Stingless bee (Tetragonula carbonaria) foragers prioritise resin and reduce pollen foraging after hive splitting
Stingless bees are increasingly in demand as pollinators in agricultural crops within the tropics and subtropics. Hive splitting, where one strong managed hive is “split” into two independent daughter colonies, is commonly used to increase hive numbers. However, how splitting impacts foraging behavi...
Saved in:
| Published in: | Apidologie Vol. 54; no. 4; p. 38 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Paris
Springer Paris
01.08.2023
Springer Verlag |
| Subjects: | |
| ISSN: | 0044-8435, 1297-9678 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Stingless bees are increasingly in demand as pollinators in agricultural crops within the tropics and subtropics. Hive splitting, where one strong managed hive is “split” into two independent daughter colonies, is commonly used to increase hive numbers. However, how splitting impacts foraging behaviour or the time taken for the colony to recover from splitting has not previously been studied. We assessed the impact of splitting on the foraging behaviour of
Tetragonula carbonaria
colonies. The number of returning forager trips and foraged proportions of pollen, nectar and resin was observed after splitting and compared with unsplit control hives over a 31-day period. We found the total amount of returning foragers in split hives reduced to less than a third of unsplit hives (unsplit median, 184–288; split median, 19–61) for 16 days, while returning nectar (unsplit median, 89–147; split median, 16–28) and pollen (unsplit median, 55–155; split median, 1–7) foragers reduced to less than a quarter of unsplit hives for 9 days following splitting. After 31 days, the number of total, nectar and pollen foraging trips had still not recovered to levels observed in unsplit hives. Resin foraging trips however were not significantly different to unsplit hives after only 10 days. The colony foraging allocation to resin (proportion) increased after splitting and was significantly higher in split hives until day 16 of the experiment (unsplit median, 0.03–0.05; split median, 0.10–0.16). Our results demonstrate that split colonies prioritise resin collection and foraging on floral resources is reduced. We recommend that hives should not be split within 31 days of being used for pollination, and resin sources should be conserved where possible and supplemented where necessary due the vital roles of the resource. |
|---|---|
| AbstractList | Stingless bees are increasingly in demand as pollinators in agricultural crops within the tropics and subtropics. Hive splitting, where one strong managed hive is “split” into two independent daughter colonies, is commonly used to increase hive numbers. However, how splitting impacts foraging behaviour or the time taken for the colony to recover from splitting has not previously been studied. We assessed the impact of splitting on the foraging behaviour of
Tetragonula carbonaria
colonies. The number of returning forager trips and foraged proportions of pollen, nectar and resin was observed after splitting and compared with unsplit control hives over a 31-day period. We found the total amount of returning foragers in split hives reduced to less than a third of unsplit hives (unsplit median, 184–288; split median, 19–61) for 16 days, while returning nectar (unsplit median, 89–147; split median, 16–28) and pollen (unsplit median, 55–155; split median, 1–7) foragers reduced to less than a quarter of unsplit hives for 9 days following splitting. After 31 days, the number of total, nectar and pollen foraging trips had still not recovered to levels observed in unsplit hives. Resin foraging trips however were not significantly different to unsplit hives after only 10 days. The colony foraging allocation to resin (proportion) increased after splitting and was significantly higher in split hives until day 16 of the experiment (unsplit median, 0.03–0.05; split median, 0.10–0.16). Our results demonstrate that split colonies prioritise resin collection and foraging on floral resources is reduced. We recommend that hives should not be split within 31 days of being used for pollination, and resin sources should be conserved where possible and supplemented where necessary due the vital roles of the resource. AbstractStingless bees are increasingly in demand as pollinators in agricultural crops within the tropics and subtropics. Hive splitting, where one strong managed hive is “split” into two independent daughter colonies, is commonly used to increase hive numbers. However, how splitting impacts foraging behaviour or the time taken for the colony to recover from splitting has not previously been studied. We assessed the impact of splitting on the foraging behaviour of Tetragonula carbonaria colonies. The number of returning forager trips and foraged proportions of pollen, nectar and resin was observed after splitting and compared with unsplit control hives over a 31-day period. We found the total amount of returning foragers in split hives reduced to less than a third of unsplit hives (unsplit median, 184–288; split median, 19–61) for 16 days, while returning nectar (unsplit median, 89–147; split median, 16–28) and pollen (unsplit median, 55–155; split median, 1–7) foragers reduced to less than a quarter of unsplit hives for 9 days following splitting. After 31 days, the number of total, nectar and pollen foraging trips had still not recovered to levels observed in unsplit hives. Resin foraging trips however were not significantly different to unsplit hives after only 10 days. The colony foraging allocation to resin (proportion) increased after splitting and was significantly higher in split hives until day 16 of the experiment (unsplit median, 0.03–0.05; split median, 0.10–0.16). Our results demonstrate that split colonies prioritise resin collection and foraging on floral resources is reduced. We recommend that hives should not be split within 31 days of being used for pollination, and resin sources should be conserved where possible and supplemented where necessary due the vital roles of the resource. Stingless bees are increasingly in demand as pollinators in agricultural crops within the tropics and subtropics. Hive splitting, where one strong managed hive is “split” into two independent daughter colonies, is commonly used to increase hive numbers. However, how splitting impacts foraging behaviour or the time taken for the colony to recover from splitting has not previously been studied. We assessed the impact of splitting on the foraging behaviour of Tetragonula carbonaria colonies. The number of returning forager trips and foraged proportions of pollen, nectar and resin was observed after splitting and compared with unsplit control hives over a 31-day period. We found the total amount of returning foragers in split hives reduced to less than a third of unsplit hives (unsplit median, 184–288; split median, 19–61) for 16 days, while returning nectar (unsplit median, 89–147; split median, 16–28) and pollen (unsplit median, 55–155; split median, 1–7) foragers reduced to less than a quarter of unsplit hives for 9 days following splitting. After 31 days, the number of total, nectar and pollen foraging trips had still not recovered to levels observed in unsplit hives. Resin foraging trips however were not significantly different to unsplit hives after only 10 days. The colony foraging allocation to resin (proportion) increased after splitting and was significantly higher in split hives until day 16 of the experiment (unsplit median, 0.03–0.05; split median, 0.10–0.16). Our results demonstrate that split colonies prioritise resin collection and foraging on floral resources is reduced. We recommend that hives should not be split within 31 days of being used for pollination, and resin sources should be conserved where possible and supplemented where necessary due the vital roles of the resource. |
| ArticleNumber | 38 |
| Author | Hosseini Bai, Shahla Nichols, Joel Wilson, Rachele S. Fuller, Chris Newis, Ryan Farrar, Michael B. Wallace, Helen M. |
| Author_xml | – sequence: 1 givenname: Ryan orcidid: 0000-0001-7735-6345 surname: Newis fullname: Newis, Ryan email: ryan.newis@griffithuni.edu.au organization: Centre for Planetary Health and Food Security, Griffith University – sequence: 2 givenname: Joel orcidid: 0000-0002-1075-5779 surname: Nichols fullname: Nichols, Joel organization: Centre for Planetary Health and Food Security, Griffith University – sequence: 3 givenname: Michael B. orcidid: 0000-0002-2441-0544 surname: Farrar fullname: Farrar, Michael B. organization: Centre for Planetary Health and Food Security, Griffith University – sequence: 4 givenname: Chris surname: Fuller fullname: Fuller, Chris organization: Kin Kin Native Bees – sequence: 5 givenname: Shahla orcidid: 0000-0001-8646-6423 surname: Hosseini Bai fullname: Hosseini Bai, Shahla organization: Centre for Planetary Health and Food Security, Griffith University – sequence: 6 givenname: Rachele S. orcidid: 0000-0002-2567-3151 surname: Wilson fullname: Wilson, Rachele S. organization: Centre for Planetary Health and Food Security, Griffith University, School of Biological Sciences, The University of Queensland – sequence: 7 givenname: Helen M. orcidid: 0000-0002-8801-4401 surname: Wallace fullname: Wallace, Helen M. organization: Centre for Planetary Health and Food Security, Griffith University |
| BackLink | https://hal.science/hal-04655336$$DView record in HAL |
| BookMark | eNp9kUFvFSEUhYmpia_VP-CKZbsYvQzDg1k2jVqTl3TRuibAXFoaCiPMNPHfyzjGpSvIyXcO93LOyVnKCQn5yOATA5CfK-Ni7DvoeQcMmOrUG3Jg_Si78SjVGTkADEOnBi7ekfNanwFYr8RwIPP9EtJjxFqpRaSXD7gU85jTGg11pticTAnmivrcZCyVziXkEpZQkRasIVGTpnabVod0zjFi2tmWSo1fsNCn8Iq0zjEs21PvyVtvYsUPf88L8uPrl4eb2-509-37zfWpc1zwpXPCihEH8JNkkxXSekCLIIbRW5i8lD363hrlBVo3DMI7cDAqMVkU8igEvyBXe-6TiboN_WLKL51N0LfXJ71pMGwYP76yxl7u7FzyzxXrol9CdRijSZjXqjkTXDKpjltsv6Ou5FoL-n_ZDPRWhd6r0K0K_acKrZqJ76ba4NS-UT_ntaS2_v9cvwHYwo_9 |
| Cites_doi | 10.1111/eth.12768 10.1086/684192 10.1051/apido:19950305 10.1051/apido:2006013 10.1071/ZO9930343 10.1111/j.1744-7429.2009.00535.x 10.1051/apido/2010012 10.1007/s00040-010-0142-x 10.1002/ece3.1941 10.1007/978-1-4614-4960-7_19 10.1007/s00359-016-1095-y 10.1051/apido:2006027 10.1007/s13592-022-00913-w 10.1080/00218839.1999.11100993 10.3390/insects12080719 10.1007/s13592-013-0266-x 10.3896/IBRA.1.52.2.01 10.1051/apido:2006022 10.1016/j.biocon.2004.03.030 10.1080/00218839.2002.11101070 10.1071/ZO9960143 10.1080/0005772X.2001.11099523 10.1007/s13592-016-0456-4 10.1093/cz/zoab043 10.1146/annurev.en.28.010183.000353 10.1051/apido:2004003 10.1007/s00442-014-3070-z 10.1007/s00040-006-0866-9 10.1080/15627020.2011.11407495 10.1007/978-3-030-60090-7_7 10.1146/annurev.ento.44.1.183 10.1007/s002650000289 10.1007/s00114-009-0631-9 10.1080/00218839.1994.11100870 10.1016/j.tree.2010.01.007 10.1111/j.1440-6055.1988.tb01178.x 10.1007/s13592-020-00830-w 10.1080/0005772X.2000.11099481 10.1146/annurev-ento-120120-103938 10.1051/apido/2009074 10.1093/aob/mcab112 10.1007/s10886-017-0837-9 10.1051/apido:2006026 10.56021/9780801885730 10.1007/s000400050011 10.18782/2320-7051.7042 10.1007/978-3-319-77785-6 10.1016/j.agee.2020.107296 10.1002/ecs2.1758 10.1038/s41598-018-30126-0 10.21315/mjms2018.25.4.1 10.1371/journal.pone.0034601 10.1007/978-3-319-61839-5_11 10.47836/pjtas.45.2.02 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: The Author(s) 2023 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | C6C AAYXX CITATION 7S9 L.6 1XC VOOES |
| DOI | 10.1007/s13592-023-01018-8 |
| DatabaseName | Springer Nature OA Free Journals CrossRef AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | CrossRef AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Zoology Agriculture |
| EISSN | 1297-9678 |
| EndPage | 38 |
| ExternalDocumentID | oai:HAL:hal-04655336v1 10_1007_s13592_023_01018_8 |
| GrantInformation_xml | – fundername: Griffith University – fundername: Hort Innovation grantid: PH16000 funderid: http://dx.doi.org/10.13039/501100000981 |
| GroupedDBID | --K -EM 06D 0R~ 0VY 199 1B1 203 23M 29~ 2JN 2KG 2KM 2LR 2VQ 2WC 30V 4.4 406 408 5GY 67N 8UJ 96X AAAVM AABHQ AACDK AAFWJ AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AAOTM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDBF ABDZT ABECU ABFTV ABHLI ABJOX ABKCH ABMQK ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUBZ ABULA ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACPIV ACPRK ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG AXYYD BGNMA C1A C6C CS3 CSCUP DDRTE DNIVK DPUIP E3Z EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRP FRRFC FSGXE GGCAI GGRSB GI~ GJIRD GNWQR GQ7 H13 HF~ HMJXF HRMNR HZ~ IHE IKXTQ ITM IWAJR J-C JBSCW JZLTJ KOV LLZTM M41 M4Y NB0 NPVJJ NQ- NQJWS NU0 O9- O93 O9I O9J OK1 P2P PT4 R9I RED ROL RPZ RSV S1Z S27 S3A S3B SBL SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 TSG U2A U9L UG4 UOJIU UTJUX UZXMN VFIZW W48 Z7U ZMTXR ZOVNA ~02 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 7S9 L.6 1XC VOOES |
| ID | FETCH-LOGICAL-c353t-c5b59e40fd71db57bf0ebe0549fb0df772ef2ba8f5ebc445fc0c0985dbe576553 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001028780800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0044-8435 |
| IngestDate | Tue Oct 14 20:46:44 EDT 2025 Fri Jul 11 16:44:21 EDT 2025 Sat Nov 29 04:07:48 EST 2025 Fri Feb 21 02:43:19 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Hive splitting Stingless bees Australia Meliponini Stingless bee foraging Stingless bee propagation |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c353t-c5b59e40fd71db57bf0ebe0549fb0df772ef2ba8f5ebc445fc0c0985dbe576553 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-1075-5779 0000-0002-8801-4401 0000-0001-7735-6345 0000-0002-2441-0544 0000-0001-8646-6423 0000-0002-2567-3151 |
| OpenAccessLink | https://link.springer.com/10.1007/s13592-023-01018-8 |
| PQID | 3153717865 |
| PQPubID | 24069 |
| PageCount | 1 |
| ParticipantIDs | hal_primary_oai_HAL_hal_04655336v1 proquest_miscellaneous_3153717865 crossref_primary_10_1007_s13592_023_01018_8 springer_journals_10_1007_s13592_023_01018_8 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-08-01 |
| PublicationDateYYYYMMDD | 2023-08-01 |
| PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Paris |
| PublicationPlace_xml | – name: Paris |
| PublicationSubtitle | A journal of the French National Institute for Agriculture, Food and Environment (INRAE) and Deutscher Imkerbund E.V. (D.I.B.) |
| PublicationTitle | Apidologie |
| PublicationTitleAbbrev | Apidologie |
| PublicationYear | 2023 |
| Publisher | Springer Paris Springer Verlag |
| Publisher_xml | – name: Springer Paris – name: Springer Verlag |
| References | Wille, Orozco (CR62) 1975; 22 Imperatriz-Fonseca, Zucchi (CR24) 1995; 26 Cortopassi-Laurino, Imperatriz-Fonseca, Roubik, Dollin, Heard, Aguilar, Venturieri, Eardley, Noguera-Neto (CR7) 2006; 37 Hartfelder, Makert, Judice, Pereira, Santana, Dallacqua, Bitondi (CR15) 2006; 37 Michener (CR34) 2007 Kerr, Zucchi, Nakadaira, Butolo (CR28) 1962; 70 Hofstede, Sommeijer (CR22) 2006; 53 Heard (CR16) 1988; 27 Leonhardt, Blüthgen (CR31) 2009; 41 CR37 CR36 I'Anson Price, Segers, Berger, Nascimento, Grüter (CR23) 2021; 67 Gutierrez, Obregon, Jones (CR11) 2002; 41 Kaluza, Wallace, Heard, Klein, Leonhardt (CR25) 2016; 6 Maia-Silva, Hrncir, Imperatriz-Fonseca, Schorkopf (CR33) 2016; 202 Hammel, Vollet-Neto, Menezes, Nascimento, Engels, Grüter (CR14) 2015; 187 Greco, Hoffmann, Dollin, Duncan, Spooner-Hart, Neumann (CR9) 2010; 97 Wallace, Lee (CR58) 2010; 41 Halcroft, Spooner-Hart, Haigh, Heard, Dollin (CR13) 2013; 52 Heard, Hendrikz (CR21) 1993; 41 Van Veen, Sommeijer (CR56) 2000; 47 Biesmeijer, De Vries (CR4) 2001; 49 Heard (CR17) 1994; 33 Heard (CR18) 1999; 44 Slaa, Sánchez Chaves, Malagodi-Braga, Hofstede (CR53) 2006; 37 Quezada-Euán, May-Itzá, González-Acereto (CR41) 2001; 82 CR48 Heard, Dollin (CR20) 2000; 81 CR43 Drescher, Wallace, Katouli, Massaro, Leonhardt (CR8) 2014; 176 CR42 CR40 Wille, Michener (CR61) 1973; 21 Grüter (CR10) 2020 Mounika, Saravanan, Srinivasan, Rajendran (CR35) 2019; 7 Aleixo, Menezes, Imperatriz Fonseca, da Silva (CR1) 2017; 48 Biesmeijer, Born, Lukács, Sommeijer (CR3) 1999; 38 Wille (CR60) 1983; 28 Roubik (CR47) 2023; 68 Ramírez, Calvillo, Kevan (CR44) 2013 Wang, Wittwer, Heard, Goodger, Elgar (CR59) 2018; 124 CR19 CR57 Roubik (CR45) 1992 Potts, Biesmeijer, Kremen, Neumann, Schweiger, Kunin (CR39) 2010; 25 CR52 Zhao, Li, Guo, Li, Liu, Xu, Guo (CR64) 2021; 52 CR51 Bartareau (CR2) 1996; 44 Shanahan, Spivak (CR50) 2021; 12 Halcroft, Spooner-Hart, Neumann (CR12) 2011; 58 Biesmeijer, Slaa (CR5) 2004; 35 Samejima, Marzuki, Nagamitsu, Nakasizuka (CR49) 2004; 120 CR27 CR26 Langenheim (CR29) 2003 Brodschneider, Crailsheim (CR6) 2010; 41 Leonhardt, Heard, Wallace (CR32) 2014; 45 CR63 Roubik (CR46) 2006; 37 Trueman, Kämper, Nichols, Ogbourne, Hawkes, Peters, Hosseini Bai, Wallace (CR55) 2022; 129 Toledo-Hernández, Peña-Chora, Hernández-Velázquez, Lormendez, Toribio-Jiménez, Romero-Ramírez, León-Rodríguez (CR54) 2022; 53 Nicolson (CR38) 2011; 46 Leonhardt (CR30) 2017; 43 TA Heard (1018_CR16) 1988; 27 1018_CR48 HM Wallace (1018_CR58) 2010; 41 1018_CR40 WE Kerr (1018_CR28) 1962; 70 SW Nicolson (1018_CR38) 2011; 46 1018_CR42 1018_CR43 FE Hofstede (1018_CR22) 2006; 53 EJ Slaa (1018_CR53) 2006; 37 A Gutierrez (1018_CR11) 2002; 41 C Maia-Silva (1018_CR33) 2016; 202 E Toledo-Hernández (1018_CR54) 2022; 53 A Wille (1018_CR60) 1983; 28 A Wille (1018_CR61) 1973; 21 1018_CR57 M Halcroft (1018_CR12) 2011; 58 1018_CR51 1018_CR52 R Brodschneider (1018_CR6) 2010; 41 TA Heard (1018_CR17) 1994; 33 MK Greco (1018_CR9) 2010; 97 R I'Anson Price (1018_CR23) 2021; 67 CCC Grüter (1018_CR10) 2020 DW Roubik (1018_CR45) 1992 M Cortopassi-Laurino (1018_CR7) 2006; 37 JW Van Veen (1018_CR56) 2000; 47 1018_CR19 M Shanahan (1018_CR50) 2021; 12 MT Halcroft (1018_CR13) 2013; 52 TA Heard (1018_CR18) 1999; 44 1018_CR26 1018_CR27 CD Michener (1018_CR34) 2007 VM Ramírez (1018_CR44) 2013 TA Heard (1018_CR21) 1993; 41 JC Biesmeijer (1018_CR4) 2001; 49 SG Potts (1018_CR39) 2010; 25 N Drescher (1018_CR8) 2014; 176 SD Leonhardt (1018_CR32) 2014; 45 1018_CR63 JH Langenheim (1018_CR29) 2003 SJ Trueman (1018_CR55) 2022; 129 JC Biesmeijer (1018_CR3) 1999; 38 B Hammel (1018_CR14) 2015; 187 C Mounika (1018_CR35) 2019; 7 S Wang (1018_CR59) 2018; 124 JC Biesmeijer (1018_CR5) 2004; 35 KP Aleixo (1018_CR1) 2017; 48 1018_CR37 JJG Quezada-Euán (1018_CR41) 2001; 82 DW Roubik (1018_CR47) 2023; 68 1018_CR36 K Hartfelder (1018_CR15) 2006; 37 SD Leonhardt (1018_CR30) 2017; 43 DW Roubik (1018_CR46) 2006; 37 A Wille (1018_CR62) 1975; 22 V Imperatriz-Fonseca (1018_CR24) 1995; 26 T Bartareau (1018_CR2) 1996; 44 BF Kaluza (1018_CR25) 2016; 6 H Zhao (1018_CR64) 2021; 52 H Samejima (1018_CR49) 2004; 120 TA Heard (1018_CR20) 2000; 81 SD Leonhardt (1018_CR31) 2009; 41 |
| References_xml | – volume: 124 start-page: 633 year: 2018 end-page: 640 ident: CR59 article-title: Nonvolatile chemicals provide a nest defence mechanism for stingless bees Tetragonula carbonaria (Apidae, Meliponini) publication-title: Ethology doi: 10.1111/eth.12768 – volume: 187 start-page: 120 year: 2015 end-page: 129 ident: CR14 article-title: Soldiers in a stingless bee: work rate and task repertoire suggest they are an elite force publication-title: Am Nat doi: 10.1086/684192 – volume: 26 start-page: 231 year: 1995 end-page: 244 ident: CR24 article-title: Virgin queens in stingless bee (Apidae, Meliponinae) colonies: a review publication-title: Apidologie doi: 10.1051/apido:19950305 – ident: CR51 – volume: 37 start-page: 144 year: 2006 end-page: 163 ident: CR15 article-title: Physiological and genetic mechanisms underlying caste development, reproduction and division of labor in stingless bees publication-title: Apidologie doi: 10.1051/apido:2006013 – volume: 7 start-page: 754 year: 2019 end-page: 757 ident: CR35 article-title: Colony propagation in stingless bees, Tetragonula iridipennis (Smith) publication-title: J Entomol Zool Stud – year: 2003 ident: CR29 publication-title: Plant resins: chemistry, evolution, ecology, and ethnobotany – volume: 41 start-page: 317 year: 1993 end-page: 323 ident: CR21 article-title: Factors influencing flight activity of colonies of the stingless bee Trigona carbonaria (Hymenoptera: Apidae) publication-title: Aust J Zool doi: 10.1071/ZO9930343 – volume: 41 start-page: 730 year: 2009 end-page: 736 ident: CR31 article-title: A sticky affair: resin collection by Bornean stingless bees publication-title: Biotropica doi: 10.1111/j.1744-7429.2009.00535.x – volume: 41 start-page: 278 year: 2010 end-page: 294 ident: CR6 article-title: Nutrition and health in honeybees publication-title: Apidologie doi: 10.1051/apido/2010012 – volume: 58 start-page: 245 year: 2011 end-page: 253 ident: CR12 article-title: Behavioural defence strategies of the stingless bee, Austroplebeia australis, against the small hive beetle, Aethina tumida publication-title: Insectes Soc doi: 10.1007/s00040-010-0142-x – ident: CR42 – volume: 6 start-page: 1304 year: 2016 end-page: 1316 ident: CR25 article-title: Urban gardens promote bee foraging over natural habitats and plantations publication-title: Ecol Evol doi: 10.1002/ece3.1941 – volume: 21 start-page: 9 year: 1973 end-page: 271 ident: CR61 article-title: The nest architecture of stingless bees with special reference to those of Costa Rica (Hymenoptera, Apidae) publication-title: Rev Biol Trop – start-page: 269 year: 2013 end-page: 282 ident: CR44 publication-title: Effects of human disturbance and habitat fragmentation on stingless bees, pot-honey: a legacy of stingless bees doi: 10.1007/978-1-4614-4960-7_19 – volume: 202 start-page: 723 year: 2016 end-page: 732 ident: CR33 article-title: Stingless bees (Melipona subnitida) adjust brood production rather than foraging activity in response to changes in pollen stores publication-title: J Comp Physiol A doi: 10.1007/s00359-016-1095-y – volume: 37 start-page: 275 year: 2006 end-page: 292 ident: CR7 article-title: Global meliponiculture: challenges and opportunities publication-title: Apidologie doi: 10.1051/apido:2006027 – ident: CR19 – volume: 53 start-page: 8 year: 2022 ident: CR54 article-title: The stingless bees (Hymenoptera: Apidae: Meliponini): a review of the current threats to their survival publication-title: Apidologie doi: 10.1007/s13592-022-00913-w – volume: 38 start-page: 33 year: 1999 end-page: 41 ident: CR3 article-title: The response of the stingless bee Melipona beecheii to experimental pollen stress, worker loss and different levels of information input publication-title: J Apic Res doi: 10.1080/00218839.1999.11100993 – volume: 12 start-page: 719 year: 2021 ident: CR50 article-title: Resin use by stingless bees: a review publication-title: InSects doi: 10.3390/insects12080719 – volume: 45 start-page: 514 year: 2014 end-page: 527 ident: CR32 article-title: Differences in the resource intake of two sympatric Australian stingless bee species publication-title: Apidologie doi: 10.1007/s13592-013-0266-x – volume: 52 start-page: 1 year: 2013 end-page: 7 ident: CR13 article-title: The Australian stingless bee industry: a follow-up survey, one decade on publication-title: J Apic Res doi: 10.3896/IBRA.1.52.2.01 – ident: CR57 – volume: 37 start-page: 293 year: 2006 end-page: 315 ident: CR53 article-title: Stingless bees in applied pollination: practice and perspectives publication-title: Apidologie doi: 10.1051/apido:2006022 – ident: CR36 – volume: 120 start-page: 577 year: 2004 end-page: 587 ident: CR49 article-title: The effects of human disturbance on a stingless bee community in a tropical rainforest publication-title: Biol Conserv doi: 10.1016/j.biocon.2004.03.030 – volume: 41 start-page: 62 year: 2002 end-page: 63 ident: CR11 article-title: Optimum brood size for artificial propagation of the stingless bee, Scaptotrigona mexicana publication-title: J Apic Res doi: 10.1080/00218839.2002.11101070 – volume: 44 start-page: 143 year: 1996 end-page: 153 ident: CR2 article-title: Foraging behaviour of Trigona carbonaria (Hymenoptera: Apidae) at multiple-choice feeding stations publication-title: Aust J Zool doi: 10.1071/ZO9960143 – volume: 82 start-page: 160 year: 2001 end-page: 167 ident: CR41 article-title: Meliponiculture in Mexico: problems and perspective for development publication-title: Bee World doi: 10.1080/0005772X.2001.11099523 – volume: 48 start-page: 117 year: 2017 end-page: 127 ident: CR1 article-title: Seasonal availability of floral resources and ambient temperature shape stingless bee foraging behavior (Scaptotrigona aff. depilis) publication-title: Apidologie doi: 10.1007/s13592-016-0456-4 – ident: CR26 – volume: 22 start-page: 253 year: 1975 end-page: 287 ident: CR62 article-title: Observations on the founding of a new colony by Trigona cupira (Hymenoptera: Apidae) in Costa Rica publication-title: Rev Biol Trop – volume: 67 start-page: 551 year: 2021 end-page: 560 ident: CR23 article-title: An exploration of the relationship between recruitment communication and foraging in stingless bees publication-title: Curr Zool doi: 10.1093/cz/zoab043 – volume: 28 start-page: 41 year: 1983 end-page: 64 ident: CR60 article-title: Biology of the stingless bees (Meliponinae, Apidae) publication-title: Annu Rev Entomol doi: 10.1146/annurev.en.28.010183.000353 – volume: 35 start-page: 143 year: 2004 end-page: 157 ident: CR5 article-title: Information flow and organization of stingless bee foraging publication-title: Apidologie doi: 10.1051/apido:2004003 – ident: CR43 – ident: CR37 – volume: 176 start-page: 943 year: 2014 end-page: 953 ident: CR8 article-title: Diversity matters: how bees benefit from different resin sources publication-title: Oecologia doi: 10.1007/s00442-014-3070-z – volume: 53 start-page: 258 year: 2006 end-page: 264 ident: CR22 article-title: Influence of environmental and colony factors on the initial commodity choice of foragers of the stingless bee Plebeia tobagoensis (Hymenoptera, Meliponini) publication-title: Insectes Soc doi: 10.1007/s00040-006-0866-9 – volume: 46 start-page: 197 year: 2011 end-page: 204 ident: CR38 article-title: Bee food: the chemistry and nutritional value of nectar, pollen and mixtures of the two publication-title: Afr Zool doi: 10.1080/15627020.2011.11407495 – year: 2020 ident: CR10 article-title: Stingless bees: their behaviour, ecology and evolution publication-title: Springer Cham doi: 10.1007/978-3-030-60090-7_7 – year: 1992 ident: CR45 publication-title: Ecology and natural history of tropical bees – volume: 70 start-page: 265 year: 1962 end-page: 276 ident: CR28 article-title: Reproduction in the social bees (Hymenoptera: Apidae) publication-title: J N Y Entomol Soc – volume: 44 start-page: 183 year: 1999 end-page: 206 ident: CR18 article-title: The role of stingless bees in crop pollination publication-title: Annu Rev Entomol doi: 10.1146/annurev.ento.44.1.183 – volume: 49 start-page: 89 year: 2001 end-page: 99 ident: CR4 article-title: Exploration and exploitation of food sources by social insect colonies: a revision of the scout-recruit concept publication-title: Behav Ecol and Socio doi: 10.1007/s002650000289 – ident: CR40 – ident: CR63 – volume: 97 start-page: 319 year: 2010 end-page: 323 ident: CR9 article-title: The alternative Pharaoh approach: stingless bees mummify beetle parasites alive publication-title: Naturwissenschaften doi: 10.1007/s00114-009-0631-9 – ident: CR27 – volume: 33 start-page: 191 year: 1994 end-page: 198 ident: CR17 article-title: Behaviour and pollinator efficiency of stingless bees and honey bees on macadamia flowers publication-title: J Apic Res doi: 10.1080/00218839.1994.11100870 – volume: 25 start-page: 345 year: 2010 end-page: 353 ident: CR39 article-title: Global pollinator declines: trends, impacts and drivers publication-title: Trends Ecol Evol doi: 10.1016/j.tree.2010.01.007 – volume: 27 start-page: 303 year: 1988 end-page: 304 ident: CR16 article-title: Propagation of hives of Trigona carbonaria (Smith) (Hymenoptera: Apidae) publication-title: Aust J Entomol doi: 10.1111/j.1440-6055.1988.tb01178.x – volume: 52 start-page: 388 year: 2021 end-page: 399 ident: CR64 article-title: Response mechanisms to heat stress in bees publication-title: Apidologie doi: 10.1007/s13592-020-00830-w – volume: 81 start-page: 116 year: 2000 end-page: 125 ident: CR20 article-title: Stingless bee keeping in Australia: snapshot of an infant industry publication-title: Bee World doi: 10.1080/0005772X.2000.11099481 – ident: CR48 – volume: 68 start-page: 231 year: 2023 end-page: 256 ident: CR47 article-title: Stingless bee (Apidae: Apinae: Meliponini) ecology publication-title: Annu Rev Entomol doi: 10.1146/annurev-ento-120120-103938 – volume: 41 start-page: 428 year: 2010 end-page: 435 ident: CR58 article-title: Resin-foraging by colonies of Trigona sapiens and T. hockingsi (Hymenoptera: Apidae, Meliponini) and consequent seed dispersal of Corymbia torelliana (Myrtaceae) publication-title: Apidologie doi: 10.1051/apido/2009074 – volume: 129 start-page: 135 year: 2022 end-page: 146 ident: CR55 article-title: Pollen limitation and xenia effects in a cultivated mass-flowering tree, Macadamia integrifolia (Proteaceae) publication-title: Ann of Bot doi: 10.1093/aob/mcab112 – ident: CR52 – volume: 43 start-page: 385 year: 2017 end-page: 402 ident: CR30 article-title: Chemical ecology of stingless bees publication-title: J Chem Ecol doi: 10.1007/s10886-017-0837-9 – volume: 37 start-page: 124 year: 2006 end-page: 143 ident: CR46 article-title: Stingless bee nesting biology publication-title: Apidologie doi: 10.1051/apido:2006026 – year: 2007 ident: CR34 publication-title: The bees of the world doi: 10.56021/9780801885730 – volume: 47 start-page: 70 year: 2000 end-page: 75 ident: CR56 article-title: Colony reproduction in Tetragonisca angustula (Apidae, Meliponini) publication-title: Insectes Soc doi: 10.1007/s000400050011 – volume: 129 start-page: 135 year: 2022 ident: 1018_CR55 publication-title: Ann of Bot doi: 10.1093/aob/mcab112 – volume-title: The bees of the world year: 2007 ident: 1018_CR34 doi: 10.56021/9780801885730 – volume: 26 start-page: 231 year: 1995 ident: 1018_CR24 publication-title: Apidologie doi: 10.1051/apido:19950305 – volume: 37 start-page: 293 year: 2006 ident: 1018_CR53 publication-title: Apidologie doi: 10.1051/apido:2006022 – volume: 49 start-page: 89 year: 2001 ident: 1018_CR4 publication-title: Behav Ecol and Socio doi: 10.1007/s002650000289 – volume: 38 start-page: 33 year: 1999 ident: 1018_CR3 publication-title: J Apic Res doi: 10.1080/00218839.1999.11100993 – ident: 1018_CR48 – volume: 37 start-page: 144 year: 2006 ident: 1018_CR15 publication-title: Apidologie doi: 10.1051/apido:2006013 – volume: 37 start-page: 124 year: 2006 ident: 1018_CR46 publication-title: Apidologie doi: 10.1051/apido:2006026 – volume: 6 start-page: 1304 year: 2016 ident: 1018_CR25 publication-title: Ecol Evol doi: 10.1002/ece3.1941 – volume: 7 start-page: 754 year: 2019 ident: 1018_CR35 publication-title: J Entomol Zool Stud – ident: 1018_CR37 doi: 10.18782/2320-7051.7042 – volume: 27 start-page: 303 year: 1988 ident: 1018_CR16 publication-title: Aust J Entomol doi: 10.1111/j.1440-6055.1988.tb01178.x – volume: 124 start-page: 633 year: 2018 ident: 1018_CR59 publication-title: Ethology doi: 10.1111/eth.12768 – volume: 28 start-page: 41 year: 1983 ident: 1018_CR60 publication-title: Annu Rev Entomol doi: 10.1146/annurev.en.28.010183.000353 – volume: 176 start-page: 943 year: 2014 ident: 1018_CR8 publication-title: Oecologia doi: 10.1007/s00442-014-3070-z – volume: 68 start-page: 231 year: 2023 ident: 1018_CR47 publication-title: Annu Rev Entomol doi: 10.1146/annurev-ento-120120-103938 – ident: 1018_CR40 doi: 10.1007/978-3-319-77785-6 – volume-title: Plant resins: chemistry, evolution, ecology, and ethnobotany year: 2003 ident: 1018_CR29 – volume: 41 start-page: 62 year: 2002 ident: 1018_CR11 publication-title: J Apic Res doi: 10.1080/00218839.2002.11101070 – volume: 44 start-page: 143 year: 1996 ident: 1018_CR2 publication-title: Aust J Zool doi: 10.1071/ZO9960143 – start-page: 269 volume-title: Effects of human disturbance and habitat fragmentation on stingless bees, pot-honey: a legacy of stingless bees year: 2013 ident: 1018_CR44 doi: 10.1007/978-1-4614-4960-7_19 – volume: 41 start-page: 278 year: 2010 ident: 1018_CR6 publication-title: Apidologie doi: 10.1051/apido/2010012 – volume: 45 start-page: 514 year: 2014 ident: 1018_CR32 publication-title: Apidologie doi: 10.1007/s13592-013-0266-x – volume: 97 start-page: 319 year: 2010 ident: 1018_CR9 publication-title: Naturwissenschaften doi: 10.1007/s00114-009-0631-9 – volume: 47 start-page: 70 year: 2000 ident: 1018_CR56 publication-title: Insectes Soc doi: 10.1007/s000400050011 – ident: 1018_CR63 doi: 10.1016/j.agee.2020.107296 – volume: 41 start-page: 317 year: 1993 ident: 1018_CR21 publication-title: Aust J Zool doi: 10.1071/ZO9930343 – year: 2020 ident: 1018_CR10 publication-title: Springer Cham doi: 10.1007/978-3-030-60090-7_7 – volume: 187 start-page: 120 year: 2015 ident: 1018_CR14 publication-title: Am Nat doi: 10.1086/684192 – volume: 52 start-page: 1 year: 2013 ident: 1018_CR13 publication-title: J Apic Res doi: 10.3896/IBRA.1.52.2.01 – volume: 22 start-page: 253 year: 1975 ident: 1018_CR62 publication-title: Rev Biol Trop – ident: 1018_CR26 doi: 10.1002/ecs2.1758 – volume: 70 start-page: 265 year: 1962 ident: 1018_CR28 publication-title: J N Y Entomol Soc – volume: 37 start-page: 275 year: 2006 ident: 1018_CR7 publication-title: Apidologie doi: 10.1051/apido:2006027 – ident: 1018_CR27 doi: 10.1038/s41598-018-30126-0 – volume: 81 start-page: 116 year: 2000 ident: 1018_CR20 publication-title: Bee World doi: 10.1080/0005772X.2000.11099481 – volume: 43 start-page: 385 year: 2017 ident: 1018_CR30 publication-title: J Chem Ecol doi: 10.1007/s10886-017-0837-9 – volume: 52 start-page: 388 year: 2021 ident: 1018_CR64 publication-title: Apidologie doi: 10.1007/s13592-020-00830-w – volume: 82 start-page: 160 year: 2001 ident: 1018_CR41 publication-title: Bee World doi: 10.1080/0005772X.2001.11099523 – ident: 1018_CR36 doi: 10.21315/mjms2018.25.4.1 – volume: 33 start-page: 191 year: 1994 ident: 1018_CR17 publication-title: J Apic Res doi: 10.1080/00218839.1994.11100870 – volume: 44 start-page: 183 year: 1999 ident: 1018_CR18 publication-title: Annu Rev Entomol doi: 10.1146/annurev.ento.44.1.183 – ident: 1018_CR42 – volume: 120 start-page: 577 year: 2004 ident: 1018_CR49 publication-title: Biol Conserv doi: 10.1016/j.biocon.2004.03.030 – volume: 41 start-page: 428 year: 2010 ident: 1018_CR58 publication-title: Apidologie doi: 10.1051/apido/2009074 – volume: 202 start-page: 723 year: 2016 ident: 1018_CR33 publication-title: J Comp Physiol A doi: 10.1007/s00359-016-1095-y – volume: 58 start-page: 245 year: 2011 ident: 1018_CR12 publication-title: Insectes Soc doi: 10.1007/s00040-010-0142-x – volume: 41 start-page: 730 year: 2009 ident: 1018_CR31 publication-title: Biotropica doi: 10.1111/j.1744-7429.2009.00535.x – volume: 67 start-page: 551 year: 2021 ident: 1018_CR23 publication-title: Curr Zool doi: 10.1093/cz/zoab043 – volume: 12 start-page: 719 year: 2021 ident: 1018_CR50 publication-title: InSects doi: 10.3390/insects12080719 – volume-title: Ecology and natural history of tropical bees year: 1992 ident: 1018_CR45 – ident: 1018_CR52 doi: 10.1371/journal.pone.0034601 – volume: 25 start-page: 345 year: 2010 ident: 1018_CR39 publication-title: Trends Ecol Evol doi: 10.1016/j.tree.2010.01.007 – ident: 1018_CR43 doi: 10.1007/978-3-319-61839-5_11 – ident: 1018_CR51 doi: 10.47836/pjtas.45.2.02 – volume: 53 start-page: 258 year: 2006 ident: 1018_CR22 publication-title: Insectes Soc doi: 10.1007/s00040-006-0866-9 – volume: 35 start-page: 143 year: 2004 ident: 1018_CR5 publication-title: Apidologie doi: 10.1051/apido:2004003 – volume: 53 start-page: 8 year: 2022 ident: 1018_CR54 publication-title: Apidologie doi: 10.1007/s13592-022-00913-w – volume: 48 start-page: 117 year: 2017 ident: 1018_CR1 publication-title: Apidologie doi: 10.1007/s13592-016-0456-4 – volume: 46 start-page: 197 year: 2011 ident: 1018_CR38 publication-title: Afr Zool doi: 10.1080/15627020.2011.11407495 – ident: 1018_CR57 – volume: 21 start-page: 9 year: 1973 ident: 1018_CR61 publication-title: Rev Biol Trop – ident: 1018_CR19 |
| SSID | ssj0012854 |
| Score | 2.3739421 |
| Snippet | Stingless bees are increasingly in demand as pollinators in agricultural crops within the tropics and subtropics. Hive splitting, where one strong managed hive... AbstractStingless bees are increasingly in demand as pollinators in agricultural crops within the tropics and subtropics. Hive splitting, where one strong... |
| SourceID | hal proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 38 |
| SubjectTerms | Biomedical and Life Sciences Entomology Life Sciences nectar Original Article pollen pollination stingless bees Tetragonula carbonaria |
| Title | Stingless bee (Tetragonula carbonaria) foragers prioritise resin and reduce pollen foraging after hive splitting |
| URI | https://link.springer.com/article/10.1007/s13592-023-01018-8 https://www.proquest.com/docview/3153717865 https://hal.science/hal-04655336 |
| Volume | 54 |
| WOSCitedRecordID | wos001028780800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1297-9678 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012854 issn: 0044-8435 databaseCode: RSV dateStart: 20070101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3faxQxEB5sVbAP_mgrXlslig-KXdgfyW3u8SgefZAitkrxJWSyk7ZQdo_du_79TnK71yoi1LdlCdkl3yT5JjPzBeC9LCVmRFmiJ4TsoKBNUCEm3pbFOHWuUgrjZRPlyYk-P5987YvCuiHbfQhJxpX6ttitUCFTMg_5P2mmE70BD3m702E6fjv9sY4dhJrAVVxZJprZQF8q8_c-ftuONi5DMuQdpvlHcDTuObNn__e3z-FpzzHFdGUUL-AB1duwNb1oe50N2obHP5t4nr4D89OQ-HzNC55AIvHhjBatvWjq5bUVzrbITJ1t9KNgchvkLjrB_9FEJSQS7Kpf1cLWFT9VbCNiHo4h6lVb7lXEG8hFkLYVHbPdmGO9C99nn8-OjpP-GobEFapYJE6hmpBMfVVmFaoSfcrIM9WbeEwrz_ScfI5We0XopFTepY5hURUSOzNKFS9hs25qegXC5yqvcu2cJpTSZdoyHZNInspwIEsj-DSgYeYrtQ1zq6scRtTwiJo4okaP4B0Dtm4YhLKPp19MeJcGWbiiGN9kI3g74Gl45oRwiK2pWXam4MWenVk9ViM4HEA0_RTu_vHdvfs134cnebSDkDV4AJuLdkmv4ZG7YaTaN9F2fwFQ3OsD |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RAgIOPFoQS3kYxAFEI-Vhb5zjClEtYlkhuqCKi5Vxxm2lKlklu_39jL1JSxFCglsUWU7kGdvfeL75DPBa5hIToiTSBSEHKFhGqBAjV-bZOLa2UgrDZRP5fK6PjoovfVFYN7Ddh5RkWKkvi90y5ZmSqef_xImO9BZcl7xjeSLf18PvF7kDXxO4ySvLSDMa6Etl_tzHle1o68STIX9Bmr8lR8Oec3Dv__72PtztMaaYbJziAVyjegfuTI7bXmeDduDmjyacp-_C8tATn894wRNIJN4saNWWx029PiuFLVtkpM4--lYwuPVyF53g_2iCEhIJDtVPa1HWFT9V7CNi6Y8h6k1b7lWEG8iFl7YVHaPdwLF-CN8OPizeT6P-GobIZipbRVahKkjGrsqTClWOLmbLM9QrHMaVY3hOLsVSO0VopVTOxjYutKqQOJhRKnsE23VT02MQLlVplWprNaGUNtElwzGJ5Cj3B7I0gneDNcxyo7ZhLnWV_YgaHlETRtToEbxig1009ELZ08nM-Hexl4XLsvF5MoKXgz0NzxyfDilratadyXix52BWj9UI9gcjmn4Kd3_57pN_a_4Cbk0Xn2dm9nH-aQ9up8EnPIPwKWyv2jU9gxv2nK3WPg9-_BNc8u3n |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEB9s1aIPflTF8zOKDxZduh_JbfbxUI-K5Si0SvEl5GPSCiV77N3173eS3WuriCC-LUvIhsxk5zeZmd8AvOE1NwVikckGDTkoRmdGGJN5XVfj3FonhEnNJurZTB4fNwdXqvhTtvs6JNnXNESWprDcnTu_e1n4VomYNVnGXKC8kJncgOs8Ng2K_vrht4s4QqwP7GPMPJOEDIaymT_P8Ytp2jiNiZFXUOdvgdJkf6Z3_3_l9-DOgD3ZpFeW-3ANwzbcnpx0A_8GbsPN7226Z38A88OYEH1GP0JmENnbI1x2-qQNqzPNrO4MIXjS3R1GoDfSYCwYralNDEnIyIX_EZgOjp4c6Q6bx-uJ0I-lWVnqTM4i5S1bEApOudcP4ev009GHvWxoz5DZSlTLzAojGuS5d3XhjKiNz0kjCAI23uTOE2xHXxotvUBjORfe5jZvpHAGyckRonoEm6EN-BiYL0XpSmmtRMO5LaQmmMYNeqzjRS2O4N1aMmres3CoS77luKOKdlSlHVVyBK9JeBcDI4H23mRfxXd5pIurqvF5MYJXa9kqOlExTKIDtquFqsgIkJMrx2IE79cCVcPRXvzlu0_-bfhL2Dr4OFX7n2dfnsKtMqlETCx8BpvLboXP4YY9J6F1L5JK_wTui_bL |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stingless+bee+%28Tetragonula+carbonaria%29+foragers+prioritise+resin+and+reduce+pollen+foraging+after+hive+splitting&rft.jtitle=Apidologie&rft.au=Newis%2C+Ryan&rft.au=Nichols%2C+Joel&rft.au=Farrar%2C+Michael+B.&rft.au=Fuller%2C+Chris&rft.date=2023-08-01&rft.pub=Springer+Verlag&rft.issn=0044-8435&rft.eissn=1297-9678&rft.volume=54&rft.issue=4&rft_id=info:doi/10.1007%2Fs13592-023-01018-8&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-04655336v1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-8435&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-8435&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-8435&client=summon |