective evolutionary algorithms based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 2891
  year: 2015
  end-page: 2898
  ident: bib0045
  article-title: Sensitivity analysis of penalty-based boundary intersection on aggregation-based EMO algorithms
  publication-title: 2015 IEEE Congress on Evolutionary Computation (CEC)
– start-page: 1
  year: 2016
  end-page: 21
  ident: bib0095
  article-title: A memetic multi-objective immune algorithm for reservoir flood control operation
  publication-title: Water Resour. Manage.
– volume: 10
  start-page: 477
  year: 2006
  end-page: 506
  ident: bib0080
  article-title: A review of multiobjective test problems and a scalable test problem toolkit
  publication-title: IEEE Trans. Evol. Comput.
– volume: 367-368
  start-page: 529
  year: 2016
  end-page: 549
  ident: bib0100
  article-title: Self-adaptive multi-objective evolutionary algorithm based on decomposition for large-scale problems: a case study on reservoir flood control operation
  publication-title: Inf. Sci.
– volume: 22
  start-page: 231
  year: 2014
  end-page: 264
  ident: bib0030
  article-title: MOEA/D with adaptive weight adjustment
  publication-title: Evol. Comput.
– volume: 46
  start-page: 474
  year: 2016
  end-page: 486
  ident: bib0075
  article-title: Adaptive replacement strategies for MOEA/D
  publication-title: IEEE Trans. Cybern.
– volume: 20
  start-page: 475
  issue: 3
  year: 2016
  ident: 10.1016/j.asoc.2017.11.029_bib0065
  article-title: Constrained subproblems in a decomposition-based multiobjective evolutionary algorithm
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2015.2457616
– volume: PP
  start-page: 1
  issue: 99
  year: 2016
  ident: 10.1016/j.asoc.2017.11.029_bib0060
  article-title: A survey of multiobjective evolutionary algorithms based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2608507
– volume: 7
  start-page: 117
  issue: 2
  year: 2003
  ident: 10.1016/j.asoc.2017.11.029_bib0090
  article-title: Performance assessment of multiobjective optimizers: an analysis and review
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2003.810758
– volume: PP
  start-page: 1
  issue: 99
  year: 2016
  ident: 10.1016/j.asoc.2017.11.029_bib0025
  article-title: Localized weighted sum method for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 10.1016/j.asoc.2017.11.029_bib0010
  article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.892759
– volume: 20
  start-page: 180
  issue: 2
  year: 2016
  ident: 10.1016/j.asoc.2017.11.029_bib0035
  article-title: Balancing convergence and diversity in decomposition-based many-objective optimizers
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2015.2443001
– volume: 21
  start-page: 819
  issue: 6
  year: 2015
  ident: 10.1016/j.asoc.2017.11.029_bib0050
  article-title: Analysis of inverted PBI and comparison with other scalarizing functions in decomposition based MOEAs
  publication-title: J. Heurist.
  doi: 10.1007/s10732-015-9301-6
– start-page: 231
  year: 2013
  ident: 10.1016/j.asoc.2017.11.029_bib0015
– volume: 9
  start-page: 197
  issue: 2
  year: 2001
  ident: 10.1016/j.asoc.2017.11.029_bib0085
  article-title: Self-adaptive genetic algorithms with simulated binary crossover
  publication-title: Evol. Comput.
  doi: 10.1162/106365601750190406
– volume: 3
  start-page: 257
  issue: 4
  year: 1999
  ident: 10.1016/j.asoc.2017.11.029_bib0105
  article-title: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.797969
– volume: 46
  start-page: 474
  issue: 2
  year: 2016
  ident: 10.1016/j.asoc.2017.11.029_bib0075
  article-title: Adaptive replacement strategies for MOEA/D
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2015.2403849
– volume: 8
  start-page: 631
  issue: 3
  year: 1998
  ident: 10.1016/j.asoc.2017.11.029_bib0040
  article-title: Normal-boundary intersection: a new method for generating the pareto surface in nonlinear multicriteria optimization problems
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623496307510
– volume: 41
  start-page: 853
  issue: 6
  year: 2010
  ident: 10.1016/j.asoc.2017.11.029_bib0020
  article-title: The weighted sum method for multi-objective optimization: new insights
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-009-0460-7
– volume: 367-368
  start-page: 529
  year: 2016
  ident: 10.1016/j.asoc.2017.11.029_bib0100
  article-title: Self-adaptive multi-objective evolutionary algorithm based on decomposition for large-scale problems: a case study on reservoir flood control operation
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2016.06.005
– volume: 10
  start-page: 477
  issue: 5
  year: 2006
  ident: 10.1016/j.asoc.2017.11.029_bib0080
  article-title: A review of multiobjective test problems and a scalable test problem toolkit
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2005.861417
– year: 2001
  ident: 10.1016/j.asoc.2017.11.029_bib0005
– start-page: 2891
  year: 2015
  ident: 10.1016/j.asoc.2017.11.029_bib0045
  article-title: Sensitivity analysis of penalty-based boundary intersection on aggregation-based EMO algorithms
  publication-title: 2015 IEEE Congress on Evolutionary Computation (CEC)
  doi: 10.1109/CEC.2015.7257248
– start-page: 1
  year: 2016
  ident: 10.1016/j.asoc.2017.11.029_bib0070
  article-title: Improving the multiobjective evolutionary algorithm based on decomposition with new penalty schemes
  publication-title: Soft Comput.
– volume: 22
  start-page: 231
  issue: 2
  year: 2014
  ident: 10.1016/j.asoc.2017.11.029_bib0030
  article-title: MOEA/D with adaptive weight adjustment
  publication-title: Evol. Comput.
  doi: 10.1162/EVCO_a_00109
– start-page: 645
  year: 2014
  ident: 10.1016/j.asoc.2017.11.029_bib0055
  article-title: Inverted PBI in MOEA/D and its impact on the search performance on multi and many-objective optimization
– start-page: 1
  year: 2016
  ident: 10.1016/j.asoc.2017.11.029_bib0095
  article-title: A memetic multi-objective immune algorithm for reservoir flood control operation
  publication-title: Water Resour. Manage.
SSID ssj0016928
Score 2.269665
Snippet •Search behavior of the inverted penalty-based boundary intersection (IPBI) scalarizing function in the decomposition based multi-objective evolutionary...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1117
SubjectTerms Decomposition method
Evolutionary multi-objective optimization
Inverted penalty-based boundary intersection
Scalarizing function
Title Enhancing robustness of the inverted PBI scalarizing method in MOEA/D
URI https://dx.doi.org/10.1016/j.asoc.2017.11.029
Volume 71
WOSCitedRecordID wos000445126100072&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZg24ELPwaI8ks-cJuyNY4Tx8fCghiC0kORulNkJ7bWaUqnJkHT_vo9x44bpq1iB1QpqlLbaf0-PX9-fX4fQp-kKkkSi3GgRawDWhRlwCXVAax8hEkqyFjITmyCTafpYsFnLle17uQEWFWlV1f88r-aGu6Bsc3R2QeY2w8KN-A9GB2uYHa4_pPhs-rM1NAwEkIr2dZN58tcJsCyMvLLwDFnn08OajAP7JSvTVMrJG2CHz9_ZRN4-PGQtfZUtQaf3SWht02_4pmYaZcQcNo2YuV9SGtPfNRnatPuR9dusRSwEx70bm0I9rRTqhgGIcLUp7N5v5mkAeUumugcq9VWcZ4RfCobrLJG4P5OD26DCeeHAsBpMu_YoSmy6qIif5XLvrWM-eTCPm_tPDdj5GYM2OfkMMZjtEtYzMF_705OssV3_3dTwjsRXv8r3Okqmwh4-5vczWAGrGT-HD112wk8sTB4gR6pah8966U6sPPcL1HmUYE3qMArjQEVuEcFBlTgASqwRQV8jg0qjo5fod9fs_mXb4FT0AiKKI6aoKSxTrngsY44EI8wFcAeiaRUCpUkKWEkUmWpSxOMFIokREfwClNWyjHTWkWv0U61qtQbhGkcAbNm0JRqGpFQJkRomMuxKGhBw3KEwn5W8sKVlzcqJxf5_fYYoQPf59IWV9naOu4nO3f00NK-HLCzpd_bBz3lHXqyAfh7tNOsW_UB7RV_mmW9_uiAcwPM4IPf
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+robustness+of+the+inverted+PBI+scalarizing+method+in+MOEA%2FD&rft.jtitle=Applied+soft+computing&rft.au=Qi%2C+Yutao&rft.au=Yu%2C+Jusheng&rft.au=Li%2C+Xiaodong&rft.au=Quan%2C+Yining&rft.date=2018-10-01&rft.issn=1568-4946&rft.volume=71&rft.spage=1117&rft.epage=1132&rft_id=info:doi/10.1016%2Fj.asoc.2017.11.029&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2017_11_029
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon