Development of a machine-learning model to predict Gibbs free energy of binding for protein-ligand complexes

The possibility of using the atomic coordinates of protein-ligand complexes to assess binding affinity has a beneficial impact in the early stages of drug development and design. From the computational view, the creation of reliable scoring functions is still an open problem in the simulation of bio...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Biophysical chemistry Ročník 240; s. 63 - 69
Hlavní autori: Bitencourt-Ferreira, Gabriela, de Azevedo, Walter Filgueira
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Netherlands Elsevier B.V 01.09.2018
ISSN:0301-4622, 1873-4200, 1873-4200
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The possibility of using the atomic coordinates of protein-ligand complexes to assess binding affinity has a beneficial impact in the early stages of drug development and design. From the computational view, the creation of reliable scoring functions is still an open problem in the simulation of biological systems, and the development of a new generation machine-learning model is an active research field. In this work, we propose a novel scoring function to predict Gibbs free energy of binding (ΔG) based on the crystallographic structure of complexes involving a protein and an active ligand. We made use of the energy terms available the AutoDock Vina scoring function and trained a novel function using the machine learning methods available in the program SAnDReS. We used a training set composed exclusively of high-resolution crystallographic structures for which the ΔG data was available. We describe here the methodology to develop a machine-learning model to predict binding affinity using the program SAnDReS. Statistical analysis of our machine-learning model indicated a superior performance when compared to the MolDock, Plants, AutoDock 4, and AutoDock Vina scoring functions. We expect that this new machine-learning model could improve drug design and development through the application of a reliable scoring function in the analysis virtual screening simulations. [Display omitted] •Development of a machine-learning model to predict free energy of binding for protein-ligand complexes;•The use of a dataset composed of 48 high-resolution crystallographic structures to be used to build a new scoring function;•Improved predictive power of the machine learning model to predict ΔG, when compared with classical scoring functions.
AbstractList The possibility of using the atomic coordinates of protein-ligand complexes to assess binding affinity has a beneficial impact in the early stages of drug development and design. From the computational view, the creation of reliable scoring functions is still an open problem in the simulation of biological systems, and the development of a new generation machine-learning model is an active research field. In this work, we propose a novel scoring function to predict Gibbs free energy of binding (ΔG) based on the crystallographic structure of complexes involving a protein and an active ligand. We made use of the energy terms available the AutoDock Vina scoring function and trained a novel function using the machine learning methods available in the program SAnDReS. We used a training set composed exclusively of high-resolution crystallographic structures for which the ΔG data was available. We describe here the methodology to develop a machine-learning model to predict binding affinity using the program SAnDReS. Statistical analysis of our machine-learning model indicated a superior performance when compared to the MolDock, Plants, AutoDock 4, and AutoDock Vina scoring functions. We expect that this new machine-learning model could improve drug design and development through the application of a reliable scoring function in the analysis virtual screening simulations.
The possibility of using the atomic coordinates of protein-ligand complexes to assess binding affinity has a beneficial impact in the early stages of drug development and design. From the computational view, the creation of reliable scoring functions is still an open problem in the simulation of biological systems, and the development of a new generation machine-learning model is an active research field. In this work, we propose a novel scoring function to predict Gibbs free energy of binding (ΔG) based on the crystallographic structure of complexes involving a protein and an active ligand. We made use of the energy terms available the AutoDock Vina scoring function and trained a novel function using the machine learning methods available in the program SAnDReS. We used a training set composed exclusively of high-resolution crystallographic structures for which the ΔG data was available. We describe here the methodology to develop a machine-learning model to predict binding affinity using the program SAnDReS. Statistical analysis of our machine-learning model indicated a superior performance when compared to the MolDock, Plants, AutoDock 4, and AutoDock Vina scoring functions. We expect that this new machine-learning model could improve drug design and development through the application of a reliable scoring function in the analysis virtual screening simulations. [Display omitted] •Development of a machine-learning model to predict free energy of binding for protein-ligand complexes;•The use of a dataset composed of 48 high-resolution crystallographic structures to be used to build a new scoring function;•Improved predictive power of the machine learning model to predict ΔG, when compared with classical scoring functions.
The possibility of using the atomic coordinates of protein-ligand complexes to assess binding affinity has a beneficial impact in the early stages of drug development and design. From the computational view, the creation of reliable scoring functions is still an open problem in the simulation of biological systems, and the development of a new generation machine-learning model is an active research field. In this work, we propose a novel scoring function to predict Gibbs free energy of binding (ΔG) based on the crystallographic structure of complexes involving a protein and an active ligand. We made use of the energy terms available the AutoDock Vina scoring function and trained a novel function using the machine learning methods available in the program SAnDReS. We used a training set composed exclusively of high-resolution crystallographic structures for which the ΔG data was available. We describe here the methodology to develop a machine-learning model to predict binding affinity using the program SAnDReS. Statistical analysis of our machine-learning model indicated a superior performance when compared to the MolDock, Plants, AutoDock 4, and AutoDock Vina scoring functions. We expect that this new machine-learning model could improve drug design and development through the application of a reliable scoring function in the analysis virtual screening simulations.The possibility of using the atomic coordinates of protein-ligand complexes to assess binding affinity has a beneficial impact in the early stages of drug development and design. From the computational view, the creation of reliable scoring functions is still an open problem in the simulation of biological systems, and the development of a new generation machine-learning model is an active research field. In this work, we propose a novel scoring function to predict Gibbs free energy of binding (ΔG) based on the crystallographic structure of complexes involving a protein and an active ligand. We made use of the energy terms available the AutoDock Vina scoring function and trained a novel function using the machine learning methods available in the program SAnDReS. We used a training set composed exclusively of high-resolution crystallographic structures for which the ΔG data was available. We describe here the methodology to develop a machine-learning model to predict binding affinity using the program SAnDReS. Statistical analysis of our machine-learning model indicated a superior performance when compared to the MolDock, Plants, AutoDock 4, and AutoDock Vina scoring functions. We expect that this new machine-learning model could improve drug design and development through the application of a reliable scoring function in the analysis virtual screening simulations.
Author Bitencourt-Ferreira, Gabriela
de Azevedo, Walter Filgueira
Author_xml – sequence: 1
  givenname: Gabriela
  surname: Bitencourt-Ferreira
  fullname: Bitencourt-Ferreira, Gabriela
  organization: Laboratory of Computational Systems Biology, School of Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, Porto Alegre, RS 90619-900, Brazil
– sequence: 2
  givenname: Walter Filgueira
  surname: de Azevedo
  fullname: de Azevedo, Walter Filgueira
  email: walter@azevedolab.net
  organization: Laboratory of Computational Systems Biology, School of Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, Porto Alegre, RS 90619-900, Brazil
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29906639$$D View this record in MEDLINE/PubMed
BookMark eNp9kb1uFDEUhS0URDaBB6BBLmlm8M_YMyMqFCAgRaKB2vLPncUrjz3Y3oi8PV5t0lDEhd1835XvOVfoIqYICL2lpKeEyg-H3my2Z4ROPRE9oeQF2tFp5N3ACLlAO8IJ7QbJ2CW6KuVA2pkIeYUu2TwTKfm8Q-Ez3ENI2wqx4rRgjVdtf_sIXQCdo497vCYHAdeEtwzO24pvvTEFLxkAQ4S8fziJxkd3opeUG5gq-NgFv9fRYZvWLcBfKK_Ry0WHAm8e32v06-uXnzffursft99vPt11lgte2z1JO1thuJ4N5W0juhg7zEyacXFymaTWIIQTgo3DODBqJ-sGSdywcC7dzK_R-_Pc9pE_RyhVrb5YCEFHSMeiGBFteTFOoqHvHtGjWcGpLftV5wf1lFADxjNgcyolw6Ksr7r6FGvWPihK1KkLdVCtC3XqQhGhWhfNpP-ZT8Ofcz6eHWjx3HvIqlgP0bbgM9iqXPLP2P8Ae1ihjw
CitedBy_id crossref_primary_10_1080_07391102_2022_2141883
crossref_primary_10_1016_j_ijbiomac_2025_144250
crossref_primary_10_1186_s12859_019_3058_0
crossref_primary_10_2174_0929867328666210806105810
crossref_primary_10_1016_j_gene_2019_01_029
crossref_primary_10_1088_1674_1056_ad8ecb
crossref_primary_10_1093_bib_bbab476
crossref_primary_10_2174_1574893614666190104142228
crossref_primary_10_2174_2213275912666191102162959
crossref_primary_10_1371_journal_pone_0254965
crossref_primary_10_1002_wcms_1465
crossref_primary_10_1016_j_genrep_2018_10_011
crossref_primary_10_2174_0929867325666181113122900
crossref_primary_10_1140_epjp_s13360_024_05900_x
crossref_primary_10_1016_j_matpr_2020_12_288
crossref_primary_10_2174_0929867325666181001114750
crossref_primary_10_1016_j_jksus_2022_101867
crossref_primary_10_1016_j_matpr_2019_04_100
crossref_primary_10_1007_s12033_024_01200_y
crossref_primary_10_1080_07391102_2022_2133010
crossref_primary_10_2174_0929867327666200515101820
crossref_primary_10_1016_j_molliq_2025_127129
crossref_primary_10_1093_bib_bbaa107
crossref_primary_10_1080_17460441_2019_1550482
crossref_primary_10_1680_jemmr_18_00129
crossref_primary_10_2174_0109298673307315240730042209
crossref_primary_10_1093_bib_bbad138
crossref_primary_10_1016_j_molstruc_2023_137453
crossref_primary_10_3390_toxins14110787
crossref_primary_10_3390_ijms22063241
crossref_primary_10_1007_s11030_024_10979_6
crossref_primary_10_1039_D0ME00134A
crossref_primary_10_1016_j_chemolab_2022_104690
Cites_doi 10.1016/j.bbrc.2017.10.035
10.2174/138945008786949441
10.1214/aoms/1177729392
10.2174/092986711795029519
10.1088/0959-5309/43/5/301
10.2174/1386207320666171121110019
10.1002/prot.20512
10.1126/sciadv.1501240
10.1021/jm030580l
10.1021/jm990506w
10.1007/s12551-013-0130-2
10.2174/1570180814666170810120150
10.1007/s00894-010-0664-1
10.1111/j.2517-6161.1996.tb02080.x
10.1016/j.sbi.2018.01.006
10.1021/jm051197e
10.2174/092986711795029573
10.1007/s10637-018-0568-y
10.3762/bjoc.12.267
10.1038/225563a0
10.1002/jcc.21334
10.1214/aoms/1177729586
10.1093/nar/28.1.235
10.1093/protein/8.2.127
10.1016/j.bmc.2008.08.014
10.1080/01621459.1972.10481251
10.2174/0929867324666170623092503
10.1111/cbdd.13312
10.1038/432823a
10.1016/j.bpc.2018.01.004
10.2174/1568026617666170707120609
10.1021/ci200227u
10.1371/journal.pone.0155183
10.1111/j.1467-9868.2005.00503.x
10.2174/1386207319666160927111347
10.1093/nar/gkl999
10.1002/jcc.20634
10.1002/jcc.21256
10.2174/1389450118666161116130155
10.1517/17460441.2013.752812
10.2174/138945010790711941
10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright © 2018 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright © 2018 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.bpc.2018.05.010
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1873-4200
EndPage 69
ExternalDocumentID 29906639
10_1016_j_bpc_2018_05_010
S0301462218301224
Genre Journal Article
GroupedDBID ---
--K
--M
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABEFU
ABFNM
ABGSF
ABJNI
ABLJU
ABMAC
ABNEU
ABTAH
ABUDA
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIUM
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AFZHZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJQLL
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HMU
HVGLF
HZ~
IHE
J1W
KOM
LX3
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBG
SCB
SCC
SCH
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSK
SSQ
SSU
SSZ
T5K
VH1
WH7
WUQ
XPP
YK3
YYP
ZGI
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
NPM
SSH
7X8
ID FETCH-LOGICAL-c353t-c386c9c5b3a9b131871fbc4926b7fd6f86aae55d552747421c8cd460d4f336d93
ISICitedReferencesCount 59
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000441488700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0301-4622
1873-4200
IngestDate Thu Oct 02 09:32:30 EDT 2025
Thu Apr 03 07:06:27 EDT 2025
Sat Nov 29 01:51:04 EST 2025
Tue Nov 18 21:51:11 EST 2025
Fri Feb 23 02:23:47 EST 2024
IsPeerReviewed true
IsScholarly true
Language English
License Copyright © 2018 Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c353t-c386c9c5b3a9b131871fbc4926b7fd6f86aae55d552747421c8cd460d4f336d93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 29906639
PQID 2056395785
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2056395785
pubmed_primary_29906639
crossref_citationtrail_10_1016_j_bpc_2018_05_010
crossref_primary_10_1016_j_bpc_2018_05_010
elsevier_sciencedirect_doi_10_1016_j_bpc_2018_05_010
PublicationCentury 2000
PublicationDate 2018-09-01
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biophysical chemistry
PublicationTitleAlternate Biophys Chem
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Huey, Morris, Olson, Goodsell (bb0145) 2007; 28
de Azevedo, Dias (bb0165) 2008; 16
Guedes, de Magalhães, Dardenne (bb0005) 2014; 6
Pintro, Azevedo (bb0070) 2017; 20
Laskowski, Swindells (bb0220) 2011; 51
Thomsen, Christensen (bb0100) 2006; 49
Heck, Pintro, Pereira, de Ávila, Levin, de Azevedo (bb0045) 2017; 24
de Ávila, de Azevedo (bb0230) 2018
Quiroga, Villarreal (bb0135) 2016; 11
Zou, Hastie (bb0200) 2005; 67
Russo, de Azevedo (bb0225) 2018
Leelananda, Lindert (bb0035) 2016; 12
Berman, Westbrook, Feng, Gilliland, Bhat, Weissig, Shindyalov, Bourne (bb0115) 2000; 28
Lennard-Jones (bb0150) 1931; 43
Levin, Pintro, de Ávila, de Mattos, De Azevedo (bb0085) 2017; 18
Xavier, Heck, Avila, Levin, Pintro, Carvalho, Azevedo (bb0110) 2016; 19
Wang, Fang, Lu, Wang (bb0130) 2004; 47
Tikhonov (bb0195) 1963; 153
Chen, Oezguen, Urvil, Ferguson, Dann, Savidge (bb0010) 2016; 2
de Azevedo (bb0025) 2011; 18
Otyepka, Kryštof, Havlíček, Siglerová, Strnad, Koca (bb0180) 2000; 43
Wallace, Laskowski, Thornton (bb0215) 1995; 8
Herberlé, de Azevedo (bb0160) 2011; 18
Crespo, Rodriguez-Granillo, Lim (bb0015) 2017; 17
Robbins, Monro (bb0205) 1951; 22
Morris, Huey, Lindstrom, Sanner, Belew, Goodsell, Olson (bb0105) 2009; 30
de Azevedo (bb0155) 2010; 11
A.M. Legendre, Nouvelle méthodes pour la déterminiation des orbites des comètes, Courcier, Paris. 1805.
de Ávila, Xavier, Pintro, de Azevedo (bb0075) 2017; 494
Levin, Pintro, Bitencourt-Ferreira, Mattos, Silvério, de Azevedo (bb0065) 2018; 235
Liu, Lin, Wen, Jorrisen, Gilson (bb0125) 2007; 35
Tibshirani (bb0190) 1996; 58
Morris, Goodsell, Halliday, Huey, Hart, Belew, Olson (bb0140) 1998; 19
Colwell (bb0030) 2018; 49
Trott, Olson (bb0090) 2010; 31
Smith (bb0050) 1970; 225
de Azevedo, Dias (bb0095) 2008
Kirkpatrick, Ellis (bb0055) 2004; 432
Amaral, Nery, Leite, de Azevedo Junior, Campos (bb0060) 2018
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Preguedettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Duchesnay (bb0040) 2011; 12
Cichero, Cesarini, Mosti, Fossa (bb0170) 2010; 16
Kiefer, Wolfowitz (bb0210) 1952; 23
Freitas, Elias, Pinto, Costa, de Carvalho, Omote, Camps, Ishikawa, Arcuri, Vinga, Oliveira, Junior, da Silveira (bb0080) 2018; 15
Zar (bb0175) 1972; 67
Mucs, Bryce (bb0020) 2013; 8
Hu, Benson, Smith, Lerner, Carlson (bb0120) 2005; 60
Wang (10.1016/j.bpc.2018.05.010_bb0130) 2004; 47
Thomsen (10.1016/j.bpc.2018.05.010_bb0100) 2006; 49
de Azevedo (10.1016/j.bpc.2018.05.010_bb0025) 2011; 18
Zar (10.1016/j.bpc.2018.05.010_bb0175) 1972; 67
Heck (10.1016/j.bpc.2018.05.010_bb0045) 2017; 24
Morris (10.1016/j.bpc.2018.05.010_bb0140) 1998; 19
Zou (10.1016/j.bpc.2018.05.010_bb0200) 2005; 67
Cichero (10.1016/j.bpc.2018.05.010_bb0170) 2010; 16
Pedregosa (10.1016/j.bpc.2018.05.010_bb0040) 2011; 12
10.1016/j.bpc.2018.05.010_bb0185
Wallace (10.1016/j.bpc.2018.05.010_bb0215) 1995; 8
de Azevedo (10.1016/j.bpc.2018.05.010_bb0155) 2010; 11
Huey (10.1016/j.bpc.2018.05.010_bb0145) 2007; 28
Levin (10.1016/j.bpc.2018.05.010_bb0085) 2017; 18
Herberlé (10.1016/j.bpc.2018.05.010_bb0160) 2011; 18
de Ávila (10.1016/j.bpc.2018.05.010_bb0230) 2018
de Azevedo (10.1016/j.bpc.2018.05.010_bb0095) 2008
Berman (10.1016/j.bpc.2018.05.010_bb0115) 2000; 28
Laskowski (10.1016/j.bpc.2018.05.010_bb0220) 2011; 51
Mucs (10.1016/j.bpc.2018.05.010_bb0020) 2013; 8
Otyepka (10.1016/j.bpc.2018.05.010_bb0180) 2000; 43
Xavier (10.1016/j.bpc.2018.05.010_bb0110) 2016; 19
Kiefer (10.1016/j.bpc.2018.05.010_bb0210) 1952; 23
Liu (10.1016/j.bpc.2018.05.010_bb0125) 2007; 35
Hu (10.1016/j.bpc.2018.05.010_bb0120) 2005; 60
Tikhonov (10.1016/j.bpc.2018.05.010_bb0195) 1963; 153
Amaral (10.1016/j.bpc.2018.05.010_bb0060) 2018
Chen (10.1016/j.bpc.2018.05.010_bb0010) 2016; 2
Lennard-Jones (10.1016/j.bpc.2018.05.010_bb0150) 1931; 43
Russo (10.1016/j.bpc.2018.05.010_bb0225) 2018
Leelananda (10.1016/j.bpc.2018.05.010_bb0035) 2016; 12
de Azevedo (10.1016/j.bpc.2018.05.010_bb0165) 2008; 16
Guedes (10.1016/j.bpc.2018.05.010_bb0005) 2014; 6
Trott (10.1016/j.bpc.2018.05.010_bb0090) 2010; 31
Robbins (10.1016/j.bpc.2018.05.010_bb0205) 1951; 22
Colwell (10.1016/j.bpc.2018.05.010_bb0030) 2018; 49
Smith (10.1016/j.bpc.2018.05.010_bb0050) 1970; 225
Pintro (10.1016/j.bpc.2018.05.010_bb0070) 2017; 20
Quiroga (10.1016/j.bpc.2018.05.010_bb0135) 2016; 11
Kirkpatrick (10.1016/j.bpc.2018.05.010_bb0055) 2004; 432
Crespo (10.1016/j.bpc.2018.05.010_bb0015) 2017; 17
Levin (10.1016/j.bpc.2018.05.010_bb0065) 2018; 235
Tibshirani (10.1016/j.bpc.2018.05.010_bb0190) 1996; 58
Morris (10.1016/j.bpc.2018.05.010_bb0105) 2009; 30
de Ávila (10.1016/j.bpc.2018.05.010_bb0075) 2017; 494
Freitas (10.1016/j.bpc.2018.05.010_bb0080) 2018; 15
References_xml – volume: 49
  start-page: 3315
  year: 2006
  end-page: 3321
  ident: bb0100
  article-title: MolDock: a new technique for high-accuracy molecular docking
  publication-title: J. Med. Chem.
– volume: 19
  start-page: 1639
  year: 1998
  end-page: 1662
  ident: bb0140
  article-title: Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function
  publication-title: J. Comput. Chem.
– volume: 28
  start-page: 1145
  year: 2007
  end-page: 1152
  ident: bb0145
  article-title: A semiempirical free energy force field with charge-based desolvation
  publication-title: J. Comput. Chem.
– volume: 67
  start-page: 578
  year: 1972
  end-page: 580
  ident: bb0175
  article-title: Significance testing of the spearman rank correlation coefficient
  publication-title: J. Am. Stat. Assoc.
– volume: 35
  start-page: 198
  year: 2007
  end-page: 201
  ident: bb0125
  article-title: BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities
  publication-title: Nucleic Acids Res.
– volume: 67
  start-page: 301
  year: 2005
  end-page: 320
  ident: bb0200
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. R. Stat. Soc. Series B Stat. Methodol.
– volume: 20
  start-page: 820
  year: 2017
  end-page: 827
  ident: bb0070
  article-title: Optimized virtual screening workflow: towards target-based polynomial scoring functions for HIV-1 protease
  publication-title: Comb. Chem. High Throughput Screen.
– year: 2018
  ident: bb0230
  article-title: Development of machine learning models to predict inhibition of 3-dehydroquinate dehydratase
  publication-title: Chem. Biol. Drug Des.
– volume: 19
  start-page: 801
  year: 2016
  end-page: 812
  ident: bb0110
  article-title: SAnDReS a computational tool for statistical analysis of docking results and development of scoring functions
  publication-title: Comb. Chem. High Throughput Screen.
– volume: 31
  start-page: 455
  year: 2010
  end-page: 461
  ident: bb0090
  article-title: AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading
  publication-title: J. Comput. Chem.
– start-page: 1071
  year: 2008
  end-page: 1076
  ident: bb0095
  article-title: Experimental approaches to evaluate the thermodynamics of protein-drug interactions
  publication-title: Curr. Drug Targets
– volume: 8
  start-page: 127
  year: 1995
  end-page: 134
  ident: bb0215
  article-title: LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions
  publication-title: Protein Eng.
– volume: 17
  start-page: 2663
  year: 2017
  end-page: 2680
  ident: bb0015
  article-title: Quantum-mechanics methodologies in drug discovery: applications of docking and scoring in lead optimization
  publication-title: Curr. Top. Med. Chem.
– volume: 16
  start-page: 9378
  year: 2008
  end-page: 9382
  ident: bb0165
  article-title: Evaluation of ligand-binding affinity using polynomial empirical scoring functions
  publication-title: Bioorg. Med. Chem.
– volume: 2
  year: 2016
  ident: bb0010
  article-title: Regulation of protein-ligand binding affinity by hydrogen bond pairing
  publication-title: Sci. Adv.
– volume: 28
  start-page: 235
  year: 2000
  end-page: 242
  ident: bb0115
  article-title: The protein data bank
  publication-title: Nucleic Acids Res.
– volume: 11
  year: 2016
  ident: bb0135
  article-title: Vinardo: a scoring function based on autodock vina improves scoring, docking, and virtual screening
  publication-title: PLoS One
– volume: 153
  start-page: 49
  year: 1963
  end-page: 52
  ident: bb0195
  article-title: On the regularization of ill-posed problems
  publication-title: Dokl. Akad. Nauk SSSR
– volume: 60
  start-page: 333
  year: 2005
  end-page: 340
  ident: bb0120
  article-title: Binding MOAD (mother of all databases)
  publication-title: Proteins
– volume: 12
  start-page: 2694
  year: 2016
  end-page: 2718
  ident: bb0035
  article-title: Computational methods in drug discovery
  publication-title: Beilstein J. Org. Chem.
– volume: 494
  start-page: 305
  year: 2017
  end-page: 310
  ident: bb0075
  article-title: Supervised machine learning techniques to predict binding affinity. A study for cyclin-dependent kinase 2
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 8
  start-page: 263
  year: 2013
  end-page: 276
  ident: bb0020
  article-title: The application of quantum mechanics in structure-based drug design
  publication-title: Expert Opin. Drug. Discov.
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: bb0040
  article-title: Scikit-learn: machine learning in python
  publication-title: J. Mach. Learn. Res.
– volume: 22
  start-page: 400
  year: 1951
  end-page: 407
  ident: bb0205
  article-title: A stochastic approximation method
  publication-title: Ann. Math. Statist.
– volume: 18
  start-page: 1353
  year: 2011
  end-page: 1366
  ident: bb0025
  article-title: Molecular dynamics simulations of protein targets identified in Mycobacterium tuberculosis
  publication-title: Curr. Med. Chem.
– year: 2018
  ident: bb0225
  article-title: Advances in the understanding of the cannabinoid receptor 1 - focusing on the inverse agonists interactions
  publication-title: Curr. Med. Chem.
– year: 2018
  ident: bb0060
  article-title: Pre-clinical effects of metformin and aspirin on the cell lines of different breast cancer subtypes
  publication-title: Investig. New Drugs
– reference: A.M. Legendre, Nouvelle méthodes pour la déterminiation des orbites des comètes, Courcier, Paris. 1805.
– volume: 43
  start-page: 461
  year: 1931
  ident: bb0150
  article-title: Cohesion
  publication-title: Proc. Phys. Soc.
– volume: 30
  start-page: 2785
  year: 2009
  end-page: 2791
  ident: bb0105
  article-title: AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility
  publication-title: J. Comput. Chem.
– volume: 18
  start-page: 1339
  year: 2011
  end-page: 1352
  ident: bb0160
  article-title: Bio-inspired algorithms applied to molecular docking simulations
  publication-title: Curr. Med. Chem.
– volume: 51
  start-page: 2778
  year: 2011
  end-page: 2786
  ident: bb0220
  article-title: LigPlot+: multiple ligand-protein interaction diagrams for drug discovery
  publication-title: J. Chem. Inf. Model.
– volume: 225
  start-page: 563
  year: 1970
  end-page: 564
  ident: bb0050
  article-title: Natural selection and the concept of a protein space
  publication-title: Nature
– volume: 18
  start-page: 1104
  year: 2017
  end-page: 1111
  ident: bb0085
  article-title: Understanding the structural basis for inhibition of cyclin-dependent kinases. New pieces in the molecular puzzle
  publication-title: Curr. Drug Targets
– volume: 432
  start-page: 823
  year: 2004
  end-page: 865
  ident: bb0055
  article-title: Chemical space
  publication-title: Nature
– volume: 43
  start-page: 2506
  year: 2000
  end-page: 2513
  ident: bb0180
  article-title: Docking-based development of purine-like inhibitors of cyclin-dependent kinase-2
  publication-title: J. Med. Chem.
– volume: 6
  start-page: 75
  year: 2014
  end-page: 87
  ident: bb0005
  article-title: Receptor-ligand molecular docking
  publication-title: Biophys. Rev.
– volume: 49
  start-page: 123
  year: 2018
  end-page: 128
  ident: bb0030
  article-title: Statistical and machine learning approaches to predicting protein-ligand interactions
  publication-title: Curr. Opin. Struct. Biol.
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: bb0190
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc. Series B Stat. Methodol.
– volume: 23
  start-page: 462
  year: 1952
  end-page: 466
  ident: bb0210
  article-title: Stochastic estimation of the maximum of a regression function
  publication-title: Ann. Math. Statist.
– volume: 15
  start-page: 488
  year: 2018
  end-page: 499
  ident: bb0080
  article-title: Computational approach to the discovery of phytochemical molecules with therapeutic potential targets to the PKCZ protein
  publication-title: Lett. Drug Des. Discov.
– volume: 24
  start-page: 2459
  year: 2017
  end-page: 2470
  ident: bb0045
  article-title: Supervised machine learning methods applied to predict ligand-binding affinity
  publication-title: Curr. Med. Chem.
– volume: 47
  start-page: 2977
  year: 2004
  end-page: 2980
  ident: bb0130
  article-title: The PDBbind database: collection of binding affinities for protein-ligand complexes with known three-dimensional structures
  publication-title: J. Med. Chem.
– volume: 11
  start-page: 327
  year: 2010
  end-page: 334
  ident: bb0155
  article-title: MolDock applied to structure-based virtual screening
  publication-title: Curr. Drug Targets
– volume: 16
  start-page: 1481
  year: 2010
  end-page: 1498
  ident: bb0170
  article-title: CoMFA and CoMSIA analyses on 1, 2, 3, 4-tetrahydropyrrole [3, 4-b] indole and benzimidazole derivatives as selective CB2 receptor agonists
  publication-title: J. Mol. Model.
– volume: 235
  start-page: 1
  year: 2018
  end-page: 8
  ident: bb0065
  article-title: Development of CDK-targeted scoring functions for prediction of binding affinity
  publication-title: Biophys. Chem.
– volume: 494
  start-page: 305
  year: 2017
  ident: 10.1016/j.bpc.2018.05.010_bb0075
  article-title: Supervised machine learning techniques to predict binding affinity. A study for cyclin-dependent kinase 2
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2017.10.035
– start-page: 1071
  issue: 12
  year: 2008
  ident: 10.1016/j.bpc.2018.05.010_bb0095
  article-title: Experimental approaches to evaluate the thermodynamics of protein-drug interactions
  publication-title: Curr. Drug Targets
  doi: 10.2174/138945008786949441
– volume: 23
  start-page: 462
  year: 1952
  ident: 10.1016/j.bpc.2018.05.010_bb0210
  article-title: Stochastic estimation of the maximum of a regression function
  publication-title: Ann. Math. Statist.
  doi: 10.1214/aoms/1177729392
– volume: 18
  start-page: 1353
  year: 2011
  ident: 10.1016/j.bpc.2018.05.010_bb0025
  article-title: Molecular dynamics simulations of protein targets identified in Mycobacterium tuberculosis
  publication-title: Curr. Med. Chem.
  doi: 10.2174/092986711795029519
– volume: 43
  start-page: 461
  year: 1931
  ident: 10.1016/j.bpc.2018.05.010_bb0150
  article-title: Cohesion
  publication-title: Proc. Phys. Soc.
  doi: 10.1088/0959-5309/43/5/301
– volume: 20
  start-page: 820
  year: 2017
  ident: 10.1016/j.bpc.2018.05.010_bb0070
  article-title: Optimized virtual screening workflow: towards target-based polynomial scoring functions for HIV-1 protease
  publication-title: Comb. Chem. High Throughput Screen.
  doi: 10.2174/1386207320666171121110019
– volume: 60
  start-page: 333
  year: 2005
  ident: 10.1016/j.bpc.2018.05.010_bb0120
  article-title: Binding MOAD (mother of all databases)
  publication-title: Proteins
  doi: 10.1002/prot.20512
– volume: 2
  year: 2016
  ident: 10.1016/j.bpc.2018.05.010_bb0010
  article-title: Regulation of protein-ligand binding affinity by hydrogen bond pairing
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1501240
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.bpc.2018.05.010_bb0040
  article-title: Scikit-learn: machine learning in python
  publication-title: J. Mach. Learn. Res.
– volume: 47
  start-page: 2977
  year: 2004
  ident: 10.1016/j.bpc.2018.05.010_bb0130
  article-title: The PDBbind database: collection of binding affinities for protein-ligand complexes with known three-dimensional structures
  publication-title: J. Med. Chem.
  doi: 10.1021/jm030580l
– volume: 43
  start-page: 2506
  year: 2000
  ident: 10.1016/j.bpc.2018.05.010_bb0180
  article-title: Docking-based development of purine-like inhibitors of cyclin-dependent kinase-2
  publication-title: J. Med. Chem.
  doi: 10.1021/jm990506w
– volume: 6
  start-page: 75
  year: 2014
  ident: 10.1016/j.bpc.2018.05.010_bb0005
  article-title: Receptor-ligand molecular docking
  publication-title: Biophys. Rev.
  doi: 10.1007/s12551-013-0130-2
– volume: 15
  start-page: 488
  year: 2018
  ident: 10.1016/j.bpc.2018.05.010_bb0080
  article-title: Computational approach to the discovery of phytochemical molecules with therapeutic potential targets to the PKCZ protein
  publication-title: Lett. Drug Des. Discov.
  doi: 10.2174/1570180814666170810120150
– volume: 16
  start-page: 1481
  year: 2010
  ident: 10.1016/j.bpc.2018.05.010_bb0170
  article-title: CoMFA and CoMSIA analyses on 1, 2, 3, 4-tetrahydropyrrole [3, 4-b] indole and benzimidazole derivatives as selective CB2 receptor agonists
  publication-title: J. Mol. Model.
  doi: 10.1007/s00894-010-0664-1
– volume: 58
  start-page: 267
  year: 1996
  ident: 10.1016/j.bpc.2018.05.010_bb0190
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc. Series B Stat. Methodol.
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 49
  start-page: 123
  year: 2018
  ident: 10.1016/j.bpc.2018.05.010_bb0030
  article-title: Statistical and machine learning approaches to predicting protein-ligand interactions
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2018.01.006
– volume: 153
  start-page: 49
  year: 1963
  ident: 10.1016/j.bpc.2018.05.010_bb0195
  article-title: On the regularization of ill-posed problems
  publication-title: Dokl. Akad. Nauk SSSR
– volume: 49
  start-page: 3315
  year: 2006
  ident: 10.1016/j.bpc.2018.05.010_bb0100
  article-title: MolDock: a new technique for high-accuracy molecular docking
  publication-title: J. Med. Chem.
  doi: 10.1021/jm051197e
– volume: 18
  start-page: 1339
  year: 2011
  ident: 10.1016/j.bpc.2018.05.010_bb0160
  article-title: Bio-inspired algorithms applied to molecular docking simulations
  publication-title: Curr. Med. Chem.
  doi: 10.2174/092986711795029573
– year: 2018
  ident: 10.1016/j.bpc.2018.05.010_bb0060
  article-title: Pre-clinical effects of metformin and aspirin on the cell lines of different breast cancer subtypes
  publication-title: Investig. New Drugs
  doi: 10.1007/s10637-018-0568-y
– volume: 12
  start-page: 2694
  year: 2016
  ident: 10.1016/j.bpc.2018.05.010_bb0035
  article-title: Computational methods in drug discovery
  publication-title: Beilstein J. Org. Chem.
  doi: 10.3762/bjoc.12.267
– ident: 10.1016/j.bpc.2018.05.010_bb0185
– volume: 225
  start-page: 563
  year: 1970
  ident: 10.1016/j.bpc.2018.05.010_bb0050
  article-title: Natural selection and the concept of a protein space
  publication-title: Nature
  doi: 10.1038/225563a0
– volume: 31
  start-page: 455
  year: 2010
  ident: 10.1016/j.bpc.2018.05.010_bb0090
  article-title: AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21334
– volume: 22
  start-page: 400
  year: 1951
  ident: 10.1016/j.bpc.2018.05.010_bb0205
  article-title: A stochastic approximation method
  publication-title: Ann. Math. Statist.
  doi: 10.1214/aoms/1177729586
– volume: 28
  start-page: 235
  year: 2000
  ident: 10.1016/j.bpc.2018.05.010_bb0115
  article-title: The protein data bank
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/28.1.235
– volume: 8
  start-page: 127
  year: 1995
  ident: 10.1016/j.bpc.2018.05.010_bb0215
  article-title: LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions
  publication-title: Protein Eng.
  doi: 10.1093/protein/8.2.127
– volume: 16
  start-page: 9378
  year: 2008
  ident: 10.1016/j.bpc.2018.05.010_bb0165
  article-title: Evaluation of ligand-binding affinity using polynomial empirical scoring functions
  publication-title: Bioorg. Med. Chem.
  doi: 10.1016/j.bmc.2008.08.014
– volume: 67
  start-page: 578
  year: 1972
  ident: 10.1016/j.bpc.2018.05.010_bb0175
  article-title: Significance testing of the spearman rank correlation coefficient
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1972.10481251
– volume: 24
  start-page: 2459
  year: 2017
  ident: 10.1016/j.bpc.2018.05.010_bb0045
  article-title: Supervised machine learning methods applied to predict ligand-binding affinity
  publication-title: Curr. Med. Chem.
  doi: 10.2174/0929867324666170623092503
– year: 2018
  ident: 10.1016/j.bpc.2018.05.010_bb0225
  article-title: Advances in the understanding of the cannabinoid receptor 1 - focusing on the inverse agonists interactions
  publication-title: Curr. Med. Chem.
– year: 2018
  ident: 10.1016/j.bpc.2018.05.010_bb0230
  article-title: Development of machine learning models to predict inhibition of 3-dehydroquinate dehydratase
  publication-title: Chem. Biol. Drug Des.
  doi: 10.1111/cbdd.13312
– volume: 432
  start-page: 823
  year: 2004
  ident: 10.1016/j.bpc.2018.05.010_bb0055
  article-title: Chemical space
  publication-title: Nature
  doi: 10.1038/432823a
– volume: 235
  start-page: 1
  year: 2018
  ident: 10.1016/j.bpc.2018.05.010_bb0065
  article-title: Development of CDK-targeted scoring functions for prediction of binding affinity
  publication-title: Biophys. Chem.
  doi: 10.1016/j.bpc.2018.01.004
– volume: 17
  start-page: 2663
  year: 2017
  ident: 10.1016/j.bpc.2018.05.010_bb0015
  article-title: Quantum-mechanics methodologies in drug discovery: applications of docking and scoring in lead optimization
  publication-title: Curr. Top. Med. Chem.
  doi: 10.2174/1568026617666170707120609
– volume: 51
  start-page: 2778
  year: 2011
  ident: 10.1016/j.bpc.2018.05.010_bb0220
  article-title: LigPlot+: multiple ligand-protein interaction diagrams for drug discovery
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci200227u
– volume: 11
  year: 2016
  ident: 10.1016/j.bpc.2018.05.010_bb0135
  article-title: Vinardo: a scoring function based on autodock vina improves scoring, docking, and virtual screening
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0155183
– volume: 67
  start-page: 301
  year: 2005
  ident: 10.1016/j.bpc.2018.05.010_bb0200
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. R. Stat. Soc. Series B Stat. Methodol.
  doi: 10.1111/j.1467-9868.2005.00503.x
– volume: 19
  start-page: 801
  year: 2016
  ident: 10.1016/j.bpc.2018.05.010_bb0110
  article-title: SAnDReS a computational tool for statistical analysis of docking results and development of scoring functions
  publication-title: Comb. Chem. High Throughput Screen.
  doi: 10.2174/1386207319666160927111347
– volume: 35
  start-page: 198
  year: 2007
  ident: 10.1016/j.bpc.2018.05.010_bb0125
  article-title: BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkl999
– volume: 28
  start-page: 1145
  year: 2007
  ident: 10.1016/j.bpc.2018.05.010_bb0145
  article-title: A semiempirical free energy force field with charge-based desolvation
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20634
– volume: 30
  start-page: 2785
  issue: 2009
  year: 2009
  ident: 10.1016/j.bpc.2018.05.010_bb0105
  article-title: AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21256
– volume: 18
  start-page: 1104
  year: 2017
  ident: 10.1016/j.bpc.2018.05.010_bb0085
  article-title: Understanding the structural basis for inhibition of cyclin-dependent kinases. New pieces in the molecular puzzle
  publication-title: Curr. Drug Targets
  doi: 10.2174/1389450118666161116130155
– volume: 8
  start-page: 263
  year: 2013
  ident: 10.1016/j.bpc.2018.05.010_bb0020
  article-title: The application of quantum mechanics in structure-based drug design
  publication-title: Expert Opin. Drug. Discov.
  doi: 10.1517/17460441.2013.752812
– volume: 11
  start-page: 327
  year: 2010
  ident: 10.1016/j.bpc.2018.05.010_bb0155
  article-title: MolDock applied to structure-based virtual screening
  publication-title: Curr. Drug Targets
  doi: 10.2174/138945010790711941
– volume: 19
  start-page: 1639
  year: 1998
  ident: 10.1016/j.bpc.2018.05.010_bb0140
  article-title: Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function
  publication-title: J. Comput. Chem.
  doi: 10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
SSID ssj0000800
Score 2.455369
Snippet The possibility of using the atomic coordinates of protein-ligand complexes to assess binding affinity has a beneficial impact in the early stages of drug...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 63
Title Development of a machine-learning model to predict Gibbs free energy of binding for protein-ligand complexes
URI https://dx.doi.org/10.1016/j.bpc.2018.05.010
https://www.ncbi.nlm.nih.gov/pubmed/29906639
https://www.proquest.com/docview/2056395785
Volume 240
WOSCitedRecordID wos000441488700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-4200
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000800
  issn: 0301-4622
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFB62raIvovW2XsoIPhlSkkySmTwupVsVKYJV9y1kJpOSErNLNltW_4B_2zO3bG1pUcGXYQmZzZDvyzln5twQek2TSDBSSD-kRPgxF5UPeof6MhMcvq-EFjp4_MsHenzMZrPs42j00-XCnDe0bdl6nS3-K9RwDcBWqbN_Affwp3ABfgPoMALsMP4R8BfCgEzy4zcdLyn9xp2C6O43yuhcdMpN03tHNedLr-qk9KTJBYSJvDYJLyoOUVdzqFu_qU9tHtyikWsbfuhcwvV84UAXro3c5gxe2eaw_N6fyq6TtW5v5B0VHLbqzaAaSulNfsD6S32A-1W78r1p3Zyu1IyLJxQhG0Kw7LHZldQZk64VwOY1NUnJ-9JIX0aJH5vSpYN4jkw5JytgrTQ0qto0ebmiBMx5xNk-X6galSEzpVmDjcYb4hA_6R0lLAIEm_YxbqGdiCYZSPidybvD2fuNUmcmm8mt2jnIdajgpQddZ-Jct4XRpszJfXTP7kHwxHDnARrJdhfdNl1Jv--iOwcOvYeoucAmPK9wgS-zCWs24X6OLZuwZhNWbMKGTWqiZRMGNuHf2YQHNj1Cn6eHJwdvfdugwxckIT2MLBWZSDgpMh6CdqBhxYUqQclpVaYVS4tCJkmpqvzFNI5CoVplpUEZV4SkZUYeo-123sqnCBckCIQIg1IWJK5SxrKIsYSnWVUQwkU0RoF7p7mw1etVE5Umd2GKZznAkCsY8iDJAYYxejNMWZjSLTfdHDugcmt7GpsyB1bdNO2VAzUHZJSzrWjlfLWEm5JU-cBZMkZPDNrDKpQJCJZ-9uzfHvoc3d18Zi_Qdt-t5Et0S5z39bLbQ1t0xvYsf38B_SG-tQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+machine-learning+model+to+predict+Gibbs+free+energy+of+binding+for+protein-ligand+complexes&rft.jtitle=Biophysical+chemistry&rft.au=Bitencourt-Ferreira%2C+Gabriela&rft.au=de+Azevedo%2C+Walter+Filgueira&rft.date=2018-09-01&rft.pub=Elsevier+B.V&rft.issn=0301-4622&rft.eissn=1873-4200&rft.volume=240&rft.spage=63&rft.epage=69&rft_id=info:doi/10.1016%2Fj.bpc.2018.05.010&rft.externalDocID=S0301462218301224
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-4622&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-4622&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-4622&client=summon