Development of a machine-learning model to predict Gibbs free energy of binding for protein-ligand complexes
The possibility of using the atomic coordinates of protein-ligand complexes to assess binding affinity has a beneficial impact in the early stages of drug development and design. From the computational view, the creation of reliable scoring functions is still an open problem in the simulation of bio...
Uložené v:
| Vydané v: | Biophysical chemistry Ročník 240; s. 63 - 69 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Netherlands
Elsevier B.V
01.09.2018
|
| ISSN: | 0301-4622, 1873-4200, 1873-4200 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The possibility of using the atomic coordinates of protein-ligand complexes to assess binding affinity has a beneficial impact in the early stages of drug development and design. From the computational view, the creation of reliable scoring functions is still an open problem in the simulation of biological systems, and the development of a new generation machine-learning model is an active research field. In this work, we propose a novel scoring function to predict Gibbs free energy of binding (ΔG) based on the crystallographic structure of complexes involving a protein and an active ligand. We made use of the energy terms available the AutoDock Vina scoring function and trained a novel function using the machine learning methods available in the program SAnDReS. We used a training set composed exclusively of high-resolution crystallographic structures for which the ΔG data was available. We describe here the methodology to develop a machine-learning model to predict binding affinity using the program SAnDReS. Statistical analysis of our machine-learning model indicated a superior performance when compared to the MolDock, Plants, AutoDock 4, and AutoDock Vina scoring functions. We expect that this new machine-learning model could improve drug design and development through the application of a reliable scoring function in the analysis virtual screening simulations.
[Display omitted]
•Development of a machine-learning model to predict free energy of binding for protein-ligand complexes;•The use of a dataset composed of 48 high-resolution crystallographic structures to be used to build a new scoring function;•Improved predictive power of the machine learning model to predict ΔG, when compared with classical scoring functions. |
|---|---|
| AbstractList | The possibility of using the atomic coordinates of protein-ligand complexes to assess binding affinity has a beneficial impact in the early stages of drug development and design. From the computational view, the creation of reliable scoring functions is still an open problem in the simulation of biological systems, and the development of a new generation machine-learning model is an active research field. In this work, we propose a novel scoring function to predict Gibbs free energy of binding (ΔG) based on the crystallographic structure of complexes involving a protein and an active ligand. We made use of the energy terms available the AutoDock Vina scoring function and trained a novel function using the machine learning methods available in the program SAnDReS. We used a training set composed exclusively of high-resolution crystallographic structures for which the ΔG data was available. We describe here the methodology to develop a machine-learning model to predict binding affinity using the program SAnDReS. Statistical analysis of our machine-learning model indicated a superior performance when compared to the MolDock, Plants, AutoDock 4, and AutoDock Vina scoring functions. We expect that this new machine-learning model could improve drug design and development through the application of a reliable scoring function in the analysis virtual screening simulations. The possibility of using the atomic coordinates of protein-ligand complexes to assess binding affinity has a beneficial impact in the early stages of drug development and design. From the computational view, the creation of reliable scoring functions is still an open problem in the simulation of biological systems, and the development of a new generation machine-learning model is an active research field. In this work, we propose a novel scoring function to predict Gibbs free energy of binding (ΔG) based on the crystallographic structure of complexes involving a protein and an active ligand. We made use of the energy terms available the AutoDock Vina scoring function and trained a novel function using the machine learning methods available in the program SAnDReS. We used a training set composed exclusively of high-resolution crystallographic structures for which the ΔG data was available. We describe here the methodology to develop a machine-learning model to predict binding affinity using the program SAnDReS. Statistical analysis of our machine-learning model indicated a superior performance when compared to the MolDock, Plants, AutoDock 4, and AutoDock Vina scoring functions. We expect that this new machine-learning model could improve drug design and development through the application of a reliable scoring function in the analysis virtual screening simulations. [Display omitted] •Development of a machine-learning model to predict free energy of binding for protein-ligand complexes;•The use of a dataset composed of 48 high-resolution crystallographic structures to be used to build a new scoring function;•Improved predictive power of the machine learning model to predict ΔG, when compared with classical scoring functions. The possibility of using the atomic coordinates of protein-ligand complexes to assess binding affinity has a beneficial impact in the early stages of drug development and design. From the computational view, the creation of reliable scoring functions is still an open problem in the simulation of biological systems, and the development of a new generation machine-learning model is an active research field. In this work, we propose a novel scoring function to predict Gibbs free energy of binding (ΔG) based on the crystallographic structure of complexes involving a protein and an active ligand. We made use of the energy terms available the AutoDock Vina scoring function and trained a novel function using the machine learning methods available in the program SAnDReS. We used a training set composed exclusively of high-resolution crystallographic structures for which the ΔG data was available. We describe here the methodology to develop a machine-learning model to predict binding affinity using the program SAnDReS. Statistical analysis of our machine-learning model indicated a superior performance when compared to the MolDock, Plants, AutoDock 4, and AutoDock Vina scoring functions. We expect that this new machine-learning model could improve drug design and development through the application of a reliable scoring function in the analysis virtual screening simulations.The possibility of using the atomic coordinates of protein-ligand complexes to assess binding affinity has a beneficial impact in the early stages of drug development and design. From the computational view, the creation of reliable scoring functions is still an open problem in the simulation of biological systems, and the development of a new generation machine-learning model is an active research field. In this work, we propose a novel scoring function to predict Gibbs free energy of binding (ΔG) based on the crystallographic structure of complexes involving a protein and an active ligand. We made use of the energy terms available the AutoDock Vina scoring function and trained a novel function using the machine learning methods available in the program SAnDReS. We used a training set composed exclusively of high-resolution crystallographic structures for which the ΔG data was available. We describe here the methodology to develop a machine-learning model to predict binding affinity using the program SAnDReS. Statistical analysis of our machine-learning model indicated a superior performance when compared to the MolDock, Plants, AutoDock 4, and AutoDock Vina scoring functions. We expect that this new machine-learning model could improve drug design and development through the application of a reliable scoring function in the analysis virtual screening simulations. |
| Author | Bitencourt-Ferreira, Gabriela de Azevedo, Walter Filgueira |
| Author_xml | – sequence: 1 givenname: Gabriela surname: Bitencourt-Ferreira fullname: Bitencourt-Ferreira, Gabriela organization: Laboratory of Computational Systems Biology, School of Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, Porto Alegre, RS 90619-900, Brazil – sequence: 2 givenname: Walter Filgueira surname: de Azevedo fullname: de Azevedo, Walter Filgueira email: walter@azevedolab.net organization: Laboratory of Computational Systems Biology, School of Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, Porto Alegre, RS 90619-900, Brazil |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29906639$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kb1uFDEUhS0URDaBB6BBLmlm8M_YMyMqFCAgRaKB2vLPncUrjz3Y3oi8PV5t0lDEhd1835XvOVfoIqYICL2lpKeEyg-H3my2Z4ROPRE9oeQF2tFp5N3ACLlAO8IJ7QbJ2CW6KuVA2pkIeYUu2TwTKfm8Q-Ez3ENI2wqx4rRgjVdtf_sIXQCdo497vCYHAdeEtwzO24pvvTEFLxkAQ4S8fziJxkd3opeUG5gq-NgFv9fRYZvWLcBfKK_Ry0WHAm8e32v06-uXnzffursft99vPt11lgte2z1JO1thuJ4N5W0juhg7zEyacXFymaTWIIQTgo3DODBqJ-sGSdywcC7dzK_R-_Pc9pE_RyhVrb5YCEFHSMeiGBFteTFOoqHvHtGjWcGpLftV5wf1lFADxjNgcyolw6Ksr7r6FGvWPihK1KkLdVCtC3XqQhGhWhfNpP-ZT8Ofcz6eHWjx3HvIqlgP0bbgM9iqXPLP2P8Ae1ihjw |
| CitedBy_id | crossref_primary_10_1080_07391102_2022_2141883 crossref_primary_10_1016_j_ijbiomac_2025_144250 crossref_primary_10_1186_s12859_019_3058_0 crossref_primary_10_2174_0929867328666210806105810 crossref_primary_10_1016_j_gene_2019_01_029 crossref_primary_10_1088_1674_1056_ad8ecb crossref_primary_10_1093_bib_bbab476 crossref_primary_10_2174_1574893614666190104142228 crossref_primary_10_2174_2213275912666191102162959 crossref_primary_10_1371_journal_pone_0254965 crossref_primary_10_1002_wcms_1465 crossref_primary_10_1016_j_genrep_2018_10_011 crossref_primary_10_2174_0929867325666181113122900 crossref_primary_10_1140_epjp_s13360_024_05900_x crossref_primary_10_1016_j_matpr_2020_12_288 crossref_primary_10_2174_0929867325666181001114750 crossref_primary_10_1016_j_jksus_2022_101867 crossref_primary_10_1016_j_matpr_2019_04_100 crossref_primary_10_1007_s12033_024_01200_y crossref_primary_10_1080_07391102_2022_2133010 crossref_primary_10_2174_0929867327666200515101820 crossref_primary_10_1016_j_molliq_2025_127129 crossref_primary_10_1093_bib_bbaa107 crossref_primary_10_1080_17460441_2019_1550482 crossref_primary_10_1680_jemmr_18_00129 crossref_primary_10_2174_0109298673307315240730042209 crossref_primary_10_1093_bib_bbad138 crossref_primary_10_1016_j_molstruc_2023_137453 crossref_primary_10_3390_toxins14110787 crossref_primary_10_3390_ijms22063241 crossref_primary_10_1007_s11030_024_10979_6 crossref_primary_10_1039_D0ME00134A crossref_primary_10_1016_j_chemolab_2022_104690 |
| Cites_doi | 10.1016/j.bbrc.2017.10.035 10.2174/138945008786949441 10.1214/aoms/1177729392 10.2174/092986711795029519 10.1088/0959-5309/43/5/301 10.2174/1386207320666171121110019 10.1002/prot.20512 10.1126/sciadv.1501240 10.1021/jm030580l 10.1021/jm990506w 10.1007/s12551-013-0130-2 10.2174/1570180814666170810120150 10.1007/s00894-010-0664-1 10.1111/j.2517-6161.1996.tb02080.x 10.1016/j.sbi.2018.01.006 10.1021/jm051197e 10.2174/092986711795029573 10.1007/s10637-018-0568-y 10.3762/bjoc.12.267 10.1038/225563a0 10.1002/jcc.21334 10.1214/aoms/1177729586 10.1093/nar/28.1.235 10.1093/protein/8.2.127 10.1016/j.bmc.2008.08.014 10.1080/01621459.1972.10481251 10.2174/0929867324666170623092503 10.1111/cbdd.13312 10.1038/432823a 10.1016/j.bpc.2018.01.004 10.2174/1568026617666170707120609 10.1021/ci200227u 10.1371/journal.pone.0155183 10.1111/j.1467-9868.2005.00503.x 10.2174/1386207319666160927111347 10.1093/nar/gkl999 10.1002/jcc.20634 10.1002/jcc.21256 10.2174/1389450118666161116130155 10.1517/17460441.2013.752812 10.2174/138945010790711941 10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier B.V. Copyright © 2018 Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright © 2018 Elsevier B.V. All rights reserved. |
| DBID | AAYXX CITATION NPM 7X8 |
| DOI | 10.1016/j.bpc.2018.05.010 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry Biology |
| EISSN | 1873-4200 |
| EndPage | 69 |
| ExternalDocumentID | 29906639 10_1016_j_bpc_2018_05_010 S0301462218301224 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M .GJ .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABEFU ABFNM ABGSF ABJNI ABLJU ABMAC ABNEU ABTAH ABUDA ABXDB ABYKQ ACDAQ ACFVG ACGFS ACIUM ACNNM ACRLP ADBBV ADECG ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AFZHZ AGHFR AGRDE AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJQLL AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA HLW HMU HVGLF HZ~ IHE J1W KOM LX3 M36 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBG SCB SCC SCH SDF SDG SDP SES SEW SPC SPCBC SSK SSQ SSU SSZ T5K VH1 WH7 WUQ XPP YK3 YYP ZGI ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD NPM SSH 7X8 |
| ID | FETCH-LOGICAL-c353t-c386c9c5b3a9b131871fbc4926b7fd6f86aae55d552747421c8cd460d4f336d93 |
| ISICitedReferencesCount | 59 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000441488700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0301-4622 1873-4200 |
| IngestDate | Thu Oct 02 09:32:30 EDT 2025 Thu Apr 03 07:06:27 EDT 2025 Sat Nov 29 01:51:04 EST 2025 Tue Nov 18 21:51:11 EST 2025 Fri Feb 23 02:23:47 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | Copyright © 2018 Elsevier B.V. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c353t-c386c9c5b3a9b131871fbc4926b7fd6f86aae55d552747421c8cd460d4f336d93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 29906639 |
| PQID | 2056395785 |
| PQPubID | 23479 |
| PageCount | 7 |
| ParticipantIDs | proquest_miscellaneous_2056395785 pubmed_primary_29906639 crossref_citationtrail_10_1016_j_bpc_2018_05_010 crossref_primary_10_1016_j_bpc_2018_05_010 elsevier_sciencedirect_doi_10_1016_j_bpc_2018_05_010 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-09-01 |
| PublicationDateYYYYMMDD | 2018-09-01 |
| PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Biophysical chemistry |
| PublicationTitleAlternate | Biophys Chem |
| PublicationYear | 2018 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Huey, Morris, Olson, Goodsell (bb0145) 2007; 28 de Azevedo, Dias (bb0165) 2008; 16 Guedes, de Magalhães, Dardenne (bb0005) 2014; 6 Pintro, Azevedo (bb0070) 2017; 20 Laskowski, Swindells (bb0220) 2011; 51 Thomsen, Christensen (bb0100) 2006; 49 Heck, Pintro, Pereira, de Ávila, Levin, de Azevedo (bb0045) 2017; 24 de Ávila, de Azevedo (bb0230) 2018 Quiroga, Villarreal (bb0135) 2016; 11 Zou, Hastie (bb0200) 2005; 67 Russo, de Azevedo (bb0225) 2018 Leelananda, Lindert (bb0035) 2016; 12 Berman, Westbrook, Feng, Gilliland, Bhat, Weissig, Shindyalov, Bourne (bb0115) 2000; 28 Lennard-Jones (bb0150) 1931; 43 Levin, Pintro, de Ávila, de Mattos, De Azevedo (bb0085) 2017; 18 Xavier, Heck, Avila, Levin, Pintro, Carvalho, Azevedo (bb0110) 2016; 19 Wang, Fang, Lu, Wang (bb0130) 2004; 47 Tikhonov (bb0195) 1963; 153 Chen, Oezguen, Urvil, Ferguson, Dann, Savidge (bb0010) 2016; 2 de Azevedo (bb0025) 2011; 18 Otyepka, Kryštof, Havlíček, Siglerová, Strnad, Koca (bb0180) 2000; 43 Wallace, Laskowski, Thornton (bb0215) 1995; 8 Herberlé, de Azevedo (bb0160) 2011; 18 Crespo, Rodriguez-Granillo, Lim (bb0015) 2017; 17 Robbins, Monro (bb0205) 1951; 22 Morris, Huey, Lindstrom, Sanner, Belew, Goodsell, Olson (bb0105) 2009; 30 de Azevedo (bb0155) 2010; 11 A.M. Legendre, Nouvelle méthodes pour la déterminiation des orbites des comètes, Courcier, Paris. 1805. de Ávila, Xavier, Pintro, de Azevedo (bb0075) 2017; 494 Levin, Pintro, Bitencourt-Ferreira, Mattos, Silvério, de Azevedo (bb0065) 2018; 235 Liu, Lin, Wen, Jorrisen, Gilson (bb0125) 2007; 35 Tibshirani (bb0190) 1996; 58 Morris, Goodsell, Halliday, Huey, Hart, Belew, Olson (bb0140) 1998; 19 Colwell (bb0030) 2018; 49 Trott, Olson (bb0090) 2010; 31 Smith (bb0050) 1970; 225 de Azevedo, Dias (bb0095) 2008 Kirkpatrick, Ellis (bb0055) 2004; 432 Amaral, Nery, Leite, de Azevedo Junior, Campos (bb0060) 2018 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Preguedettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Duchesnay (bb0040) 2011; 12 Cichero, Cesarini, Mosti, Fossa (bb0170) 2010; 16 Kiefer, Wolfowitz (bb0210) 1952; 23 Freitas, Elias, Pinto, Costa, de Carvalho, Omote, Camps, Ishikawa, Arcuri, Vinga, Oliveira, Junior, da Silveira (bb0080) 2018; 15 Zar (bb0175) 1972; 67 Mucs, Bryce (bb0020) 2013; 8 Hu, Benson, Smith, Lerner, Carlson (bb0120) 2005; 60 Wang (10.1016/j.bpc.2018.05.010_bb0130) 2004; 47 Thomsen (10.1016/j.bpc.2018.05.010_bb0100) 2006; 49 de Azevedo (10.1016/j.bpc.2018.05.010_bb0025) 2011; 18 Zar (10.1016/j.bpc.2018.05.010_bb0175) 1972; 67 Heck (10.1016/j.bpc.2018.05.010_bb0045) 2017; 24 Morris (10.1016/j.bpc.2018.05.010_bb0140) 1998; 19 Zou (10.1016/j.bpc.2018.05.010_bb0200) 2005; 67 Cichero (10.1016/j.bpc.2018.05.010_bb0170) 2010; 16 Pedregosa (10.1016/j.bpc.2018.05.010_bb0040) 2011; 12 10.1016/j.bpc.2018.05.010_bb0185 Wallace (10.1016/j.bpc.2018.05.010_bb0215) 1995; 8 de Azevedo (10.1016/j.bpc.2018.05.010_bb0155) 2010; 11 Huey (10.1016/j.bpc.2018.05.010_bb0145) 2007; 28 Levin (10.1016/j.bpc.2018.05.010_bb0085) 2017; 18 Herberlé (10.1016/j.bpc.2018.05.010_bb0160) 2011; 18 de Ávila (10.1016/j.bpc.2018.05.010_bb0230) 2018 de Azevedo (10.1016/j.bpc.2018.05.010_bb0095) 2008 Berman (10.1016/j.bpc.2018.05.010_bb0115) 2000; 28 Laskowski (10.1016/j.bpc.2018.05.010_bb0220) 2011; 51 Mucs (10.1016/j.bpc.2018.05.010_bb0020) 2013; 8 Otyepka (10.1016/j.bpc.2018.05.010_bb0180) 2000; 43 Xavier (10.1016/j.bpc.2018.05.010_bb0110) 2016; 19 Kiefer (10.1016/j.bpc.2018.05.010_bb0210) 1952; 23 Liu (10.1016/j.bpc.2018.05.010_bb0125) 2007; 35 Hu (10.1016/j.bpc.2018.05.010_bb0120) 2005; 60 Tikhonov (10.1016/j.bpc.2018.05.010_bb0195) 1963; 153 Amaral (10.1016/j.bpc.2018.05.010_bb0060) 2018 Chen (10.1016/j.bpc.2018.05.010_bb0010) 2016; 2 Lennard-Jones (10.1016/j.bpc.2018.05.010_bb0150) 1931; 43 Russo (10.1016/j.bpc.2018.05.010_bb0225) 2018 Leelananda (10.1016/j.bpc.2018.05.010_bb0035) 2016; 12 de Azevedo (10.1016/j.bpc.2018.05.010_bb0165) 2008; 16 Guedes (10.1016/j.bpc.2018.05.010_bb0005) 2014; 6 Trott (10.1016/j.bpc.2018.05.010_bb0090) 2010; 31 Robbins (10.1016/j.bpc.2018.05.010_bb0205) 1951; 22 Colwell (10.1016/j.bpc.2018.05.010_bb0030) 2018; 49 Smith (10.1016/j.bpc.2018.05.010_bb0050) 1970; 225 Pintro (10.1016/j.bpc.2018.05.010_bb0070) 2017; 20 Quiroga (10.1016/j.bpc.2018.05.010_bb0135) 2016; 11 Kirkpatrick (10.1016/j.bpc.2018.05.010_bb0055) 2004; 432 Crespo (10.1016/j.bpc.2018.05.010_bb0015) 2017; 17 Levin (10.1016/j.bpc.2018.05.010_bb0065) 2018; 235 Tibshirani (10.1016/j.bpc.2018.05.010_bb0190) 1996; 58 Morris (10.1016/j.bpc.2018.05.010_bb0105) 2009; 30 de Ávila (10.1016/j.bpc.2018.05.010_bb0075) 2017; 494 Freitas (10.1016/j.bpc.2018.05.010_bb0080) 2018; 15 |
| References_xml | – volume: 49 start-page: 3315 year: 2006 end-page: 3321 ident: bb0100 article-title: MolDock: a new technique for high-accuracy molecular docking publication-title: J. Med. Chem. – volume: 19 start-page: 1639 year: 1998 end-page: 1662 ident: bb0140 article-title: Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function publication-title: J. Comput. Chem. – volume: 28 start-page: 1145 year: 2007 end-page: 1152 ident: bb0145 article-title: A semiempirical free energy force field with charge-based desolvation publication-title: J. Comput. Chem. – volume: 67 start-page: 578 year: 1972 end-page: 580 ident: bb0175 article-title: Significance testing of the spearman rank correlation coefficient publication-title: J. Am. Stat. Assoc. – volume: 35 start-page: 198 year: 2007 end-page: 201 ident: bb0125 article-title: BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities publication-title: Nucleic Acids Res. – volume: 67 start-page: 301 year: 2005 end-page: 320 ident: bb0200 article-title: Regularization and variable selection via the elastic net publication-title: J. R. Stat. Soc. Series B Stat. Methodol. – volume: 20 start-page: 820 year: 2017 end-page: 827 ident: bb0070 article-title: Optimized virtual screening workflow: towards target-based polynomial scoring functions for HIV-1 protease publication-title: Comb. Chem. High Throughput Screen. – year: 2018 ident: bb0230 article-title: Development of machine learning models to predict inhibition of 3-dehydroquinate dehydratase publication-title: Chem. Biol. Drug Des. – volume: 19 start-page: 801 year: 2016 end-page: 812 ident: bb0110 article-title: SAnDReS a computational tool for statistical analysis of docking results and development of scoring functions publication-title: Comb. Chem. High Throughput Screen. – volume: 31 start-page: 455 year: 2010 end-page: 461 ident: bb0090 article-title: AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading publication-title: J. Comput. Chem. – start-page: 1071 year: 2008 end-page: 1076 ident: bb0095 article-title: Experimental approaches to evaluate the thermodynamics of protein-drug interactions publication-title: Curr. Drug Targets – volume: 8 start-page: 127 year: 1995 end-page: 134 ident: bb0215 article-title: LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions publication-title: Protein Eng. – volume: 17 start-page: 2663 year: 2017 end-page: 2680 ident: bb0015 article-title: Quantum-mechanics methodologies in drug discovery: applications of docking and scoring in lead optimization publication-title: Curr. Top. Med. Chem. – volume: 16 start-page: 9378 year: 2008 end-page: 9382 ident: bb0165 article-title: Evaluation of ligand-binding affinity using polynomial empirical scoring functions publication-title: Bioorg. Med. Chem. – volume: 2 year: 2016 ident: bb0010 article-title: Regulation of protein-ligand binding affinity by hydrogen bond pairing publication-title: Sci. Adv. – volume: 28 start-page: 235 year: 2000 end-page: 242 ident: bb0115 article-title: The protein data bank publication-title: Nucleic Acids Res. – volume: 11 year: 2016 ident: bb0135 article-title: Vinardo: a scoring function based on autodock vina improves scoring, docking, and virtual screening publication-title: PLoS One – volume: 153 start-page: 49 year: 1963 end-page: 52 ident: bb0195 article-title: On the regularization of ill-posed problems publication-title: Dokl. Akad. Nauk SSSR – volume: 60 start-page: 333 year: 2005 end-page: 340 ident: bb0120 article-title: Binding MOAD (mother of all databases) publication-title: Proteins – volume: 12 start-page: 2694 year: 2016 end-page: 2718 ident: bb0035 article-title: Computational methods in drug discovery publication-title: Beilstein J. Org. Chem. – volume: 494 start-page: 305 year: 2017 end-page: 310 ident: bb0075 article-title: Supervised machine learning techniques to predict binding affinity. A study for cyclin-dependent kinase 2 publication-title: Biochem. Biophys. Res. Commun. – volume: 8 start-page: 263 year: 2013 end-page: 276 ident: bb0020 article-title: The application of quantum mechanics in structure-based drug design publication-title: Expert Opin. Drug. Discov. – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: bb0040 article-title: Scikit-learn: machine learning in python publication-title: J. Mach. Learn. Res. – volume: 22 start-page: 400 year: 1951 end-page: 407 ident: bb0205 article-title: A stochastic approximation method publication-title: Ann. Math. Statist. – volume: 18 start-page: 1353 year: 2011 end-page: 1366 ident: bb0025 article-title: Molecular dynamics simulations of protein targets identified in Mycobacterium tuberculosis publication-title: Curr. Med. Chem. – year: 2018 ident: bb0225 article-title: Advances in the understanding of the cannabinoid receptor 1 - focusing on the inverse agonists interactions publication-title: Curr. Med. Chem. – year: 2018 ident: bb0060 article-title: Pre-clinical effects of metformin and aspirin on the cell lines of different breast cancer subtypes publication-title: Investig. New Drugs – reference: A.M. Legendre, Nouvelle méthodes pour la déterminiation des orbites des comètes, Courcier, Paris. 1805. – volume: 43 start-page: 461 year: 1931 ident: bb0150 article-title: Cohesion publication-title: Proc. Phys. Soc. – volume: 30 start-page: 2785 year: 2009 end-page: 2791 ident: bb0105 article-title: AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility publication-title: J. Comput. Chem. – volume: 18 start-page: 1339 year: 2011 end-page: 1352 ident: bb0160 article-title: Bio-inspired algorithms applied to molecular docking simulations publication-title: Curr. Med. Chem. – volume: 51 start-page: 2778 year: 2011 end-page: 2786 ident: bb0220 article-title: LigPlot+: multiple ligand-protein interaction diagrams for drug discovery publication-title: J. Chem. Inf. Model. – volume: 225 start-page: 563 year: 1970 end-page: 564 ident: bb0050 article-title: Natural selection and the concept of a protein space publication-title: Nature – volume: 18 start-page: 1104 year: 2017 end-page: 1111 ident: bb0085 article-title: Understanding the structural basis for inhibition of cyclin-dependent kinases. New pieces in the molecular puzzle publication-title: Curr. Drug Targets – volume: 432 start-page: 823 year: 2004 end-page: 865 ident: bb0055 article-title: Chemical space publication-title: Nature – volume: 43 start-page: 2506 year: 2000 end-page: 2513 ident: bb0180 article-title: Docking-based development of purine-like inhibitors of cyclin-dependent kinase-2 publication-title: J. Med. Chem. – volume: 6 start-page: 75 year: 2014 end-page: 87 ident: bb0005 article-title: Receptor-ligand molecular docking publication-title: Biophys. Rev. – volume: 49 start-page: 123 year: 2018 end-page: 128 ident: bb0030 article-title: Statistical and machine learning approaches to predicting protein-ligand interactions publication-title: Curr. Opin. Struct. Biol. – volume: 58 start-page: 267 year: 1996 end-page: 288 ident: bb0190 article-title: Regression shrinkage and selection via the lasso publication-title: J. R. Stat. Soc. Series B Stat. Methodol. – volume: 23 start-page: 462 year: 1952 end-page: 466 ident: bb0210 article-title: Stochastic estimation of the maximum of a regression function publication-title: Ann. Math. Statist. – volume: 15 start-page: 488 year: 2018 end-page: 499 ident: bb0080 article-title: Computational approach to the discovery of phytochemical molecules with therapeutic potential targets to the PKCZ protein publication-title: Lett. Drug Des. Discov. – volume: 24 start-page: 2459 year: 2017 end-page: 2470 ident: bb0045 article-title: Supervised machine learning methods applied to predict ligand-binding affinity publication-title: Curr. Med. Chem. – volume: 47 start-page: 2977 year: 2004 end-page: 2980 ident: bb0130 article-title: The PDBbind database: collection of binding affinities for protein-ligand complexes with known three-dimensional structures publication-title: J. Med. Chem. – volume: 11 start-page: 327 year: 2010 end-page: 334 ident: bb0155 article-title: MolDock applied to structure-based virtual screening publication-title: Curr. Drug Targets – volume: 16 start-page: 1481 year: 2010 end-page: 1498 ident: bb0170 article-title: CoMFA and CoMSIA analyses on 1, 2, 3, 4-tetrahydropyrrole [3, 4-b] indole and benzimidazole derivatives as selective CB2 receptor agonists publication-title: J. Mol. Model. – volume: 235 start-page: 1 year: 2018 end-page: 8 ident: bb0065 article-title: Development of CDK-targeted scoring functions for prediction of binding affinity publication-title: Biophys. Chem. – volume: 494 start-page: 305 year: 2017 ident: 10.1016/j.bpc.2018.05.010_bb0075 article-title: Supervised machine learning techniques to predict binding affinity. A study for cyclin-dependent kinase 2 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2017.10.035 – start-page: 1071 issue: 12 year: 2008 ident: 10.1016/j.bpc.2018.05.010_bb0095 article-title: Experimental approaches to evaluate the thermodynamics of protein-drug interactions publication-title: Curr. Drug Targets doi: 10.2174/138945008786949441 – volume: 23 start-page: 462 year: 1952 ident: 10.1016/j.bpc.2018.05.010_bb0210 article-title: Stochastic estimation of the maximum of a regression function publication-title: Ann. Math. Statist. doi: 10.1214/aoms/1177729392 – volume: 18 start-page: 1353 year: 2011 ident: 10.1016/j.bpc.2018.05.010_bb0025 article-title: Molecular dynamics simulations of protein targets identified in Mycobacterium tuberculosis publication-title: Curr. Med. Chem. doi: 10.2174/092986711795029519 – volume: 43 start-page: 461 year: 1931 ident: 10.1016/j.bpc.2018.05.010_bb0150 article-title: Cohesion publication-title: Proc. Phys. Soc. doi: 10.1088/0959-5309/43/5/301 – volume: 20 start-page: 820 year: 2017 ident: 10.1016/j.bpc.2018.05.010_bb0070 article-title: Optimized virtual screening workflow: towards target-based polynomial scoring functions for HIV-1 protease publication-title: Comb. Chem. High Throughput Screen. doi: 10.2174/1386207320666171121110019 – volume: 60 start-page: 333 year: 2005 ident: 10.1016/j.bpc.2018.05.010_bb0120 article-title: Binding MOAD (mother of all databases) publication-title: Proteins doi: 10.1002/prot.20512 – volume: 2 year: 2016 ident: 10.1016/j.bpc.2018.05.010_bb0010 article-title: Regulation of protein-ligand binding affinity by hydrogen bond pairing publication-title: Sci. Adv. doi: 10.1126/sciadv.1501240 – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.bpc.2018.05.010_bb0040 article-title: Scikit-learn: machine learning in python publication-title: J. Mach. Learn. Res. – volume: 47 start-page: 2977 year: 2004 ident: 10.1016/j.bpc.2018.05.010_bb0130 article-title: The PDBbind database: collection of binding affinities for protein-ligand complexes with known three-dimensional structures publication-title: J. Med. Chem. doi: 10.1021/jm030580l – volume: 43 start-page: 2506 year: 2000 ident: 10.1016/j.bpc.2018.05.010_bb0180 article-title: Docking-based development of purine-like inhibitors of cyclin-dependent kinase-2 publication-title: J. Med. Chem. doi: 10.1021/jm990506w – volume: 6 start-page: 75 year: 2014 ident: 10.1016/j.bpc.2018.05.010_bb0005 article-title: Receptor-ligand molecular docking publication-title: Biophys. Rev. doi: 10.1007/s12551-013-0130-2 – volume: 15 start-page: 488 year: 2018 ident: 10.1016/j.bpc.2018.05.010_bb0080 article-title: Computational approach to the discovery of phytochemical molecules with therapeutic potential targets to the PKCZ protein publication-title: Lett. Drug Des. Discov. doi: 10.2174/1570180814666170810120150 – volume: 16 start-page: 1481 year: 2010 ident: 10.1016/j.bpc.2018.05.010_bb0170 article-title: CoMFA and CoMSIA analyses on 1, 2, 3, 4-tetrahydropyrrole [3, 4-b] indole and benzimidazole derivatives as selective CB2 receptor agonists publication-title: J. Mol. Model. doi: 10.1007/s00894-010-0664-1 – volume: 58 start-page: 267 year: 1996 ident: 10.1016/j.bpc.2018.05.010_bb0190 article-title: Regression shrinkage and selection via the lasso publication-title: J. R. Stat. Soc. Series B Stat. Methodol. doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 49 start-page: 123 year: 2018 ident: 10.1016/j.bpc.2018.05.010_bb0030 article-title: Statistical and machine learning approaches to predicting protein-ligand interactions publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2018.01.006 – volume: 153 start-page: 49 year: 1963 ident: 10.1016/j.bpc.2018.05.010_bb0195 article-title: On the regularization of ill-posed problems publication-title: Dokl. Akad. Nauk SSSR – volume: 49 start-page: 3315 year: 2006 ident: 10.1016/j.bpc.2018.05.010_bb0100 article-title: MolDock: a new technique for high-accuracy molecular docking publication-title: J. Med. Chem. doi: 10.1021/jm051197e – volume: 18 start-page: 1339 year: 2011 ident: 10.1016/j.bpc.2018.05.010_bb0160 article-title: Bio-inspired algorithms applied to molecular docking simulations publication-title: Curr. Med. Chem. doi: 10.2174/092986711795029573 – year: 2018 ident: 10.1016/j.bpc.2018.05.010_bb0060 article-title: Pre-clinical effects of metformin and aspirin on the cell lines of different breast cancer subtypes publication-title: Investig. New Drugs doi: 10.1007/s10637-018-0568-y – volume: 12 start-page: 2694 year: 2016 ident: 10.1016/j.bpc.2018.05.010_bb0035 article-title: Computational methods in drug discovery publication-title: Beilstein J. Org. Chem. doi: 10.3762/bjoc.12.267 – ident: 10.1016/j.bpc.2018.05.010_bb0185 – volume: 225 start-page: 563 year: 1970 ident: 10.1016/j.bpc.2018.05.010_bb0050 article-title: Natural selection and the concept of a protein space publication-title: Nature doi: 10.1038/225563a0 – volume: 31 start-page: 455 year: 2010 ident: 10.1016/j.bpc.2018.05.010_bb0090 article-title: AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading publication-title: J. Comput. Chem. doi: 10.1002/jcc.21334 – volume: 22 start-page: 400 year: 1951 ident: 10.1016/j.bpc.2018.05.010_bb0205 article-title: A stochastic approximation method publication-title: Ann. Math. Statist. doi: 10.1214/aoms/1177729586 – volume: 28 start-page: 235 year: 2000 ident: 10.1016/j.bpc.2018.05.010_bb0115 article-title: The protein data bank publication-title: Nucleic Acids Res. doi: 10.1093/nar/28.1.235 – volume: 8 start-page: 127 year: 1995 ident: 10.1016/j.bpc.2018.05.010_bb0215 article-title: LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions publication-title: Protein Eng. doi: 10.1093/protein/8.2.127 – volume: 16 start-page: 9378 year: 2008 ident: 10.1016/j.bpc.2018.05.010_bb0165 article-title: Evaluation of ligand-binding affinity using polynomial empirical scoring functions publication-title: Bioorg. Med. Chem. doi: 10.1016/j.bmc.2008.08.014 – volume: 67 start-page: 578 year: 1972 ident: 10.1016/j.bpc.2018.05.010_bb0175 article-title: Significance testing of the spearman rank correlation coefficient publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1972.10481251 – volume: 24 start-page: 2459 year: 2017 ident: 10.1016/j.bpc.2018.05.010_bb0045 article-title: Supervised machine learning methods applied to predict ligand-binding affinity publication-title: Curr. Med. Chem. doi: 10.2174/0929867324666170623092503 – year: 2018 ident: 10.1016/j.bpc.2018.05.010_bb0225 article-title: Advances in the understanding of the cannabinoid receptor 1 - focusing on the inverse agonists interactions publication-title: Curr. Med. Chem. – year: 2018 ident: 10.1016/j.bpc.2018.05.010_bb0230 article-title: Development of machine learning models to predict inhibition of 3-dehydroquinate dehydratase publication-title: Chem. Biol. Drug Des. doi: 10.1111/cbdd.13312 – volume: 432 start-page: 823 year: 2004 ident: 10.1016/j.bpc.2018.05.010_bb0055 article-title: Chemical space publication-title: Nature doi: 10.1038/432823a – volume: 235 start-page: 1 year: 2018 ident: 10.1016/j.bpc.2018.05.010_bb0065 article-title: Development of CDK-targeted scoring functions for prediction of binding affinity publication-title: Biophys. Chem. doi: 10.1016/j.bpc.2018.01.004 – volume: 17 start-page: 2663 year: 2017 ident: 10.1016/j.bpc.2018.05.010_bb0015 article-title: Quantum-mechanics methodologies in drug discovery: applications of docking and scoring in lead optimization publication-title: Curr. Top. Med. Chem. doi: 10.2174/1568026617666170707120609 – volume: 51 start-page: 2778 year: 2011 ident: 10.1016/j.bpc.2018.05.010_bb0220 article-title: LigPlot+: multiple ligand-protein interaction diagrams for drug discovery publication-title: J. Chem. Inf. Model. doi: 10.1021/ci200227u – volume: 11 year: 2016 ident: 10.1016/j.bpc.2018.05.010_bb0135 article-title: Vinardo: a scoring function based on autodock vina improves scoring, docking, and virtual screening publication-title: PLoS One doi: 10.1371/journal.pone.0155183 – volume: 67 start-page: 301 year: 2005 ident: 10.1016/j.bpc.2018.05.010_bb0200 article-title: Regularization and variable selection via the elastic net publication-title: J. R. Stat. Soc. Series B Stat. Methodol. doi: 10.1111/j.1467-9868.2005.00503.x – volume: 19 start-page: 801 year: 2016 ident: 10.1016/j.bpc.2018.05.010_bb0110 article-title: SAnDReS a computational tool for statistical analysis of docking results and development of scoring functions publication-title: Comb. Chem. High Throughput Screen. doi: 10.2174/1386207319666160927111347 – volume: 35 start-page: 198 year: 2007 ident: 10.1016/j.bpc.2018.05.010_bb0125 article-title: BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkl999 – volume: 28 start-page: 1145 year: 2007 ident: 10.1016/j.bpc.2018.05.010_bb0145 article-title: A semiempirical free energy force field with charge-based desolvation publication-title: J. Comput. Chem. doi: 10.1002/jcc.20634 – volume: 30 start-page: 2785 issue: 2009 year: 2009 ident: 10.1016/j.bpc.2018.05.010_bb0105 article-title: AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility publication-title: J. Comput. Chem. doi: 10.1002/jcc.21256 – volume: 18 start-page: 1104 year: 2017 ident: 10.1016/j.bpc.2018.05.010_bb0085 article-title: Understanding the structural basis for inhibition of cyclin-dependent kinases. New pieces in the molecular puzzle publication-title: Curr. Drug Targets doi: 10.2174/1389450118666161116130155 – volume: 8 start-page: 263 year: 2013 ident: 10.1016/j.bpc.2018.05.010_bb0020 article-title: The application of quantum mechanics in structure-based drug design publication-title: Expert Opin. Drug. Discov. doi: 10.1517/17460441.2013.752812 – volume: 11 start-page: 327 year: 2010 ident: 10.1016/j.bpc.2018.05.010_bb0155 article-title: MolDock applied to structure-based virtual screening publication-title: Curr. Drug Targets doi: 10.2174/138945010790711941 – volume: 19 start-page: 1639 year: 1998 ident: 10.1016/j.bpc.2018.05.010_bb0140 article-title: Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function publication-title: J. Comput. Chem. doi: 10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B |
| SSID | ssj0000800 |
| Score | 2.455369 |
| Snippet | The possibility of using the atomic coordinates of protein-ligand complexes to assess binding affinity has a beneficial impact in the early stages of drug... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 63 |
| Title | Development of a machine-learning model to predict Gibbs free energy of binding for protein-ligand complexes |
| URI | https://dx.doi.org/10.1016/j.bpc.2018.05.010 https://www.ncbi.nlm.nih.gov/pubmed/29906639 https://www.proquest.com/docview/2056395785 |
| Volume | 240 |
| WOSCitedRecordID | wos000441488700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-4200 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000800 issn: 0301-4622 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFB62raIvovW2XsoIPhlSkkySmTwupVsVKYJV9y1kJpOSErNLNltW_4B_2zO3bG1pUcGXYQmZzZDvyzln5twQek2TSDBSSD-kRPgxF5UPeof6MhMcvq-EFjp4_MsHenzMZrPs42j00-XCnDe0bdl6nS3-K9RwDcBWqbN_Affwp3ABfgPoMALsMP4R8BfCgEzy4zcdLyn9xp2C6O43yuhcdMpN03tHNedLr-qk9KTJBYSJvDYJLyoOUVdzqFu_qU9tHtyikWsbfuhcwvV84UAXro3c5gxe2eaw_N6fyq6TtW5v5B0VHLbqzaAaSulNfsD6S32A-1W78r1p3Zyu1IyLJxQhG0Kw7LHZldQZk64VwOY1NUnJ-9JIX0aJH5vSpYN4jkw5JytgrTQ0qto0ebmiBMx5xNk-X6galSEzpVmDjcYb4hA_6R0lLAIEm_YxbqGdiCYZSPidybvD2fuNUmcmm8mt2jnIdajgpQddZ-Jct4XRpszJfXTP7kHwxHDnARrJdhfdNl1Jv--iOwcOvYeoucAmPK9wgS-zCWs24X6OLZuwZhNWbMKGTWqiZRMGNuHf2YQHNj1Cn6eHJwdvfdugwxckIT2MLBWZSDgpMh6CdqBhxYUqQclpVaYVS4tCJkmpqvzFNI5CoVplpUEZV4SkZUYeo-123sqnCBckCIQIg1IWJK5SxrKIsYSnWVUQwkU0RoF7p7mw1etVE5Umd2GKZznAkCsY8iDJAYYxejNMWZjSLTfdHDugcmt7GpsyB1bdNO2VAzUHZJSzrWjlfLWEm5JU-cBZMkZPDNrDKpQJCJZ-9uzfHvoc3d18Zi_Qdt-t5Et0S5z39bLbQ1t0xvYsf38B_SG-tQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+machine-learning+model+to+predict+Gibbs+free+energy+of+binding+for+protein-ligand+complexes&rft.jtitle=Biophysical+chemistry&rft.au=Bitencourt-Ferreira%2C+Gabriela&rft.au=de+Azevedo%2C+Walter+Filgueira&rft.date=2018-09-01&rft.pub=Elsevier+B.V&rft.issn=0301-4622&rft.eissn=1873-4200&rft.volume=240&rft.spage=63&rft.epage=69&rft_id=info:doi/10.1016%2Fj.bpc.2018.05.010&rft.externalDocID=S0301462218301224 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-4622&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-4622&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-4622&client=summon |