Stingless bee (Tetragonula carbonaria) foragers prioritise resin and reduce pollen foraging after hive splitting

Stingless bees are increasingly in demand as pollinators in agricultural crops within the tropics and subtropics. Hive splitting, where one strong managed hive is “split” into two independent daughter colonies, is commonly used to increase hive numbers. However, how splitting impacts foraging behavi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Apidologie Ročník 54; číslo 4; s. 38
Hlavní autori: Newis, Ryan, Nichols, Joel, Farrar, Michael B., Fuller, Chris, Hosseini Bai, Shahla, Wilson, Rachele S., Wallace, Helen M.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Paris Springer Paris 01.08.2023
Springer Verlag
Predmet:
ISSN:0044-8435, 1297-9678
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Stingless bees are increasingly in demand as pollinators in agricultural crops within the tropics and subtropics. Hive splitting, where one strong managed hive is “split” into two independent daughter colonies, is commonly used to increase hive numbers. However, how splitting impacts foraging behaviour or the time taken for the colony to recover from splitting has not previously been studied. We assessed the impact of splitting on the foraging behaviour of Tetragonula carbonaria colonies. The number of returning forager trips and foraged proportions of pollen, nectar and resin was observed after splitting and compared with unsplit control hives over a 31-day period. We found the total amount of returning foragers in split hives reduced to less than a third of unsplit hives (unsplit median, 184–288; split median, 19–61) for 16 days, while returning nectar (unsplit median, 89–147; split median, 16–28) and pollen (unsplit median, 55–155; split median, 1–7) foragers reduced to less than a quarter of unsplit hives for 9 days following splitting. After 31 days, the number of total, nectar and pollen foraging trips had still not recovered to levels observed in unsplit hives. Resin foraging trips however were not significantly different to unsplit hives after only 10 days. The colony foraging allocation to resin (proportion) increased after splitting and was significantly higher in split hives until day 16 of the experiment (unsplit median, 0.03–0.05; split median, 0.10–0.16). Our results demonstrate that split colonies prioritise resin collection and foraging on floral resources is reduced. We recommend that hives should not be split within 31 days of being used for pollination, and resin sources should be conserved where possible and supplemented where necessary due the vital roles of the resource.
AbstractList Stingless bees are increasingly in demand as pollinators in agricultural crops within the tropics and subtropics. Hive splitting, where one strong managed hive is “split” into two independent daughter colonies, is commonly used to increase hive numbers. However, how splitting impacts foraging behaviour or the time taken for the colony to recover from splitting has not previously been studied. We assessed the impact of splitting on the foraging behaviour of Tetragonula carbonaria colonies. The number of returning forager trips and foraged proportions of pollen, nectar and resin was observed after splitting and compared with unsplit control hives over a 31-day period. We found the total amount of returning foragers in split hives reduced to less than a third of unsplit hives (unsplit median, 184–288; split median, 19–61) for 16 days, while returning nectar (unsplit median, 89–147; split median, 16–28) and pollen (unsplit median, 55–155; split median, 1–7) foragers reduced to less than a quarter of unsplit hives for 9 days following splitting. After 31 days, the number of total, nectar and pollen foraging trips had still not recovered to levels observed in unsplit hives. Resin foraging trips however were not significantly different to unsplit hives after only 10 days. The colony foraging allocation to resin (proportion) increased after splitting and was significantly higher in split hives until day 16 of the experiment (unsplit median, 0.03–0.05; split median, 0.10–0.16). Our results demonstrate that split colonies prioritise resin collection and foraging on floral resources is reduced. We recommend that hives should not be split within 31 days of being used for pollination, and resin sources should be conserved where possible and supplemented where necessary due the vital roles of the resource.
AbstractStingless bees are increasingly in demand as pollinators in agricultural crops within the tropics and subtropics. Hive splitting, where one strong managed hive is “split” into two independent daughter colonies, is commonly used to increase hive numbers. However, how splitting impacts foraging behaviour or the time taken for the colony to recover from splitting has not previously been studied. We assessed the impact of splitting on the foraging behaviour of Tetragonula carbonaria colonies. The number of returning forager trips and foraged proportions of pollen, nectar and resin was observed after splitting and compared with unsplit control hives over a 31-day period. We found the total amount of returning foragers in split hives reduced to less than a third of unsplit hives (unsplit median, 184–288; split median, 19–61) for 16 days, while returning nectar (unsplit median, 89–147; split median, 16–28) and pollen (unsplit median, 55–155; split median, 1–7) foragers reduced to less than a quarter of unsplit hives for 9 days following splitting. After 31 days, the number of total, nectar and pollen foraging trips had still not recovered to levels observed in unsplit hives. Resin foraging trips however were not significantly different to unsplit hives after only 10 days. The colony foraging allocation to resin (proportion) increased after splitting and was significantly higher in split hives until day 16 of the experiment (unsplit median, 0.03–0.05; split median, 0.10–0.16). Our results demonstrate that split colonies prioritise resin collection and foraging on floral resources is reduced. We recommend that hives should not be split within 31 days of being used for pollination, and resin sources should be conserved where possible and supplemented where necessary due the vital roles of the resource.
Stingless bees are increasingly in demand as pollinators in agricultural crops within the tropics and subtropics. Hive splitting, where one strong managed hive is “split” into two independent daughter colonies, is commonly used to increase hive numbers. However, how splitting impacts foraging behaviour or the time taken for the colony to recover from splitting has not previously been studied. We assessed the impact of splitting on the foraging behaviour of Tetragonula carbonaria colonies. The number of returning forager trips and foraged proportions of pollen, nectar and resin was observed after splitting and compared with unsplit control hives over a 31-day period. We found the total amount of returning foragers in split hives reduced to less than a third of unsplit hives (unsplit median, 184–288; split median, 19–61) for 16 days, while returning nectar (unsplit median, 89–147; split median, 16–28) and pollen (unsplit median, 55–155; split median, 1–7) foragers reduced to less than a quarter of unsplit hives for 9 days following splitting. After 31 days, the number of total, nectar and pollen foraging trips had still not recovered to levels observed in unsplit hives. Resin foraging trips however were not significantly different to unsplit hives after only 10 days. The colony foraging allocation to resin (proportion) increased after splitting and was significantly higher in split hives until day 16 of the experiment (unsplit median, 0.03–0.05; split median, 0.10–0.16). Our results demonstrate that split colonies prioritise resin collection and foraging on floral resources is reduced. We recommend that hives should not be split within 31 days of being used for pollination, and resin sources should be conserved where possible and supplemented where necessary due the vital roles of the resource.
ArticleNumber 38
Author Hosseini Bai, Shahla
Nichols, Joel
Wilson, Rachele S.
Fuller, Chris
Newis, Ryan
Farrar, Michael B.
Wallace, Helen M.
Author_xml – sequence: 1
  givenname: Ryan
  orcidid: 0000-0001-7735-6345
  surname: Newis
  fullname: Newis, Ryan
  email: ryan.newis@griffithuni.edu.au
  organization: Centre for Planetary Health and Food Security, Griffith University
– sequence: 2
  givenname: Joel
  orcidid: 0000-0002-1075-5779
  surname: Nichols
  fullname: Nichols, Joel
  organization: Centre for Planetary Health and Food Security, Griffith University
– sequence: 3
  givenname: Michael B.
  orcidid: 0000-0002-2441-0544
  surname: Farrar
  fullname: Farrar, Michael B.
  organization: Centre for Planetary Health and Food Security, Griffith University
– sequence: 4
  givenname: Chris
  surname: Fuller
  fullname: Fuller, Chris
  organization: Kin Kin Native Bees
– sequence: 5
  givenname: Shahla
  orcidid: 0000-0001-8646-6423
  surname: Hosseini Bai
  fullname: Hosseini Bai, Shahla
  organization: Centre for Planetary Health and Food Security, Griffith University
– sequence: 6
  givenname: Rachele S.
  orcidid: 0000-0002-2567-3151
  surname: Wilson
  fullname: Wilson, Rachele S.
  organization: Centre for Planetary Health and Food Security, Griffith University, School of Biological Sciences, The University of Queensland
– sequence: 7
  givenname: Helen M.
  orcidid: 0000-0002-8801-4401
  surname: Wallace
  fullname: Wallace, Helen M.
  organization: Centre for Planetary Health and Food Security, Griffith University
BackLink https://hal.science/hal-04655336$$DView record in HAL
BookMark eNp9kUFvFSEUhYmpia_VP-CKZbsYvQzDg1k2jVqTl3TRuibAXFoaCiPMNPHfyzjGpSvIyXcO93LOyVnKCQn5yOATA5CfK-Ni7DvoeQcMmOrUG3Jg_Si78SjVGTkADEOnBi7ekfNanwFYr8RwIPP9EtJjxFqpRaSXD7gU85jTGg11pticTAnmivrcZCyVziXkEpZQkRasIVGTpnabVod0zjFi2tmWSo1fsNCn8Iq0zjEs21PvyVtvYsUPf88L8uPrl4eb2-509-37zfWpc1zwpXPCihEH8JNkkxXSekCLIIbRW5i8lD363hrlBVo3DMI7cDAqMVkU8igEvyBXe-6TiboN_WLKL51N0LfXJ71pMGwYP76yxl7u7FzyzxXrol9CdRijSZjXqjkTXDKpjltsv6Ou5FoL-n_ZDPRWhd6r0K0K_acKrZqJ76ba4NS-UT_ntaS2_v9cvwHYwo_9
Cites_doi 10.1111/eth.12768
10.1086/684192
10.1051/apido:19950305
10.1051/apido:2006013
10.1071/ZO9930343
10.1111/j.1744-7429.2009.00535.x
10.1051/apido/2010012
10.1007/s00040-010-0142-x
10.1002/ece3.1941
10.1007/978-1-4614-4960-7_19
10.1007/s00359-016-1095-y
10.1051/apido:2006027
10.1007/s13592-022-00913-w
10.1080/00218839.1999.11100993
10.3390/insects12080719
10.1007/s13592-013-0266-x
10.3896/IBRA.1.52.2.01
10.1051/apido:2006022
10.1016/j.biocon.2004.03.030
10.1080/00218839.2002.11101070
10.1071/ZO9960143
10.1080/0005772X.2001.11099523
10.1007/s13592-016-0456-4
10.1093/cz/zoab043
10.1146/annurev.en.28.010183.000353
10.1051/apido:2004003
10.1007/s00442-014-3070-z
10.1007/s00040-006-0866-9
10.1080/15627020.2011.11407495
10.1007/978-3-030-60090-7_7
10.1146/annurev.ento.44.1.183
10.1007/s002650000289
10.1007/s00114-009-0631-9
10.1080/00218839.1994.11100870
10.1016/j.tree.2010.01.007
10.1111/j.1440-6055.1988.tb01178.x
10.1007/s13592-020-00830-w
10.1080/0005772X.2000.11099481
10.1146/annurev-ento-120120-103938
10.1051/apido/2009074
10.1093/aob/mcab112
10.1007/s10886-017-0837-9
10.1051/apido:2006026
10.56021/9780801885730
10.1007/s000400050011
10.18782/2320-7051.7042
10.1007/978-3-319-77785-6
10.1016/j.agee.2020.107296
10.1002/ecs2.1758
10.1038/s41598-018-30126-0
10.21315/mjms2018.25.4.1
10.1371/journal.pone.0034601
10.1007/978-3-319-61839-5_11
10.47836/pjtas.45.2.02
ContentType Journal Article
Copyright The Author(s) 2023
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s) 2023
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID C6C
AAYXX
CITATION
7S9
L.6
1XC
VOOES
DOI 10.1007/s13592-023-01018-8
DatabaseName Springer Nature OA Free Journals
CrossRef
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef

AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Zoology
Agriculture
EISSN 1297-9678
EndPage 38
ExternalDocumentID oai:HAL:hal-04655336v1
10_1007_s13592_023_01018_8
GrantInformation_xml – fundername: Griffith University
– fundername: Hort Innovation
  grantid: PH16000
  funderid: http://dx.doi.org/10.13039/501100000981
GroupedDBID --K
-EM
06D
0R~
0VY
199
1B1
203
23M
29~
2JN
2KG
2KM
2LR
2VQ
2WC
30V
4.4
406
408
5GY
67N
8UJ
96X
AAAVM
AABHQ
AACDK
AAFWJ
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AAOTM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABJOX
ABKCH
ABMQK
ABPLI
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUBZ
ABULA
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACPRK
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AXYYD
BGNMA
C1A
C6C
CS3
CSCUP
DDRTE
DNIVK
DPUIP
E3Z
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRP
FRRFC
FSGXE
GGCAI
GGRSB
GI~
GJIRD
GNWQR
GQ7
H13
HF~
HMJXF
HRMNR
HZ~
IHE
IKXTQ
ITM
IWAJR
J-C
JBSCW
JZLTJ
KOV
LLZTM
M41
M4Y
NB0
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9I
O9J
OK1
P2P
PT4
R9I
RED
ROL
RPZ
RSV
S1Z
S27
S3A
S3B
SBL
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
TSG
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
Z7U
ZMTXR
ZOVNA
~02
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
7S9
L.6
1XC
VOOES
ID FETCH-LOGICAL-c353t-c5b59e40fd71db57bf0ebe0549fb0df772ef2ba8f5ebc445fc0c0985dbe576553
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001028780800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0044-8435
IngestDate Tue Oct 14 20:46:44 EDT 2025
Fri Jul 11 16:44:21 EDT 2025
Sat Nov 29 04:07:48 EST 2025
Fri Feb 21 02:43:19 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Hive splitting
Stingless bees
Australia Meliponini
Stingless bee foraging
Stingless bee propagation
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c353t-c5b59e40fd71db57bf0ebe0549fb0df772ef2ba8f5ebc445fc0c0985dbe576553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1075-5779
0000-0002-8801-4401
0000-0001-7735-6345
0000-0002-2441-0544
0000-0001-8646-6423
0000-0002-2567-3151
OpenAccessLink https://link.springer.com/10.1007/s13592-023-01018-8
PQID 3153717865
PQPubID 24069
PageCount 1
ParticipantIDs hal_primary_oai_HAL_hal_04655336v1
proquest_miscellaneous_3153717865
crossref_primary_10_1007_s13592_023_01018_8
springer_journals_10_1007_s13592_023_01018_8
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Paris
PublicationPlace_xml – name: Paris
PublicationSubtitle A journal of the French National Institute for Agriculture, Food and Environment (INRAE) and Deutscher Imkerbund E.V. (D.I.B.)
PublicationTitle Apidologie
PublicationTitleAbbrev Apidologie
PublicationYear 2023
Publisher Springer Paris
Springer Verlag
Publisher_xml – name: Springer Paris
– name: Springer Verlag
References Wille, Orozco (CR62) 1975; 22
Imperatriz-Fonseca, Zucchi (CR24) 1995; 26
Cortopassi-Laurino, Imperatriz-Fonseca, Roubik, Dollin, Heard, Aguilar, Venturieri, Eardley, Noguera-Neto (CR7) 2006; 37
Hartfelder, Makert, Judice, Pereira, Santana, Dallacqua, Bitondi (CR15) 2006; 37
Michener (CR34) 2007
Kerr, Zucchi, Nakadaira, Butolo (CR28) 1962; 70
Hofstede, Sommeijer (CR22) 2006; 53
Heard (CR16) 1988; 27
Leonhardt, Blüthgen (CR31) 2009; 41
CR37
CR36
I'Anson Price, Segers, Berger, Nascimento, Grüter (CR23) 2021; 67
Gutierrez, Obregon, Jones (CR11) 2002; 41
Kaluza, Wallace, Heard, Klein, Leonhardt (CR25) 2016; 6
Maia-Silva, Hrncir, Imperatriz-Fonseca, Schorkopf (CR33) 2016; 202
Hammel, Vollet-Neto, Menezes, Nascimento, Engels, Grüter (CR14) 2015; 187
Greco, Hoffmann, Dollin, Duncan, Spooner-Hart, Neumann (CR9) 2010; 97
Wallace, Lee (CR58) 2010; 41
Halcroft, Spooner-Hart, Haigh, Heard, Dollin (CR13) 2013; 52
Heard, Hendrikz (CR21) 1993; 41
Van Veen, Sommeijer (CR56) 2000; 47
Biesmeijer, De Vries (CR4) 2001; 49
Heard (CR17) 1994; 33
Heard (CR18) 1999; 44
Slaa, Sánchez Chaves, Malagodi-Braga, Hofstede (CR53) 2006; 37
Quezada-Euán, May-Itzá, González-Acereto (CR41) 2001; 82
CR48
Heard, Dollin (CR20) 2000; 81
CR43
Drescher, Wallace, Katouli, Massaro, Leonhardt (CR8) 2014; 176
CR42
CR40
Wille, Michener (CR61) 1973; 21
Grüter (CR10) 2020
Mounika, Saravanan, Srinivasan, Rajendran (CR35) 2019; 7
Aleixo, Menezes, Imperatriz Fonseca, da Silva (CR1) 2017; 48
Biesmeijer, Born, Lukács, Sommeijer (CR3) 1999; 38
Wille (CR60) 1983; 28
Roubik (CR47) 2023; 68
Ramírez, Calvillo, Kevan (CR44) 2013
Wang, Wittwer, Heard, Goodger, Elgar (CR59) 2018; 124
CR19
CR57
Roubik (CR45) 1992
Potts, Biesmeijer, Kremen, Neumann, Schweiger, Kunin (CR39) 2010; 25
CR52
Zhao, Li, Guo, Li, Liu, Xu, Guo (CR64) 2021; 52
CR51
Bartareau (CR2) 1996; 44
Shanahan, Spivak (CR50) 2021; 12
Halcroft, Spooner-Hart, Neumann (CR12) 2011; 58
Biesmeijer, Slaa (CR5) 2004; 35
Samejima, Marzuki, Nagamitsu, Nakasizuka (CR49) 2004; 120
CR27
CR26
Langenheim (CR29) 2003
Brodschneider, Crailsheim (CR6) 2010; 41
Leonhardt, Heard, Wallace (CR32) 2014; 45
CR63
Roubik (CR46) 2006; 37
Trueman, Kämper, Nichols, Ogbourne, Hawkes, Peters, Hosseini Bai, Wallace (CR55) 2022; 129
Toledo-Hernández, Peña-Chora, Hernández-Velázquez, Lormendez, Toribio-Jiménez, Romero-Ramírez, León-Rodríguez (CR54) 2022; 53
Nicolson (CR38) 2011; 46
Leonhardt (CR30) 2017; 43
TA Heard (1018_CR16) 1988; 27
1018_CR48
HM Wallace (1018_CR58) 2010; 41
1018_CR40
WE Kerr (1018_CR28) 1962; 70
SW Nicolson (1018_CR38) 2011; 46
1018_CR42
1018_CR43
FE Hofstede (1018_CR22) 2006; 53
EJ Slaa (1018_CR53) 2006; 37
A Gutierrez (1018_CR11) 2002; 41
C Maia-Silva (1018_CR33) 2016; 202
E Toledo-Hernández (1018_CR54) 2022; 53
A Wille (1018_CR60) 1983; 28
A Wille (1018_CR61) 1973; 21
1018_CR57
M Halcroft (1018_CR12) 2011; 58
1018_CR51
1018_CR52
R Brodschneider (1018_CR6) 2010; 41
TA Heard (1018_CR17) 1994; 33
MK Greco (1018_CR9) 2010; 97
R I'Anson Price (1018_CR23) 2021; 67
CCC Grüter (1018_CR10) 2020
DW Roubik (1018_CR45) 1992
M Cortopassi-Laurino (1018_CR7) 2006; 37
JW Van Veen (1018_CR56) 2000; 47
1018_CR19
M Shanahan (1018_CR50) 2021; 12
MT Halcroft (1018_CR13) 2013; 52
TA Heard (1018_CR18) 1999; 44
1018_CR26
1018_CR27
CD Michener (1018_CR34) 2007
VM Ramírez (1018_CR44) 2013
TA Heard (1018_CR21) 1993; 41
JC Biesmeijer (1018_CR4) 2001; 49
SG Potts (1018_CR39) 2010; 25
N Drescher (1018_CR8) 2014; 176
SD Leonhardt (1018_CR32) 2014; 45
1018_CR63
JH Langenheim (1018_CR29) 2003
SJ Trueman (1018_CR55) 2022; 129
JC Biesmeijer (1018_CR3) 1999; 38
B Hammel (1018_CR14) 2015; 187
C Mounika (1018_CR35) 2019; 7
S Wang (1018_CR59) 2018; 124
JC Biesmeijer (1018_CR5) 2004; 35
KP Aleixo (1018_CR1) 2017; 48
1018_CR37
JJG Quezada-Euán (1018_CR41) 2001; 82
DW Roubik (1018_CR47) 2023; 68
1018_CR36
K Hartfelder (1018_CR15) 2006; 37
SD Leonhardt (1018_CR30) 2017; 43
DW Roubik (1018_CR46) 2006; 37
A Wille (1018_CR62) 1975; 22
V Imperatriz-Fonseca (1018_CR24) 1995; 26
T Bartareau (1018_CR2) 1996; 44
BF Kaluza (1018_CR25) 2016; 6
H Zhao (1018_CR64) 2021; 52
H Samejima (1018_CR49) 2004; 120
TA Heard (1018_CR20) 2000; 81
SD Leonhardt (1018_CR31) 2009; 41
References_xml – volume: 124
  start-page: 633
  year: 2018
  end-page: 640
  ident: CR59
  article-title: Nonvolatile chemicals provide a nest defence mechanism for stingless bees Tetragonula carbonaria (Apidae, Meliponini)
  publication-title: Ethology
  doi: 10.1111/eth.12768
– volume: 187
  start-page: 120
  year: 2015
  end-page: 129
  ident: CR14
  article-title: Soldiers in a stingless bee: work rate and task repertoire suggest they are an elite force
  publication-title: Am Nat
  doi: 10.1086/684192
– volume: 26
  start-page: 231
  year: 1995
  end-page: 244
  ident: CR24
  article-title: Virgin queens in stingless bee (Apidae, Meliponinae) colonies: a review
  publication-title: Apidologie
  doi: 10.1051/apido:19950305
– ident: CR51
– volume: 37
  start-page: 144
  year: 2006
  end-page: 163
  ident: CR15
  article-title: Physiological and genetic mechanisms underlying caste development, reproduction and division of labor in stingless bees
  publication-title: Apidologie
  doi: 10.1051/apido:2006013
– volume: 7
  start-page: 754
  year: 2019
  end-page: 757
  ident: CR35
  article-title: Colony propagation in stingless bees, Tetragonula iridipennis (Smith)
  publication-title: J Entomol Zool Stud
– year: 2003
  ident: CR29
  publication-title: Plant resins: chemistry, evolution, ecology, and ethnobotany
– volume: 41
  start-page: 317
  year: 1993
  end-page: 323
  ident: CR21
  article-title: Factors influencing flight activity of colonies of the stingless bee Trigona carbonaria (Hymenoptera: Apidae)
  publication-title: Aust J Zool
  doi: 10.1071/ZO9930343
– volume: 41
  start-page: 730
  year: 2009
  end-page: 736
  ident: CR31
  article-title: A sticky affair: resin collection by Bornean stingless bees
  publication-title: Biotropica
  doi: 10.1111/j.1744-7429.2009.00535.x
– volume: 41
  start-page: 278
  year: 2010
  end-page: 294
  ident: CR6
  article-title: Nutrition and health in honeybees
  publication-title: Apidologie
  doi: 10.1051/apido/2010012
– volume: 58
  start-page: 245
  year: 2011
  end-page: 253
  ident: CR12
  article-title: Behavioural defence strategies of the stingless bee, Austroplebeia australis, against the small hive beetle, Aethina tumida
  publication-title: Insectes Soc
  doi: 10.1007/s00040-010-0142-x
– ident: CR42
– volume: 6
  start-page: 1304
  year: 2016
  end-page: 1316
  ident: CR25
  article-title: Urban gardens promote bee foraging over natural habitats and plantations
  publication-title: Ecol Evol
  doi: 10.1002/ece3.1941
– volume: 21
  start-page: 9
  year: 1973
  end-page: 271
  ident: CR61
  article-title: The nest architecture of stingless bees with special reference to those of Costa Rica (Hymenoptera, Apidae)
  publication-title: Rev Biol Trop
– start-page: 269
  year: 2013
  end-page: 282
  ident: CR44
  publication-title: Effects of human disturbance and habitat fragmentation on stingless bees, pot-honey: a legacy of stingless bees
  doi: 10.1007/978-1-4614-4960-7_19
– volume: 202
  start-page: 723
  year: 2016
  end-page: 732
  ident: CR33
  article-title: Stingless bees (Melipona subnitida) adjust brood production rather than foraging activity in response to changes in pollen stores
  publication-title: J Comp Physiol A
  doi: 10.1007/s00359-016-1095-y
– volume: 37
  start-page: 275
  year: 2006
  end-page: 292
  ident: CR7
  article-title: Global meliponiculture: challenges and opportunities
  publication-title: Apidologie
  doi: 10.1051/apido:2006027
– ident: CR19
– volume: 53
  start-page: 8
  year: 2022
  ident: CR54
  article-title: The stingless bees (Hymenoptera: Apidae: Meliponini): a review of the current threats to their survival
  publication-title: Apidologie
  doi: 10.1007/s13592-022-00913-w
– volume: 38
  start-page: 33
  year: 1999
  end-page: 41
  ident: CR3
  article-title: The response of the stingless bee Melipona beecheii to experimental pollen stress, worker loss and different levels of information input
  publication-title: J Apic Res
  doi: 10.1080/00218839.1999.11100993
– volume: 12
  start-page: 719
  year: 2021
  ident: CR50
  article-title: Resin use by stingless bees: a review
  publication-title: InSects
  doi: 10.3390/insects12080719
– volume: 45
  start-page: 514
  year: 2014
  end-page: 527
  ident: CR32
  article-title: Differences in the resource intake of two sympatric Australian stingless bee species
  publication-title: Apidologie
  doi: 10.1007/s13592-013-0266-x
– volume: 52
  start-page: 1
  year: 2013
  end-page: 7
  ident: CR13
  article-title: The Australian stingless bee industry: a follow-up survey, one decade on
  publication-title: J Apic Res
  doi: 10.3896/IBRA.1.52.2.01
– ident: CR57
– volume: 37
  start-page: 293
  year: 2006
  end-page: 315
  ident: CR53
  article-title: Stingless bees in applied pollination: practice and perspectives
  publication-title: Apidologie
  doi: 10.1051/apido:2006022
– ident: CR36
– volume: 120
  start-page: 577
  year: 2004
  end-page: 587
  ident: CR49
  article-title: The effects of human disturbance on a stingless bee community in a tropical rainforest
  publication-title: Biol Conserv
  doi: 10.1016/j.biocon.2004.03.030
– volume: 41
  start-page: 62
  year: 2002
  end-page: 63
  ident: CR11
  article-title: Optimum brood size for artificial propagation of the stingless bee, Scaptotrigona mexicana
  publication-title: J Apic Res
  doi: 10.1080/00218839.2002.11101070
– volume: 44
  start-page: 143
  year: 1996
  end-page: 153
  ident: CR2
  article-title: Foraging behaviour of Trigona carbonaria (Hymenoptera: Apidae) at multiple-choice feeding stations
  publication-title: Aust J Zool
  doi: 10.1071/ZO9960143
– volume: 82
  start-page: 160
  year: 2001
  end-page: 167
  ident: CR41
  article-title: Meliponiculture in Mexico: problems and perspective for development
  publication-title: Bee World
  doi: 10.1080/0005772X.2001.11099523
– volume: 48
  start-page: 117
  year: 2017
  end-page: 127
  ident: CR1
  article-title: Seasonal availability of floral resources and ambient temperature shape stingless bee foraging behavior (Scaptotrigona aff. depilis)
  publication-title: Apidologie
  doi: 10.1007/s13592-016-0456-4
– ident: CR26
– volume: 22
  start-page: 253
  year: 1975
  end-page: 287
  ident: CR62
  article-title: Observations on the founding of a new colony by Trigona cupira (Hymenoptera: Apidae) in Costa Rica
  publication-title: Rev Biol Trop
– volume: 67
  start-page: 551
  year: 2021
  end-page: 560
  ident: CR23
  article-title: An exploration of the relationship between recruitment communication and foraging in stingless bees
  publication-title: Curr Zool
  doi: 10.1093/cz/zoab043
– volume: 28
  start-page: 41
  year: 1983
  end-page: 64
  ident: CR60
  article-title: Biology of the stingless bees (Meliponinae, Apidae)
  publication-title: Annu Rev Entomol
  doi: 10.1146/annurev.en.28.010183.000353
– volume: 35
  start-page: 143
  year: 2004
  end-page: 157
  ident: CR5
  article-title: Information flow and organization of stingless bee foraging
  publication-title: Apidologie
  doi: 10.1051/apido:2004003
– ident: CR43
– ident: CR37
– volume: 176
  start-page: 943
  year: 2014
  end-page: 953
  ident: CR8
  article-title: Diversity matters: how bees benefit from different resin sources
  publication-title: Oecologia
  doi: 10.1007/s00442-014-3070-z
– volume: 53
  start-page: 258
  year: 2006
  end-page: 264
  ident: CR22
  article-title: Influence of environmental and colony factors on the initial commodity choice of foragers of the stingless bee Plebeia tobagoensis (Hymenoptera, Meliponini)
  publication-title: Insectes Soc
  doi: 10.1007/s00040-006-0866-9
– volume: 46
  start-page: 197
  year: 2011
  end-page: 204
  ident: CR38
  article-title: Bee food: the chemistry and nutritional value of nectar, pollen and mixtures of the two
  publication-title: Afr Zool
  doi: 10.1080/15627020.2011.11407495
– year: 2020
  ident: CR10
  article-title: Stingless bees: their behaviour, ecology and evolution
  publication-title: Springer Cham
  doi: 10.1007/978-3-030-60090-7_7
– year: 1992
  ident: CR45
  publication-title: Ecology and natural history of tropical bees
– volume: 70
  start-page: 265
  year: 1962
  end-page: 276
  ident: CR28
  article-title: Reproduction in the social bees (Hymenoptera: Apidae)
  publication-title: J N Y Entomol Soc
– volume: 44
  start-page: 183
  year: 1999
  end-page: 206
  ident: CR18
  article-title: The role of stingless bees in crop pollination
  publication-title: Annu Rev Entomol
  doi: 10.1146/annurev.ento.44.1.183
– volume: 49
  start-page: 89
  year: 2001
  end-page: 99
  ident: CR4
  article-title: Exploration and exploitation of food sources by social insect colonies: a revision of the scout-recruit concept
  publication-title: Behav Ecol and Socio
  doi: 10.1007/s002650000289
– ident: CR40
– ident: CR63
– volume: 97
  start-page: 319
  year: 2010
  end-page: 323
  ident: CR9
  article-title: The alternative Pharaoh approach: stingless bees mummify beetle parasites alive
  publication-title: Naturwissenschaften
  doi: 10.1007/s00114-009-0631-9
– ident: CR27
– volume: 33
  start-page: 191
  year: 1994
  end-page: 198
  ident: CR17
  article-title: Behaviour and pollinator efficiency of stingless bees and honey bees on macadamia flowers
  publication-title: J Apic Res
  doi: 10.1080/00218839.1994.11100870
– volume: 25
  start-page: 345
  year: 2010
  end-page: 353
  ident: CR39
  article-title: Global pollinator declines: trends, impacts and drivers
  publication-title: Trends Ecol Evol
  doi: 10.1016/j.tree.2010.01.007
– volume: 27
  start-page: 303
  year: 1988
  end-page: 304
  ident: CR16
  article-title: Propagation of hives of Trigona carbonaria (Smith) (Hymenoptera: Apidae)
  publication-title: Aust J Entomol
  doi: 10.1111/j.1440-6055.1988.tb01178.x
– volume: 52
  start-page: 388
  year: 2021
  end-page: 399
  ident: CR64
  article-title: Response mechanisms to heat stress in bees
  publication-title: Apidologie
  doi: 10.1007/s13592-020-00830-w
– volume: 81
  start-page: 116
  year: 2000
  end-page: 125
  ident: CR20
  article-title: Stingless bee keeping in Australia: snapshot of an infant industry
  publication-title: Bee World
  doi: 10.1080/0005772X.2000.11099481
– ident: CR48
– volume: 68
  start-page: 231
  year: 2023
  end-page: 256
  ident: CR47
  article-title: Stingless bee (Apidae: Apinae: Meliponini) ecology
  publication-title: Annu Rev Entomol
  doi: 10.1146/annurev-ento-120120-103938
– volume: 41
  start-page: 428
  year: 2010
  end-page: 435
  ident: CR58
  article-title: Resin-foraging by colonies of Trigona sapiens and T. hockingsi (Hymenoptera: Apidae, Meliponini) and consequent seed dispersal of Corymbia torelliana (Myrtaceae)
  publication-title: Apidologie
  doi: 10.1051/apido/2009074
– volume: 129
  start-page: 135
  year: 2022
  end-page: 146
  ident: CR55
  article-title: Pollen limitation and xenia effects in a cultivated mass-flowering tree, Macadamia integrifolia (Proteaceae)
  publication-title: Ann of Bot
  doi: 10.1093/aob/mcab112
– ident: CR52
– volume: 43
  start-page: 385
  year: 2017
  end-page: 402
  ident: CR30
  article-title: Chemical ecology of stingless bees
  publication-title: J Chem Ecol
  doi: 10.1007/s10886-017-0837-9
– volume: 37
  start-page: 124
  year: 2006
  end-page: 143
  ident: CR46
  article-title: Stingless bee nesting biology
  publication-title: Apidologie
  doi: 10.1051/apido:2006026
– year: 2007
  ident: CR34
  publication-title: The bees of the world
  doi: 10.56021/9780801885730
– volume: 47
  start-page: 70
  year: 2000
  end-page: 75
  ident: CR56
  article-title: Colony reproduction in Tetragonisca angustula (Apidae, Meliponini)
  publication-title: Insectes Soc
  doi: 10.1007/s000400050011
– volume: 129
  start-page: 135
  year: 2022
  ident: 1018_CR55
  publication-title: Ann of Bot
  doi: 10.1093/aob/mcab112
– volume-title: The bees of the world
  year: 2007
  ident: 1018_CR34
  doi: 10.56021/9780801885730
– volume: 26
  start-page: 231
  year: 1995
  ident: 1018_CR24
  publication-title: Apidologie
  doi: 10.1051/apido:19950305
– volume: 37
  start-page: 293
  year: 2006
  ident: 1018_CR53
  publication-title: Apidologie
  doi: 10.1051/apido:2006022
– volume: 49
  start-page: 89
  year: 2001
  ident: 1018_CR4
  publication-title: Behav Ecol and Socio
  doi: 10.1007/s002650000289
– volume: 38
  start-page: 33
  year: 1999
  ident: 1018_CR3
  publication-title: J Apic Res
  doi: 10.1080/00218839.1999.11100993
– ident: 1018_CR48
– volume: 37
  start-page: 144
  year: 2006
  ident: 1018_CR15
  publication-title: Apidologie
  doi: 10.1051/apido:2006013
– volume: 37
  start-page: 124
  year: 2006
  ident: 1018_CR46
  publication-title: Apidologie
  doi: 10.1051/apido:2006026
– volume: 6
  start-page: 1304
  year: 2016
  ident: 1018_CR25
  publication-title: Ecol Evol
  doi: 10.1002/ece3.1941
– volume: 7
  start-page: 754
  year: 2019
  ident: 1018_CR35
  publication-title: J Entomol Zool Stud
– ident: 1018_CR37
  doi: 10.18782/2320-7051.7042
– volume: 27
  start-page: 303
  year: 1988
  ident: 1018_CR16
  publication-title: Aust J Entomol
  doi: 10.1111/j.1440-6055.1988.tb01178.x
– volume: 124
  start-page: 633
  year: 2018
  ident: 1018_CR59
  publication-title: Ethology
  doi: 10.1111/eth.12768
– volume: 28
  start-page: 41
  year: 1983
  ident: 1018_CR60
  publication-title: Annu Rev Entomol
  doi: 10.1146/annurev.en.28.010183.000353
– volume: 176
  start-page: 943
  year: 2014
  ident: 1018_CR8
  publication-title: Oecologia
  doi: 10.1007/s00442-014-3070-z
– volume: 68
  start-page: 231
  year: 2023
  ident: 1018_CR47
  publication-title: Annu Rev Entomol
  doi: 10.1146/annurev-ento-120120-103938
– ident: 1018_CR40
  doi: 10.1007/978-3-319-77785-6
– volume-title: Plant resins: chemistry, evolution, ecology, and ethnobotany
  year: 2003
  ident: 1018_CR29
– volume: 41
  start-page: 62
  year: 2002
  ident: 1018_CR11
  publication-title: J Apic Res
  doi: 10.1080/00218839.2002.11101070
– volume: 44
  start-page: 143
  year: 1996
  ident: 1018_CR2
  publication-title: Aust J Zool
  doi: 10.1071/ZO9960143
– start-page: 269
  volume-title: Effects of human disturbance and habitat fragmentation on stingless bees, pot-honey: a legacy of stingless bees
  year: 2013
  ident: 1018_CR44
  doi: 10.1007/978-1-4614-4960-7_19
– volume: 41
  start-page: 278
  year: 2010
  ident: 1018_CR6
  publication-title: Apidologie
  doi: 10.1051/apido/2010012
– volume: 45
  start-page: 514
  year: 2014
  ident: 1018_CR32
  publication-title: Apidologie
  doi: 10.1007/s13592-013-0266-x
– volume: 97
  start-page: 319
  year: 2010
  ident: 1018_CR9
  publication-title: Naturwissenschaften
  doi: 10.1007/s00114-009-0631-9
– volume: 47
  start-page: 70
  year: 2000
  ident: 1018_CR56
  publication-title: Insectes Soc
  doi: 10.1007/s000400050011
– ident: 1018_CR63
  doi: 10.1016/j.agee.2020.107296
– volume: 41
  start-page: 317
  year: 1993
  ident: 1018_CR21
  publication-title: Aust J Zool
  doi: 10.1071/ZO9930343
– year: 2020
  ident: 1018_CR10
  publication-title: Springer Cham
  doi: 10.1007/978-3-030-60090-7_7
– volume: 187
  start-page: 120
  year: 2015
  ident: 1018_CR14
  publication-title: Am Nat
  doi: 10.1086/684192
– volume: 52
  start-page: 1
  year: 2013
  ident: 1018_CR13
  publication-title: J Apic Res
  doi: 10.3896/IBRA.1.52.2.01
– volume: 22
  start-page: 253
  year: 1975
  ident: 1018_CR62
  publication-title: Rev Biol Trop
– ident: 1018_CR26
  doi: 10.1002/ecs2.1758
– volume: 70
  start-page: 265
  year: 1962
  ident: 1018_CR28
  publication-title: J N Y Entomol Soc
– volume: 37
  start-page: 275
  year: 2006
  ident: 1018_CR7
  publication-title: Apidologie
  doi: 10.1051/apido:2006027
– ident: 1018_CR27
  doi: 10.1038/s41598-018-30126-0
– volume: 81
  start-page: 116
  year: 2000
  ident: 1018_CR20
  publication-title: Bee World
  doi: 10.1080/0005772X.2000.11099481
– volume: 43
  start-page: 385
  year: 2017
  ident: 1018_CR30
  publication-title: J Chem Ecol
  doi: 10.1007/s10886-017-0837-9
– volume: 52
  start-page: 388
  year: 2021
  ident: 1018_CR64
  publication-title: Apidologie
  doi: 10.1007/s13592-020-00830-w
– volume: 82
  start-page: 160
  year: 2001
  ident: 1018_CR41
  publication-title: Bee World
  doi: 10.1080/0005772X.2001.11099523
– ident: 1018_CR36
  doi: 10.21315/mjms2018.25.4.1
– volume: 33
  start-page: 191
  year: 1994
  ident: 1018_CR17
  publication-title: J Apic Res
  doi: 10.1080/00218839.1994.11100870
– volume: 44
  start-page: 183
  year: 1999
  ident: 1018_CR18
  publication-title: Annu Rev Entomol
  doi: 10.1146/annurev.ento.44.1.183
– ident: 1018_CR42
– volume: 120
  start-page: 577
  year: 2004
  ident: 1018_CR49
  publication-title: Biol Conserv
  doi: 10.1016/j.biocon.2004.03.030
– volume: 41
  start-page: 428
  year: 2010
  ident: 1018_CR58
  publication-title: Apidologie
  doi: 10.1051/apido/2009074
– volume: 202
  start-page: 723
  year: 2016
  ident: 1018_CR33
  publication-title: J Comp Physiol A
  doi: 10.1007/s00359-016-1095-y
– volume: 58
  start-page: 245
  year: 2011
  ident: 1018_CR12
  publication-title: Insectes Soc
  doi: 10.1007/s00040-010-0142-x
– volume: 41
  start-page: 730
  year: 2009
  ident: 1018_CR31
  publication-title: Biotropica
  doi: 10.1111/j.1744-7429.2009.00535.x
– volume: 67
  start-page: 551
  year: 2021
  ident: 1018_CR23
  publication-title: Curr Zool
  doi: 10.1093/cz/zoab043
– volume: 12
  start-page: 719
  year: 2021
  ident: 1018_CR50
  publication-title: InSects
  doi: 10.3390/insects12080719
– volume-title: Ecology and natural history of tropical bees
  year: 1992
  ident: 1018_CR45
– ident: 1018_CR52
  doi: 10.1371/journal.pone.0034601
– volume: 25
  start-page: 345
  year: 2010
  ident: 1018_CR39
  publication-title: Trends Ecol Evol
  doi: 10.1016/j.tree.2010.01.007
– ident: 1018_CR43
  doi: 10.1007/978-3-319-61839-5_11
– ident: 1018_CR51
  doi: 10.47836/pjtas.45.2.02
– volume: 53
  start-page: 258
  year: 2006
  ident: 1018_CR22
  publication-title: Insectes Soc
  doi: 10.1007/s00040-006-0866-9
– volume: 35
  start-page: 143
  year: 2004
  ident: 1018_CR5
  publication-title: Apidologie
  doi: 10.1051/apido:2004003
– volume: 53
  start-page: 8
  year: 2022
  ident: 1018_CR54
  publication-title: Apidologie
  doi: 10.1007/s13592-022-00913-w
– volume: 48
  start-page: 117
  year: 2017
  ident: 1018_CR1
  publication-title: Apidologie
  doi: 10.1007/s13592-016-0456-4
– volume: 46
  start-page: 197
  year: 2011
  ident: 1018_CR38
  publication-title: Afr Zool
  doi: 10.1080/15627020.2011.11407495
– ident: 1018_CR57
– volume: 21
  start-page: 9
  year: 1973
  ident: 1018_CR61
  publication-title: Rev Biol Trop
– ident: 1018_CR19
SSID ssj0012854
Score 2.3739421
Snippet Stingless bees are increasingly in demand as pollinators in agricultural crops within the tropics and subtropics. Hive splitting, where one strong managed hive...
AbstractStingless bees are increasingly in demand as pollinators in agricultural crops within the tropics and subtropics. Hive splitting, where one strong...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 38
SubjectTerms Biomedical and Life Sciences
Entomology
Life Sciences
nectar
Original Article
pollen
pollination
stingless bees
Tetragonula carbonaria
Title Stingless bee (Tetragonula carbonaria) foragers prioritise resin and reduce pollen foraging after hive splitting
URI https://link.springer.com/article/10.1007/s13592-023-01018-8
https://www.proquest.com/docview/3153717865
https://hal.science/hal-04655336
Volume 54
WOSCitedRecordID wos001028780800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1297-9678
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012854
  issn: 0044-8435
  databaseCode: RSV
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEB9OT0EfPM8PXPUkd9zDiQbaTeKmj4uc-HCIqCdyLyFpExWkXdpd_35nsq16IoK-lTakIb_JzC-ZjwD8TJV3UkrPhVeBk8XnzoqEB7ImQlgbshAvmxicnOirq-y0TQprumj3ziUZNfVTsptQFCnZp_ifJNVcz8BnNHealuPZ-eWj74ByAqd-Zck1soE2Veb1Pv4zRzM3FAz5jGm-cI5Gm3P05WOjXYallmOy4VQovsInX67A4vC6buts-BWY_1fF8_RVGJ1T4PMdKjzmvGe_Lvy4ttdVObmzLLe1Q6aOMrrLkNxSuYuG4TiqWAnJM9yq35bMlgU-FSgjbETHEOW0LfbK4g3kjErbsgbZboyxXoO_R78vDo95ew0Dz4USY54rpzIvk1AM0sKpgQsJIo9ULwsuKQLScx_6zuqAsOdSqpAnOcKiCudxM6OUWIfZsir9BrBMFzLVtrBOZxJ1Zebxuw4WTWbetwPXg70ODTOaVtswT3WVaUYNzqiJM2p0D34gYI8NqVD28fCPoXcJlYUT4uA-7cH3Dk-DK4fcIbb01aQxApU9bmb1gerBfgeiaZdw88Z_N9_XfAsW-lEOKGpwG2bH9cR_g7n8HpGqd6LsPgB_gunN
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3faxQxEB76Q1EfWq2K569G8UHRwO4l6SWPh7Sc9HqIPaX4EpLdpApl99i969_vTG63VRFB35bdkA35JpkvmS8TgFe5Cl5KGbgIKnLy-Nw7kfFI3kQI56KJ6bKJ0Wymz87Mx-5QWNur3fuQZJqprw-7CUVKySHpf7Jcc70J2xI9Fgn5Pp1-uYod0JnAdVxZco1soDsq8-c6fnFHm99IDPkT0_wtOJp8ztHu_7X2Lux0HJON10ZxDzZCtQd3xudNl2cj7MHNr3XaT78Pi1MSPl_ghMd8COz1PCwbd15XqwvHCtd4ZOpoo28YkltKd9EybEedMiEFhkv17xVzVYlPJdoIW9A2RLUui7WydAM5o9S2rEW2mzTWD-Dz0eH8_YR31zDwQiix5IXyygSZxXKUl16NfMwQeaR6JvqsjEjPQxx6pyPCXkipYpEVmdGq9AEXM0qJh7BV1VV4BMzoUubalc5rg9AZE_C7jg5dZjF0Iz-Atz0adrHOtmGv8ypTj1rsUZt61OoBvETArgpSouzJeGrpXUZp4YQ4uMwH8KLH0-LIoXCIq0K9aq3AyR4Xs_pADeBdD6LthnD7l_8-_rfi-3BrMj-Z2umH2fETuD1MNkEKwqewtWxW4RncKC4RteZ5suMffRDssQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEB9s_aA--FGVnp9RfLBo6O4l6WUfD_WoWI5CqxRfQrJJqlCyx95d_35nsnv9kCKIb8tuyIbMJPNLZuY3AG9LFZyUMnARVORk8bmzouCRrIkQ1sYq5mITo-lUHx9XB5ey-HO0-8ol2eU0EEtTWuzMfNy5SHwTiqImhxQLVJSa6zW4KaloEJ3XD7-f-xEoP7DzMUuuERn0aTPX93HFNK39pMDIS6jzD0dptj-T-_8_8gdwr8eebNwpy0O4EdIm3B2ftD3_RtiE2z-afM_-CGaHFBB9ihshcyGwd0dh0dqTJi1PLatt6xDBo-5uMwS9RIMxZzimJjMkBYZH-F-J2eTxyaPusBldT6SuLfbKcmVyRpS3bI4oOMdeP4Zvk89HH_d4X56B10KJBa-VU1WQRfSj0js1crFAjUAIWEVX-IiwPcShszqiOtRSqlgXdVFp5V3AQ45S4gmspyaFLWCV9rLU1lunK4l7aBXwu44WTWk9tCM3gPcryZhZx8JhLviWaUYNzqjJM2r0AN6g8M4bEoH23njf0LuC6OKE2D0rB_B6JVuDK4rcJDaFZjk3Ao0AHnL1rhrAh5VATb-053_579N_a_4K7hx8mpj9L9Ovz2BjmFWCAgufw_qiXYYXcKs-Q6G1L7NK_wb93_WV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stingless+bee+%28Tetragonula+carbonaria%29+foragers+prioritise+resin+and+reduce+pollen+foraging+after+hive+splitting&rft.jtitle=Apidologie&rft.au=Newis%2C+Ryan&rft.au=Nichols%2C+Joel&rft.au=Farrar%2C+Michael+B.&rft.au=Fuller%2C+Chris&rft.date=2023-08-01&rft.issn=0044-8435&rft.volume=54&rft.issue=4+p.38-38&rft.spage=38&rft.epage=38&rft_id=info:doi/10.1007%2Fs13592-023-01018-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-8435&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-8435&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-8435&client=summon