Bayesian optimization of variable-size design space problems

Within the framework of complex system design, it is often necessary to solve mixed variable optimization problems, in which the objective and constraint functions can depend simultaneously on continuous and discrete variables. Additionally, complex system design problems occasionally present a vari...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Optimization and engineering Ročník 22; číslo 1; s. 387 - 447
Hlavní autoři: Pelamatti, Julien, Brevault, Loïc, Balesdent, Mathieu, Talbi, El-Ghazali, Guerin, Yannick
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.03.2021
Springer Nature B.V
Springer Verlag
Témata:
ISSN:1389-4420, 1573-2924
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Within the framework of complex system design, it is often necessary to solve mixed variable optimization problems, in which the objective and constraint functions can depend simultaneously on continuous and discrete variables. Additionally, complex system design problems occasionally present a variable-size design space. This results in an optimization problem for which the search space varies dynamically (with respect to both number and type of variables) along the optimization process as a function of the values of specific discrete decision variables. Similarly, the number and type of constraints can vary as well. In this paper, two alternative Bayesian optimization-based approaches are proposed in order to solve this type of optimization problems. The first one consists of a budget allocation strategy allowing to focus the computational budget on the most promising design sub-spaces. The second approach, instead, is based on the definition of a kernel function allowing to compute the covariance between samples characterized by partially different sets of variables. The results obtained on analytical and engineering related test-cases show a faster and more consistent convergence of both proposed methods with respect to the standard approaches.
AbstractList Within the framework of complex system design, it is often necessary to solve mixed variable optimization problems, in which the objective and constraint functions can depend simultaneously on continuous and discrete variables. Additionally, complex system design problems occasionally present a variable-size design space. This results in an optimization problem for which the search space varies dynamically (with respect to both number and type of variables) along the optimization process as a function of the values of specific discrete decision variables. Similarly, the number and type of constraints can vary as well. In this paper, two alternative Bayesian optimization-based approaches are proposed in order to solve this type of optimization problems. The first one consists of a budget allocation strategy allowing to focus the computational budget on the most promising design sub-spaces. The second approach, instead, is based on the definition of a kernel function allowing to compute the covariance between samples characterized by partially different sets of variables. The results obtained on analytical and engineering related test-cases show a faster and more consistent convergence of both proposed methods with respect to the standard approaches.
Author Brevault, Loïc
Balesdent, Mathieu
Pelamatti, Julien
Guerin, Yannick
Talbi, El-Ghazali
Author_xml – sequence: 1
  givenname: Julien
  surname: Pelamatti
  fullname: Pelamatti, Julien
  email: julien.pelamatti@gmail.com
  organization: DTIS, ONERA, Université Paris Saclay, Centre National d’Études Spatiales, Direction des lanceurs
– sequence: 2
  givenname: Loïc
  surname: Brevault
  fullname: Brevault, Loïc
  organization: DTIS, ONERA, Université Paris Saclay
– sequence: 3
  givenname: Mathieu
  surname: Balesdent
  fullname: Balesdent, Mathieu
  organization: DTIS, ONERA, Université Paris Saclay
– sequence: 4
  givenname: El-Ghazali
  surname: Talbi
  fullname: Talbi, El-Ghazali
  organization: Inria Lille - Nord Europe
– sequence: 5
  givenname: Yannick
  surname: Guerin
  fullname: Guerin, Yannick
  organization: Centre National d’Études Spatiales, Direction des lanceurs
BackLink https://hal.science/hal-03247618$$DView record in HAL
BookMark eNp9kMFLwzAUxoNMcJv-A54KnjxU85I0TcHLHOqEgRc9hzRNZ0bX1qQbrH-92SoKHnZJ8l5-33sf3wSN6qY2CF0DvgOM03sPgAXEmOAYZ0k4-zM0hiSlMckIG4U3FVnMGMEXaOL9GmPgCRFj9PCo9sZbVUdN29mN7VVnm1CU0U45q_LKxN72JioCtKoj3yptotY14WPjL9F5qSpvrn7uKfp4fnqfL-Ll28vrfLaMNU1oF6vEaFYAg1wAK6hKiTFaZQwYV0mhORQGaK4M1wXPNOYFz1OeQ5lwEmjC6BTdDnM_VSVbZzfK7WWjrFzMlvLQw5SwlIPYQWBvBjaY_Noa38l1s3V1sCcJE4wITgQOFBko7RrvnSl_xwKWh0TlkKgMicpjorIPIvFPpG13zKtzylanpXSQ-rCnXhn35-qE6htpNoy1
CitedBy_id crossref_primary_10_1007_s43069_022_00180_6
crossref_primary_10_1038_s41598_024_57468_2
crossref_primary_10_1016_j_advengsoft_2023_103571
crossref_primary_10_1016_j_ocemod_2023_102213
crossref_primary_10_1039_D5SC00200A
crossref_primary_10_1002_nme_6690
crossref_primary_10_1016_j_compstruc_2023_107035
crossref_primary_10_1145_3439730
crossref_primary_10_1145_3582078
crossref_primary_10_1007_s00158_022_03457_w
crossref_primary_10_1016_j_enbuild_2021_111077
crossref_primary_10_1007_s10898_024_01443_8
crossref_primary_10_1016_j_neucom_2025_131208
Cites_doi 10.1007/978-3-642-10701-6_6
10.1038/s41598-019-56847-4
10.1093/comjnl/3.3.175
10.1080/08982112.2015.968039
10.1007/s11590-008-0089-2
10.1023/A:1008306431147
10.1162/089976602317250933
10.1090/S0002-9947-1950-0051437-7
10.1561/2200000036
10.1080/00401706.2019.1638834
10.2514/6.2000-4891
10.1155/2013/145369
10.2514/6.2019-1971
10.1137/S1052623499352024
10.1007/978-1-4757-3799-8
10.2514/6.2019-2986
10.1007/978-3-540-68279-0_5
10.1137/0916069
10.2514/6.2014-4242
10.1016/j.geoderma.2005.04.003
10.1007/978-3-319-04280-0_21
10.7551/mitpress/4175.001.0001
10.1093/comjnl/7.4.308
10.1137/S1052623403429573
10.1007/BF01099263
10.2514/6.2015-1010
10.1007/s11081-013-9216-8
10.1007/978-3-319-99259-4_32
10.1007/s10589-015-9789-6
10.1007/s10957-012-0122-6
10.2514/6.1998-4771
10.1145/3321707.3321765
10.1007/PL00007198
10.1007/978-3-030-18764-4_9
10.1007/s00158-013-0919-4
10.1198/TECH.2011.10025
10.1007/s10898-018-0715-1
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7TB
8FD
FR3
KR7
1XC
DOI 10.1007/s11081-020-09520-z
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Physics
EISSN 1573-2924
EndPage 447
ExternalDocumentID oai:HAL:hal-03247618v1
10_1007_s11081_020_09520_z
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
203
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFSI
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P9R
PF0
PT4
Q2X
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z88
ZMTXR
~A9
8AO
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
M7S
PHGZM
PHGZT
PQGLB
PTHSS
S0W
7TB
8FD
FR3
KR7
1XC
ID FETCH-LOGICAL-c353t-a5ec4d141b814d3a72eeca94146a5dc61de13bae6cd69c06d6b76b1f562d3a243
IEDL.DBID RSV
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000544838800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1389-4420
IngestDate Sat Nov 29 15:00:41 EST 2025
Thu Sep 25 00:42:19 EDT 2025
Sat Nov 29 01:39:09 EST 2025
Tue Nov 18 21:51:52 EST 2025
Fri Feb 21 02:49:07 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Mixed-variable optimization problems
Bayesian optimization
Variable-size design space optimization problems
Discrete variables
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c353t-a5ec4d141b814d3a72eeca94146a5dc61de13bae6cd69c06d6b76b1f562d3a243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8081-6082
0000-0003-4064-3361
PQID 2484286280
PQPubID 326265
PageCount 61
ParticipantIDs hal_primary_oai_HAL_hal_03247618v1
proquest_journals_2484286280
crossref_primary_10_1007_s11081_020_09520_z
crossref_citationtrail_10_1007_s11081_020_09520_z
springer_journals_10_1007_s11081_020_09520_z
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle International Multidisciplinary Journal to Promote Optimization Theory & Applications in Engineering Sciences
PublicationTitle Optimization and engineering
PublicationTitleAbbrev Optim Eng
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Springer Verlag
References Girdziušas R, Janusevskis J, Le Riche R (2012) On integration of multi-point improvements
Zhang Y, Tao S, Chen W, Apley DW (2019) A latent variable approach to gaussian process modeling with qualitative and quantitative factors. Technometrics, pp 1–12
OssamaAHidden genes genetic optimization for variable-size design space problemsJ Optim Theory Appl20131562450468301932310.1007/s10957-012-0122-6
LandAHDoigAGAn automatic method for solving discrete programming problems50 years of integer programming 1958–20082010BerlinSpringer10513210.1007/978-3-540-68279-0_5
NachmanATheory of reproducing kernelsTrans Am Math Soc19506833374045143710.1090/S0002-9947-1950-0051437-7
JulienPLoïcBMathieuBEl-GhazaliTYannickGHow to deal with mixed-variable optimization problems: an overview of algorithms and formulationsAdvances in structural and multidisciplinary optimization2018ChamSpringer International Publishing6482
Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow: large-scale machine learning on heterogeneous systems, 2015. Software available from tensorflow.org
Félix-AntoineFMarc-AndréDRF-MGMarcPChristianGDEAP: evolutionary algorithms made easyJ Mach Learn Res201213217121752973597
JonesDRMatthiasSWelch WilliamJEfficient global optimization of expensive black-box functionsJ Global Optim199813455492167346010.1023/A:1008306431147
Nelder JohnARogerMA simplex method for function minimizationComput J196474308313336340910.1093/comjnl/7.4.308
McKayMDRichardBWilliamCA comparison of three methods for selecting values of input variables in the analysis of output from a computer codeTechnometrics1979212239533252
JulienPLoïcBMathieuBEl-GhazaliTYannickGEfficient global optimization of constrained mixed variable problemsJ Global Optim2019733583613391619510.1007/s10898-018-0715-1
ZhouQQianPZGZhouSA simple approach to emulation for computer models with qualitative and quantitative factorsTechnometrics2011533266273285770410.1198/TECH.2011.10025
Wertz JR (2001) Mission geometry: orbit and constellation design and management: spacecraft orbit and attitude systems. Mission geometry: orbit and constellation design and management: spacecraft orbit and attitude systems/James R. Wertz. El Segundo, CA; Boston: Microcosm: Kluwer Academic Publishers, 2001. Space technology library; 13
Abdelkhalik O (2013) Autonomous planning of multigravity-assist trajectories with deep space maneuvers using a differential evolution approach. Int J Aerosp Eng, 1–11
Herbrich R, Lawrence ND, Seeger M (2003) Fast sparse gaussian process methods: the informative vector machine. In: Advances in neural information processing systems, pp 625–632
CédricDJulienMMathieuBAnalysis of multi-objective Kriging-based methods for constrained global optimizationComput Optim Appl2016633903926346546110.1007/s10589-015-9789-6
Pelamatti J, Brevault L, Balesdent M, Talbi E, Guerin Y (2019) Surrogate model based optimization of constrained mixed variable problems: application to the design of a launch vehicle thrust frame. In: AIAA Scitech 2019 Forum
Minasny B, McBratney AB (2005) The Matérn function as a general model for soil variograms. In: Geoderma, Elsevier, Amsterdam, vol 128, pp 192–207
Prasadh N, Moss R, Collett K, Nelessen A, Edwards S, Mavris DN (2014) A systematic method for sme-driven space system architecture down-selection. In: AIAA SPACE 2014 conference and exposition, pp 4–7
Pelamatti J, Brevault L, Balesdent M, Talbi E, Guerin Y (2020) Overview and comparison of gaussian process-based surrogate models for mixed continuous and discrete variables: application on aerospace design problems. In: High-performance simulation-based optimization, Springer, Berlin, pp 189–224
Priem R, Bartoli N, Diouane Y (2019) On the use of upper trust bounds in constrained bayesian optimization infill criteria. In: AIAA aviation 2019 forum, p 2986
ScholkopfBSmolaAJLearning with kernels: support vector machines, regularization, optimization, and beyond2001CambridgeMIT press
HoHoRAn automatic method for finding the greatest or least value of a functionComput J19603317518413604210.1093/comjnl/3.3.175
GoldbergDEGenetic algorithms in search, optimization & machine learning1989Inc, New YorkAddison-Wesley Longman Publishing Co.0721.68056
AbramsonMAAudetCDennisJEJrFilter pattern search algorithms for mixed variable constrained optimization problemsPac J Optim20073347750023545901138.65043
Swiler LP, Hough PD, Qian P, Xu X, Storlie C, Lee H (2014) Surrogate models for mixed discrete-continuous variables. In: Constraint programming and decision making, Springer, Berlin, pp 181–202
Frank CP (2016) A design space exploration methodology to support decisions under evolving uncertainty in requirements and its application to advanced vehicles
JonasMApplication of bayesian approach to numerical methods of global and stochastic optimizationJ Global Optim199444347365127575210.1007/BF01099263
Simpson TimothyWPeplinskiJDKoch PatrickNAllen JanetKMetamodels for computer-based engineering design: survey and recommendationsEng Comput200117212915010.1007/PL00007198
Filomeno Coelho RajanMetamodels for mixed variables based on moving least squaresOptim Eng2014152311329321385010.1007/s11081-013-9216-8
VictorPTobiasWDavidGA benchmark of kriging-based infill criteria for noisy optimizationStruct Multidiscipl Optim201348360762610.1007/s00158-013-0919-4
Frazier PI, Clark SC (2012) Parallel global optimization using an improved multi-points expected improvement criterion. In: INFORMS optimization society conference, Miami FL, vol 26
Ginsbourger D, Le Riche R, Carraro L (2010) Kriging is well-suited to parallelize optimization. In: Computational intelligence in expensive optimization problems, Springer, BErlin, pp 131–162
AlvarezMARosascoLLawrenceNDKernels for vector-valued functions: a reviewFound Trends Mach Learn20124319526610.1561/2200000036
Byrd RichardHPeihuangLJorgeNCiyouZA limited memory algorithm for bound constrained optimizationSIAM J Sci Comput199516511901208134630110.1137/0916069
Stelmack M, Nakashima N, Batill S (1998) Genetic algorithms for mixed discrete/continuous optimization in multidisciplinary design. In: 7th AIAA/USAF/NASA/ISSMO symposium on multidisciplinary analysis and optimization, Reston, Virigina, sep 1998. American Institute of Aeronautics and Astronautics
AudetCDennisJEJrPattern search algorithms for mixed variable programmingSIAM J Optim2000113573594181403310.1137/S1052623499352024
SteinwartIChristmannASupport vector machines2008BerlinSpringer Science & Business Media1203.68171
Hutter F (2009) Automated configuration of algorithms for solving hard computational problems. PhD thesis, University of British Columbia
StefanoLVeronicaPMarcoSAn algorithm model for mixed variable programmingSIAM J Optim200515410571084217848810.1137/S1052623403429573
Zhang Y, Notz WI (2015) Computer experiments with qualitative and quantitative variables: a review and reexamination. In: Quality engineering, Taylor & Francis, vol 27, pp 2–13
YichiZApley DanielWWeiCBayesian optimization for materials design with mixed quantitative and qualitative variablesSci Rep202010111310.1038/s41598-019-56847-4
Hutter F, Osborne MA (2013) A kernel for hierarchical parameter spaces. arXiv preprint arXiv:1310.5738
MeenNHOssamaANiluferOStructured-chromosome evolutionary algorithms for variable-size autonomous interplanetary trajectory planning optimizationJ Aerosp Inf Syst2015123314328
Halstrup M (2016) Black-box optimization of mixed discrete-continuous optimization problems. PhD thesis, TU Dortmund
Sasena MJ (2002) Flexibility and efficiency enhancements for constrained global design optimization with kriging approximations. PhD thesis
Roustant O, Padonou E, Deville Y, Clément A, Perrin G, Giorla J, Wynn H (2018) Group kernels for gaussian process metamodels with categorical inputs. arXiv preprint arXiv:1802.02368
Horn D, Stork J, Schüßler N-J, Zaefferer M (2019) Surrogates for hierarchical search spaces: the wedge-kernel and an automated analysis. In: Proceedings of the genetic and evolutionary computation conference, pp 916–924
SantnerTJWilliamsBJNotzWIThe design and analysis of computer experiments2003New YorkSpringer10.1007/978-1-4757-3799-8
Zaefferer M, Horn D (2018) A first analysis of kernels for kriging-based optimization in hierarchical search spaces. In: International conference on parallel problem solving from nature, pp 399–410. Springer, Berlin
de MatthewsAGvan der WilkMNicksonTFujiiKBoukouvalasALeón-VillagráPGhahramaniZHensmanJGPflow: a Gaussian process library using TensorFlowJ Mach Learn Res201718401636466351437.62127
AbramsonMAAudetCChrissisJWWalstonJGMesh adaptive direct search algorithms for mixed variable optimizationOptim Lett2009313547245350310.1007/s11590-008-0089-2
RasmussenCEWilliamsCKIGaussian processes for machine learning2006CambridgeMIT Press1177.68165
LehelCManfredOSparse on-line gaussian processesNeural Comput200214364166810.1162/089976602317250933
Audet C, Denni J, Moore D, Booker A, Frank P (2000) A surrogate-model-based method for constrained optimization. In: 8th symposium on multidisciplinary analysis and optimization
9520_CR12
9520_CR11
9520_CR55
9520_CR14
9520_CR51
Z Yichi (9520_CR52) 2020; 10
9520_CR54
9520_CR53
F Félix-Antoine (9520_CR13) 2012; 13
M Jonas (9520_CR23) 1994; 4
9520_CR15
9520_CR18
9520_CR17
I Steinwart (9520_CR47) 2008
DE Goldberg (9520_CR16) 1989
B Scholkopf (9520_CR44) 2001
C Lehel (9520_CR28) 2002; 14
A Nelder John (9520_CR34) 1964; 7
9520_CR22
9520_CR21
P Julien (9520_CR26) 2019; 73
9520_CR20
MD McKay (9520_CR30) 1979; 21
C Audet (9520_CR6) 2000; 11
9520_CR7
D Cédric (9520_CR9) 2016; 63
R HoHo (9520_CR19) 1960; 3
MA Abramson (9520_CR3) 2009; 3
A Ossama (9520_CR35) 2013; 156
9520_CR36
9520_CR32
9520_CR38
9520_CR1
9520_CR37
9520_CR2
9520_CR39
MA Abramson (9520_CR4) 2007; 3
MA Alvarez (9520_CR5) 2012; 4
P Julien (9520_CR25) 2018
Q Zhou (9520_CR56) 2011; 53
CE Rasmussen (9520_CR40) 2006
NH Meen (9520_CR31) 2015; 12
L Stefano (9520_CR46) 2005; 15
TJ Santner (9520_CR42) 2003
DR Jones (9520_CR24) 1998; 13
P Victor (9520_CR50) 2013; 48
9520_CR41
9520_CR43
A Nachman (9520_CR33) 1950; 68
9520_CR49
9520_CR48
Filomeno Coelho Rajan (9520_CR10) 2014; 15
H Byrd Richard (9520_CR8) 1995; 16
AG de Matthews (9520_CR29) 2017; 18
AH Land (9520_CR27) 2010
W Simpson Timothy (9520_CR45) 2001; 17
References_xml – reference: McKayMDRichardBWilliamCA comparison of three methods for selecting values of input variables in the analysis of output from a computer codeTechnometrics1979212239533252
– reference: ScholkopfBSmolaAJLearning with kernels: support vector machines, regularization, optimization, and beyond2001CambridgeMIT press
– reference: Hutter F, Osborne MA (2013) A kernel for hierarchical parameter spaces. arXiv preprint arXiv:1310.5738
– reference: Sasena MJ (2002) Flexibility and efficiency enhancements for constrained global design optimization with kriging approximations. PhD thesis
– reference: AlvarezMARosascoLLawrenceNDKernels for vector-valued functions: a reviewFound Trends Mach Learn20124319526610.1561/2200000036
– reference: YichiZApley DanielWWeiCBayesian optimization for materials design with mixed quantitative and qualitative variablesSci Rep202010111310.1038/s41598-019-56847-4
– reference: Byrd RichardHPeihuangLJorgeNCiyouZA limited memory algorithm for bound constrained optimizationSIAM J Sci Comput199516511901208134630110.1137/0916069
– reference: GoldbergDEGenetic algorithms in search, optimization & machine learning1989Inc, New YorkAddison-Wesley Longman Publishing Co.0721.68056
– reference: JonasMApplication of bayesian approach to numerical methods of global and stochastic optimizationJ Global Optim199444347365127575210.1007/BF01099263
– reference: Swiler LP, Hough PD, Qian P, Xu X, Storlie C, Lee H (2014) Surrogate models for mixed discrete-continuous variables. In: Constraint programming and decision making, Springer, Berlin, pp 181–202
– reference: CédricDJulienMMathieuBAnalysis of multi-objective Kriging-based methods for constrained global optimizationComput Optim Appl2016633903926346546110.1007/s10589-015-9789-6
– reference: JonesDRMatthiasSWelch WilliamJEfficient global optimization of expensive black-box functionsJ Global Optim199813455492167346010.1023/A:1008306431147
– reference: OssamaAHidden genes genetic optimization for variable-size design space problemsJ Optim Theory Appl20131562450468301932310.1007/s10957-012-0122-6
– reference: SantnerTJWilliamsBJNotzWIThe design and analysis of computer experiments2003New YorkSpringer10.1007/978-1-4757-3799-8
– reference: LehelCManfredOSparse on-line gaussian processesNeural Comput200214364166810.1162/089976602317250933
– reference: Wertz JR (2001) Mission geometry: orbit and constellation design and management: spacecraft orbit and attitude systems. Mission geometry: orbit and constellation design and management: spacecraft orbit and attitude systems/James R. Wertz. El Segundo, CA; Boston: Microcosm: Kluwer Academic Publishers, 2001. Space technology library; 13
– reference: Abdelkhalik O (2013) Autonomous planning of multigravity-assist trajectories with deep space maneuvers using a differential evolution approach. Int J Aerosp Eng, 1–11
– reference: Ginsbourger D, Le Riche R, Carraro L (2010) Kriging is well-suited to parallelize optimization. In: Computational intelligence in expensive optimization problems, Springer, BErlin, pp 131–162
– reference: Hutter F (2009) Automated configuration of algorithms for solving hard computational problems. PhD thesis, University of British Columbia
– reference: VictorPTobiasWDavidGA benchmark of kriging-based infill criteria for noisy optimizationStruct Multidiscipl Optim201348360762610.1007/s00158-013-0919-4
– reference: Pelamatti J, Brevault L, Balesdent M, Talbi E, Guerin Y (2020) Overview and comparison of gaussian process-based surrogate models for mixed continuous and discrete variables: application on aerospace design problems. In: High-performance simulation-based optimization, Springer, Berlin, pp 189–224
– reference: SteinwartIChristmannASupport vector machines2008BerlinSpringer Science & Business Media1203.68171
– reference: MeenNHOssamaANiluferOStructured-chromosome evolutionary algorithms for variable-size autonomous interplanetary trajectory planning optimizationJ Aerosp Inf Syst2015123314328
– reference: Prasadh N, Moss R, Collett K, Nelessen A, Edwards S, Mavris DN (2014) A systematic method for sme-driven space system architecture down-selection. In: AIAA SPACE 2014 conference and exposition, pp 4–7
– reference: Roustant O, Padonou E, Deville Y, Clément A, Perrin G, Giorla J, Wynn H (2018) Group kernels for gaussian process metamodels with categorical inputs. arXiv preprint arXiv:1802.02368
– reference: Girdziušas R, Janusevskis J, Le Riche R (2012) On integration of multi-point improvements
– reference: Simpson TimothyWPeplinskiJDKoch PatrickNAllen JanetKMetamodels for computer-based engineering design: survey and recommendationsEng Comput200117212915010.1007/PL00007198
– reference: JulienPLoïcBMathieuBEl-GhazaliTYannickGEfficient global optimization of constrained mixed variable problemsJ Global Optim2019733583613391619510.1007/s10898-018-0715-1
– reference: AbramsonMAAudetCChrissisJWWalstonJGMesh adaptive direct search algorithms for mixed variable optimizationOptim Lett2009313547245350310.1007/s11590-008-0089-2
– reference: Stelmack M, Nakashima N, Batill S (1998) Genetic algorithms for mixed discrete/continuous optimization in multidisciplinary design. In: 7th AIAA/USAF/NASA/ISSMO symposium on multidisciplinary analysis and optimization, Reston, Virigina, sep 1998. American Institute of Aeronautics and Astronautics
– reference: Félix-AntoineFMarc-AndréDRF-MGMarcPChristianGDEAP: evolutionary algorithms made easyJ Mach Learn Res201213217121752973597
– reference: AudetCDennisJEJrPattern search algorithms for mixed variable programmingSIAM J Optim2000113573594181403310.1137/S1052623499352024
– reference: Frank CP (2016) A design space exploration methodology to support decisions under evolving uncertainty in requirements and its application to advanced vehicles
– reference: Zhang Y, Notz WI (2015) Computer experiments with qualitative and quantitative variables: a review and reexamination. In: Quality engineering, Taylor & Francis, vol 27, pp 2–13
– reference: Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow: large-scale machine learning on heterogeneous systems, 2015. Software available from tensorflow.org
– reference: Nelder JohnARogerMA simplex method for function minimizationComput J196474308313336340910.1093/comjnl/7.4.308
– reference: RasmussenCEWilliamsCKIGaussian processes for machine learning2006CambridgeMIT Press1177.68165
– reference: HoHoRAn automatic method for finding the greatest or least value of a functionComput J19603317518413604210.1093/comjnl/3.3.175
– reference: LandAHDoigAGAn automatic method for solving discrete programming problems50 years of integer programming 1958–20082010BerlinSpringer10513210.1007/978-3-540-68279-0_5
– reference: Filomeno Coelho RajanMetamodels for mixed variables based on moving least squaresOptim Eng2014152311329321385010.1007/s11081-013-9216-8
– reference: Zaefferer M, Horn D (2018) A first analysis of kernels for kriging-based optimization in hierarchical search spaces. In: International conference on parallel problem solving from nature, pp 399–410. Springer, Berlin
– reference: Zhang Y, Tao S, Chen W, Apley DW (2019) A latent variable approach to gaussian process modeling with qualitative and quantitative factors. Technometrics, pp 1–12
– reference: Pelamatti J, Brevault L, Balesdent M, Talbi E, Guerin Y (2019) Surrogate model based optimization of constrained mixed variable problems: application to the design of a launch vehicle thrust frame. In: AIAA Scitech 2019 Forum
– reference: Minasny B, McBratney AB (2005) The Matérn function as a general model for soil variograms. In: Geoderma, Elsevier, Amsterdam, vol 128, pp 192–207
– reference: Audet C, Denni J, Moore D, Booker A, Frank P (2000) A surrogate-model-based method for constrained optimization. In: 8th symposium on multidisciplinary analysis and optimization
– reference: Horn D, Stork J, Schüßler N-J, Zaefferer M (2019) Surrogates for hierarchical search spaces: the wedge-kernel and an automated analysis. In: Proceedings of the genetic and evolutionary computation conference, pp 916–924
– reference: StefanoLVeronicaPMarcoSAn algorithm model for mixed variable programmingSIAM J Optim200515410571084217848810.1137/S1052623403429573
– reference: Frazier PI, Clark SC (2012) Parallel global optimization using an improved multi-points expected improvement criterion. In: INFORMS optimization society conference, Miami FL, vol 26
– reference: JulienPLoïcBMathieuBEl-GhazaliTYannickGHow to deal with mixed-variable optimization problems: an overview of algorithms and formulationsAdvances in structural and multidisciplinary optimization2018ChamSpringer International Publishing6482
– reference: AbramsonMAAudetCDennisJEJrFilter pattern search algorithms for mixed variable constrained optimization problemsPac J Optim20073347750023545901138.65043
– reference: de MatthewsAGvan der WilkMNicksonTFujiiKBoukouvalasALeón-VillagráPGhahramaniZHensmanJGPflow: a Gaussian process library using TensorFlowJ Mach Learn Res201718401636466351437.62127
– reference: NachmanATheory of reproducing kernelsTrans Am Math Soc19506833374045143710.1090/S0002-9947-1950-0051437-7
– reference: Halstrup M (2016) Black-box optimization of mixed discrete-continuous optimization problems. PhD thesis, TU Dortmund
– reference: Herbrich R, Lawrence ND, Seeger M (2003) Fast sparse gaussian process methods: the informative vector machine. In: Advances in neural information processing systems, pp 625–632
– reference: Priem R, Bartoli N, Diouane Y (2019) On the use of upper trust bounds in constrained bayesian optimization infill criteria. In: AIAA aviation 2019 forum, p 2986
– reference: ZhouQQianPZGZhouSA simple approach to emulation for computer models with qualitative and quantitative factorsTechnometrics2011533266273285770410.1198/TECH.2011.10025
– ident: 9520_CR14
  doi: 10.1007/978-3-642-10701-6_6
– volume: 18
  start-page: 1
  issue: 40
  year: 2017
  ident: 9520_CR29
  publication-title: J Mach Learn Res
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: 9520_CR52
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-56847-4
– volume: 3
  start-page: 175
  issue: 3
  year: 1960
  ident: 9520_CR19
  publication-title: Comput J
  doi: 10.1093/comjnl/3.3.175
– ident: 9520_CR54
  doi: 10.1080/08982112.2015.968039
– ident: 9520_CR1
– volume: 3
  start-page: 35
  issue: 1
  year: 2009
  ident: 9520_CR3
  publication-title: Optim Lett
  doi: 10.1007/s11590-008-0089-2
– volume: 13
  start-page: 455
  year: 1998
  ident: 9520_CR24
  publication-title: J Global Optim
  doi: 10.1023/A:1008306431147
– volume-title: Support vector machines
  year: 2008
  ident: 9520_CR47
– volume: 14
  start-page: 641
  issue: 3
  year: 2002
  ident: 9520_CR28
  publication-title: Neural Comput
  doi: 10.1162/089976602317250933
– volume: 68
  start-page: 337
  issue: 3
  year: 1950
  ident: 9520_CR33
  publication-title: Trans Am Math Soc
  doi: 10.1090/S0002-9947-1950-0051437-7
– volume: 4
  start-page: 195
  issue: 3
  year: 2012
  ident: 9520_CR5
  publication-title: Found Trends Mach Learn
  doi: 10.1561/2200000036
– ident: 9520_CR55
  doi: 10.1080/00401706.2019.1638834
– ident: 9520_CR7
  doi: 10.2514/6.2000-4891
– ident: 9520_CR2
  doi: 10.1155/2013/145369
– volume: 13
  start-page: 2171
  year: 2012
  ident: 9520_CR13
  publication-title: J Mach Learn Res
– ident: 9520_CR36
  doi: 10.2514/6.2019-1971
– volume: 11
  start-page: 573
  issue: 3
  year: 2000
  ident: 9520_CR6
  publication-title: SIAM J Optim
  doi: 10.1137/S1052623499352024
– volume-title: The design and analysis of computer experiments
  year: 2003
  ident: 9520_CR42
  doi: 10.1007/978-1-4757-3799-8
– volume: 21
  start-page: 239
  issue: 2
  year: 1979
  ident: 9520_CR30
  publication-title: Technometrics
– ident: 9520_CR39
  doi: 10.2514/6.2019-2986
– volume: 12
  start-page: 314
  issue: 3
  year: 2015
  ident: 9520_CR31
  publication-title: J Aerosp Inf Syst
– volume-title: Gaussian processes for machine learning
  year: 2006
  ident: 9520_CR40
– ident: 9520_CR41
– start-page: 105
  volume-title: 50 years of integer programming 1958–2008
  year: 2010
  ident: 9520_CR27
  doi: 10.1007/978-3-540-68279-0_5
– ident: 9520_CR17
– volume: 3
  start-page: 477
  issue: 3
  year: 2007
  ident: 9520_CR4
  publication-title: Pac J Optim
– volume: 16
  start-page: 1190
  issue: 5
  year: 1995
  ident: 9520_CR8
  publication-title: SIAM J Sci Comput
  doi: 10.1137/0916069
– ident: 9520_CR51
– ident: 9520_CR38
  doi: 10.2514/6.2014-4242
– ident: 9520_CR32
  doi: 10.1016/j.geoderma.2005.04.003
– ident: 9520_CR49
  doi: 10.1007/978-3-319-04280-0_21
– volume-title: Learning with kernels: support vector machines, regularization, optimization, and beyond
  year: 2001
  ident: 9520_CR44
  doi: 10.7551/mitpress/4175.001.0001
– ident: 9520_CR21
– volume: 7
  start-page: 308
  issue: 4
  year: 1964
  ident: 9520_CR34
  publication-title: Comput J
  doi: 10.1093/comjnl/7.4.308
– volume: 15
  start-page: 1057
  issue: 4
  year: 2005
  ident: 9520_CR46
  publication-title: SIAM J Optim
  doi: 10.1137/S1052623403429573
– volume: 4
  start-page: 347
  issue: 4
  year: 1994
  ident: 9520_CR23
  publication-title: J Global Optim
  doi: 10.1007/BF01099263
– ident: 9520_CR11
  doi: 10.2514/6.2015-1010
– volume: 15
  start-page: 311
  issue: 2
  year: 2014
  ident: 9520_CR10
  publication-title: Optim Eng
  doi: 10.1007/s11081-013-9216-8
– ident: 9520_CR53
  doi: 10.1007/978-3-319-99259-4_32
– volume: 63
  start-page: 903
  issue: 3
  year: 2016
  ident: 9520_CR9
  publication-title: Comput Optim Appl
  doi: 10.1007/s10589-015-9789-6
– ident: 9520_CR18
– volume: 156
  start-page: 450
  issue: 2
  year: 2013
  ident: 9520_CR35
  publication-title: J Optim Theory Appl
  doi: 10.1007/s10957-012-0122-6
– start-page: 64
  volume-title: Advances in structural and multidisciplinary optimization
  year: 2018
  ident: 9520_CR25
– volume-title: Genetic algorithms in search, optimization & machine learning
  year: 1989
  ident: 9520_CR16
– ident: 9520_CR12
– ident: 9520_CR43
– ident: 9520_CR48
  doi: 10.2514/6.1998-4771
– ident: 9520_CR20
  doi: 10.1145/3321707.3321765
– ident: 9520_CR22
– volume: 17
  start-page: 129
  issue: 2
  year: 2001
  ident: 9520_CR45
  publication-title: Eng Comput
  doi: 10.1007/PL00007198
– ident: 9520_CR37
  doi: 10.1007/978-3-030-18764-4_9
– volume: 48
  start-page: 607
  issue: 3
  year: 2013
  ident: 9520_CR50
  publication-title: Struct Multidiscipl Optim
  doi: 10.1007/s00158-013-0919-4
– volume: 53
  start-page: 266
  issue: 3
  year: 2011
  ident: 9520_CR56
  publication-title: Technometrics
  doi: 10.1198/TECH.2011.10025
– volume: 73
  start-page: 583
  issue: 3
  year: 2019
  ident: 9520_CR26
  publication-title: J Global Optim
  doi: 10.1007/s10898-018-0715-1
– ident: 9520_CR15
SSID ssj0016528
Score 2.386646
Snippet Within the framework of complex system design, it is often necessary to solve mixed variable optimization problems, in which the objective and constraint...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 387
SubjectTerms Bayesian analysis
Budgets
Complex systems
Complex variables
Continuity (mathematics)
Control
Covariance
Design optimization
Engineering
Engineering Sciences
Environmental Management
Financial Engineering
Kernel functions
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Optimization
Physics
Research Article
Systems design
Systems Theory
Variables
Title Bayesian optimization of variable-size design space problems
URI https://link.springer.com/article/10.1007/s11081-020-09520-z
https://www.proquest.com/docview/2484286280
https://hal.science/hal-03247618
Volume 22
WOSCitedRecordID wos000544838800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-2924
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016528
  issn: 1389-4420
  databaseCode: RSV
  dateStart: 20000601
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58HfTgW1xfFPGmgaZJ0xS8qCgeVMQX3kqTTFHQXbHrgvvrndR2V0UFvRTaTpsyk86DmW8GYMtGLklRx8zZAplMipDlIimY9sZUpJpiH1kNm0jOzvTtbXpeg8LKptq9SUlWmnoIduNkvpgPd8gtoGN_FMbJ3Gk_sOHi8maQO1BxNVHVZ-CYlFFYQ2W-f8cnczR654shP3iaX5Kjlc05mvnf187CdO1jBnvvm2IORrA9D1MfOg_S2emgXWu5ALv7-St6NGXQIQ3yWEMzg04R9CiU9uAqVt73MXBVuUdASshiUI-iKRfh-ujw6uCY1WMVmBWx6LI8Risdl9xoLp3IkwjR5qkknZnHzirukAuTo7JOpTZUTplEGV6Qp0TUkRRLMNbutHEZghgNeShoilwbqQtuMESXcBQiDpGbtAW84W5m657jfvTFQzbsluz5lBGfsopPWb8F24Nnnt47bvxKvUlCGxD6ZtnHeyeZvxaSr5gornu8BWuNTLP6Fy2zSGoKvVSkwxbsNDIc3v55yZW_ka_CZOTrYKq6tTUY6z6_4DpM2F73vnzeqLbuGwZb50U
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED_adLD2od1Hx9KPzYy9bQLLkmUZ-tKWhoylYWzdyJuwpDMrbEmJs0Dz1_fk2kk31kH3YrB9tsydfB_c3e8A3rrEZznqlHlXIpNZGbNCZCXTwZiKXFPsI-thE9lwqEej_FPTFFa11e5tSrLW1KtmN07mi4Vwh9wCOi7WYUOSxQqI-Z-_fFvmDlRaT1QNGTgmZRI3rTJ_f8dv5mj9eyiGvONp_pEcrW1Ob-f_vvYJbDc-ZnR8uymewhqOn8HWHeRBOjtfwrVWz-HopLjG0E0ZTUiD_GxaM6NJGc0plA7NVay6XGDk63KPiJSQw6gZRVPtwtfe2cVpnzVjFZgTqZixIkUnPZfcai69KLIE0RW5JJ1ZpN4p7pELW6ByXuUuVl7ZTFlekqdE1IkUL6AznozxJUQpWvJQ0JaFtlKX3GKMPuMoRBojt3kXeMtd4xrM8TD64odZoSUHPhnik6n5ZBZdeLd85uoWceOf1G9IaEvCAJbdPx6YcC0mXzFTXM95Fw5amZrmF61MIjWFXirRcRfetzJc3b5_yb2Hkb-Gx_2L84EZfBh-3IfNJNTE1DVsB9CZTX_hITxy89llNX1Vb-Mb5dTqKQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS-wwEB68cdAHb0dxvRyL-OYJNk2apuCLt0VRF8ELvoUmmaKgu2LXBffXm3S7F0WFw3kptJ02ZZJmZpj5vgHYNpFNUpQxsSZHwpM8JBlLciK9MWWpdLEPL5tNJI2GvLtLL0dQ_GW1ez8l2cM0eJamZnv32ea7Q-AbdaaM-NDHuQju2B2HSe4L6X28fnU7yCOIuOyu6rNxhPMorGAzX7_jg2kav_eFkSNe56dEaWl_6nP__-XzMFv5nsF-b7EswBg2F2FmhJHQnV0MaFyL37B3kL2hR1kGLbezPFWQzaCVBx0XYnvQFSkeuhjYsgwkcJuTwaBqUVMswU39-PrwhFTtFohhMWuTLEbDLeVUS8oty5II0WQpd3tpFlsjqEXKdIbCWJGaUFihE6Fp7jwoJx1xtgwTzVYTVyCIUTvPBXWeSc1lTjWGaBOKjMUhUp3WgPY1rUzFRe5bYjyqIYuy15NyelKlnlS3BjuDZ557TBw_Sm-5CRwIehLtk_1z5a-FzodMBJUdWoP1_vyq6tctVMSlC8lEJMMa_O3P5_D290Ou_pv4Jvy6PKqr89PG2RpMR75UpixtW4eJ9ssrbsCU6bQfipc_5Yp-B1-T8w0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+optimization+of+variable-size+design+space+problems&rft.jtitle=Optimization+and+engineering&rft.au=Pelamatti+Julien&rft.au=Brevault+Lo%C3%AFc&rft.au=Balesdent+Mathieu&rft.au=El-Ghazali%2C+Talbi&rft.date=2021-03-01&rft.pub=Springer+Nature+B.V&rft.issn=1389-4420&rft.eissn=1573-2924&rft.volume=22&rft.issue=1&rft.spage=387&rft.epage=447&rft_id=info:doi/10.1007%2Fs11081-020-09520-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1389-4420&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1389-4420&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1389-4420&client=summon