Bayesian optimization of variable-size design space problems
Within the framework of complex system design, it is often necessary to solve mixed variable optimization problems, in which the objective and constraint functions can depend simultaneously on continuous and discrete variables. Additionally, complex system design problems occasionally present a vari...
Uloženo v:
| Vydáno v: | Optimization and engineering Ročník 22; číslo 1; s. 387 - 447 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.03.2021
Springer Nature B.V Springer Verlag |
| Témata: | |
| ISSN: | 1389-4420, 1573-2924 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Within the framework of complex system design, it is often necessary to solve mixed variable optimization problems, in which the objective and constraint functions can depend simultaneously on continuous and discrete variables. Additionally, complex system design problems occasionally present a variable-size design space. This results in an optimization problem for which the search space varies dynamically (with respect to both number and type of variables) along the optimization process as a function of the values of specific discrete decision variables. Similarly, the number and type of constraints can vary as well. In this paper, two alternative Bayesian optimization-based approaches are proposed in order to solve this type of optimization problems. The first one consists of a budget allocation strategy allowing to focus the computational budget on the most promising design sub-spaces. The second approach, instead, is based on the definition of a kernel function allowing to compute the covariance between samples characterized by partially different sets of variables. The results obtained on analytical and engineering related test-cases show a faster and more consistent convergence of both proposed methods with respect to the standard approaches. |
|---|---|
| AbstractList | Within the framework of complex system design, it is often necessary to solve mixed variable optimization problems, in which the objective and constraint functions can depend simultaneously on continuous and discrete variables. Additionally, complex system design problems occasionally present a variable-size design space. This results in an optimization problem for which the search space varies dynamically (with respect to both number and type of variables) along the optimization process as a function of the values of specific discrete decision variables. Similarly, the number and type of constraints can vary as well. In this paper, two alternative Bayesian optimization-based approaches are proposed in order to solve this type of optimization problems. The first one consists of a budget allocation strategy allowing to focus the computational budget on the most promising design sub-spaces. The second approach, instead, is based on the definition of a kernel function allowing to compute the covariance between samples characterized by partially different sets of variables. The results obtained on analytical and engineering related test-cases show a faster and more consistent convergence of both proposed methods with respect to the standard approaches. |
| Author | Brevault, Loïc Balesdent, Mathieu Pelamatti, Julien Guerin, Yannick Talbi, El-Ghazali |
| Author_xml | – sequence: 1 givenname: Julien surname: Pelamatti fullname: Pelamatti, Julien email: julien.pelamatti@gmail.com organization: DTIS, ONERA, Université Paris Saclay, Centre National d’Études Spatiales, Direction des lanceurs – sequence: 2 givenname: Loïc surname: Brevault fullname: Brevault, Loïc organization: DTIS, ONERA, Université Paris Saclay – sequence: 3 givenname: Mathieu surname: Balesdent fullname: Balesdent, Mathieu organization: DTIS, ONERA, Université Paris Saclay – sequence: 4 givenname: El-Ghazali surname: Talbi fullname: Talbi, El-Ghazali organization: Inria Lille - Nord Europe – sequence: 5 givenname: Yannick surname: Guerin fullname: Guerin, Yannick organization: Centre National d’Études Spatiales, Direction des lanceurs |
| BackLink | https://hal.science/hal-03247618$$DView record in HAL |
| BookMark | eNp9kMFLwzAUxoNMcJv-A54KnjxU85I0TcHLHOqEgRc9hzRNZ0bX1qQbrH-92SoKHnZJ8l5-33sf3wSN6qY2CF0DvgOM03sPgAXEmOAYZ0k4-zM0hiSlMckIG4U3FVnMGMEXaOL9GmPgCRFj9PCo9sZbVUdN29mN7VVnm1CU0U45q_LKxN72JioCtKoj3yptotY14WPjL9F5qSpvrn7uKfp4fnqfL-Ll28vrfLaMNU1oF6vEaFYAg1wAK6hKiTFaZQwYV0mhORQGaK4M1wXPNOYFz1OeQ5lwEmjC6BTdDnM_VSVbZzfK7WWjrFzMlvLQw5SwlIPYQWBvBjaY_Noa38l1s3V1sCcJE4wITgQOFBko7RrvnSl_xwKWh0TlkKgMicpjorIPIvFPpG13zKtzylanpXSQ-rCnXhn35-qE6htpNoy1 |
| CitedBy_id | crossref_primary_10_1007_s43069_022_00180_6 crossref_primary_10_1038_s41598_024_57468_2 crossref_primary_10_1016_j_advengsoft_2023_103571 crossref_primary_10_1016_j_ocemod_2023_102213 crossref_primary_10_1039_D5SC00200A crossref_primary_10_1002_nme_6690 crossref_primary_10_1016_j_compstruc_2023_107035 crossref_primary_10_1145_3439730 crossref_primary_10_1145_3582078 crossref_primary_10_1007_s00158_022_03457_w crossref_primary_10_1016_j_enbuild_2021_111077 crossref_primary_10_1007_s10898_024_01443_8 crossref_primary_10_1016_j_neucom_2025_131208 |
| Cites_doi | 10.1007/978-3-642-10701-6_6 10.1038/s41598-019-56847-4 10.1093/comjnl/3.3.175 10.1080/08982112.2015.968039 10.1007/s11590-008-0089-2 10.1023/A:1008306431147 10.1162/089976602317250933 10.1090/S0002-9947-1950-0051437-7 10.1561/2200000036 10.1080/00401706.2019.1638834 10.2514/6.2000-4891 10.1155/2013/145369 10.2514/6.2019-1971 10.1137/S1052623499352024 10.1007/978-1-4757-3799-8 10.2514/6.2019-2986 10.1007/978-3-540-68279-0_5 10.1137/0916069 10.2514/6.2014-4242 10.1016/j.geoderma.2005.04.003 10.1007/978-3-319-04280-0_21 10.7551/mitpress/4175.001.0001 10.1093/comjnl/7.4.308 10.1137/S1052623403429573 10.1007/BF01099263 10.2514/6.2015-1010 10.1007/s11081-013-9216-8 10.1007/978-3-319-99259-4_32 10.1007/s10589-015-9789-6 10.1007/s10957-012-0122-6 10.2514/6.1998-4771 10.1145/3321707.3321765 10.1007/PL00007198 10.1007/978-3-030-18764-4_9 10.1007/s00158-013-0919-4 10.1198/TECH.2011.10025 10.1007/s10898-018-0715-1 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 7TB 8FD FR3 KR7 1XC |
| DOI | 10.1007/s11081-020-09520-z |
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics Physics |
| EISSN | 1573-2924 |
| EndPage | 447 |
| ExternalDocumentID | oai:HAL:hal-03247618v1 10_1007_s11081_020_09520_z |
| GroupedDBID | -5D -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 203 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFSI ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P9R PF0 PT4 Q2X QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7X Z7Y Z7Z Z83 Z88 ZMTXR ~A9 8AO AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ M7S PHGZM PHGZT PQGLB PTHSS S0W 7TB 8FD FR3 KR7 1XC |
| ID | FETCH-LOGICAL-c353t-a5ec4d141b814d3a72eeca94146a5dc61de13bae6cd69c06d6b76b1f562d3a243 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 22 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000544838800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1389-4420 |
| IngestDate | Sat Nov 29 15:00:41 EST 2025 Thu Sep 25 00:42:19 EDT 2025 Sat Nov 29 01:39:09 EST 2025 Tue Nov 18 21:51:52 EST 2025 Fri Feb 21 02:49:07 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Mixed-variable optimization problems Bayesian optimization Variable-size design space optimization problems Discrete variables |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c353t-a5ec4d141b814d3a72eeca94146a5dc61de13bae6cd69c06d6b76b1f562d3a243 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8081-6082 0000-0003-4064-3361 |
| PQID | 2484286280 |
| PQPubID | 326265 |
| PageCount | 61 |
| ParticipantIDs | hal_primary_oai_HAL_hal_03247618v1 proquest_journals_2484286280 crossref_primary_10_1007_s11081_020_09520_z crossref_citationtrail_10_1007_s11081_020_09520_z springer_journals_10_1007_s11081_020_09520_z |
| PublicationCentury | 2000 |
| PublicationDate | 2021-03-01 |
| PublicationDateYYYYMMDD | 2021-03-01 |
| PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | International Multidisciplinary Journal to Promote Optimization Theory & Applications in Engineering Sciences |
| PublicationTitle | Optimization and engineering |
| PublicationTitleAbbrev | Optim Eng |
| PublicationYear | 2021 |
| Publisher | Springer US Springer Nature B.V Springer Verlag |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: Springer Verlag |
| References | Girdziušas R, Janusevskis J, Le Riche R (2012) On integration of multi-point improvements Zhang Y, Tao S, Chen W, Apley DW (2019) A latent variable approach to gaussian process modeling with qualitative and quantitative factors. Technometrics, pp 1–12 OssamaAHidden genes genetic optimization for variable-size design space problemsJ Optim Theory Appl20131562450468301932310.1007/s10957-012-0122-6 LandAHDoigAGAn automatic method for solving discrete programming problems50 years of integer programming 1958–20082010BerlinSpringer10513210.1007/978-3-540-68279-0_5 NachmanATheory of reproducing kernelsTrans Am Math Soc19506833374045143710.1090/S0002-9947-1950-0051437-7 JulienPLoïcBMathieuBEl-GhazaliTYannickGHow to deal with mixed-variable optimization problems: an overview of algorithms and formulationsAdvances in structural and multidisciplinary optimization2018ChamSpringer International Publishing6482 Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow: large-scale machine learning on heterogeneous systems, 2015. Software available from tensorflow.org Félix-AntoineFMarc-AndréDRF-MGMarcPChristianGDEAP: evolutionary algorithms made easyJ Mach Learn Res201213217121752973597 JonesDRMatthiasSWelch WilliamJEfficient global optimization of expensive black-box functionsJ Global Optim199813455492167346010.1023/A:1008306431147 Nelder JohnARogerMA simplex method for function minimizationComput J196474308313336340910.1093/comjnl/7.4.308 McKayMDRichardBWilliamCA comparison of three methods for selecting values of input variables in the analysis of output from a computer codeTechnometrics1979212239533252 JulienPLoïcBMathieuBEl-GhazaliTYannickGEfficient global optimization of constrained mixed variable problemsJ Global Optim2019733583613391619510.1007/s10898-018-0715-1 ZhouQQianPZGZhouSA simple approach to emulation for computer models with qualitative and quantitative factorsTechnometrics2011533266273285770410.1198/TECH.2011.10025 Wertz JR (2001) Mission geometry: orbit and constellation design and management: spacecraft orbit and attitude systems. Mission geometry: orbit and constellation design and management: spacecraft orbit and attitude systems/James R. Wertz. El Segundo, CA; Boston: Microcosm: Kluwer Academic Publishers, 2001. Space technology library; 13 Abdelkhalik O (2013) Autonomous planning of multigravity-assist trajectories with deep space maneuvers using a differential evolution approach. Int J Aerosp Eng, 1–11 Herbrich R, Lawrence ND, Seeger M (2003) Fast sparse gaussian process methods: the informative vector machine. In: Advances in neural information processing systems, pp 625–632 CédricDJulienMMathieuBAnalysis of multi-objective Kriging-based methods for constrained global optimizationComput Optim Appl2016633903926346546110.1007/s10589-015-9789-6 Pelamatti J, Brevault L, Balesdent M, Talbi E, Guerin Y (2019) Surrogate model based optimization of constrained mixed variable problems: application to the design of a launch vehicle thrust frame. In: AIAA Scitech 2019 Forum Minasny B, McBratney AB (2005) The Matérn function as a general model for soil variograms. In: Geoderma, Elsevier, Amsterdam, vol 128, pp 192–207 Prasadh N, Moss R, Collett K, Nelessen A, Edwards S, Mavris DN (2014) A systematic method for sme-driven space system architecture down-selection. In: AIAA SPACE 2014 conference and exposition, pp 4–7 Pelamatti J, Brevault L, Balesdent M, Talbi E, Guerin Y (2020) Overview and comparison of gaussian process-based surrogate models for mixed continuous and discrete variables: application on aerospace design problems. In: High-performance simulation-based optimization, Springer, Berlin, pp 189–224 Priem R, Bartoli N, Diouane Y (2019) On the use of upper trust bounds in constrained bayesian optimization infill criteria. In: AIAA aviation 2019 forum, p 2986 ScholkopfBSmolaAJLearning with kernels: support vector machines, regularization, optimization, and beyond2001CambridgeMIT press HoHoRAn automatic method for finding the greatest or least value of a functionComput J19603317518413604210.1093/comjnl/3.3.175 GoldbergDEGenetic algorithms in search, optimization & machine learning1989Inc, New YorkAddison-Wesley Longman Publishing Co.0721.68056 AbramsonMAAudetCDennisJEJrFilter pattern search algorithms for mixed variable constrained optimization problemsPac J Optim20073347750023545901138.65043 Swiler LP, Hough PD, Qian P, Xu X, Storlie C, Lee H (2014) Surrogate models for mixed discrete-continuous variables. In: Constraint programming and decision making, Springer, Berlin, pp 181–202 Frank CP (2016) A design space exploration methodology to support decisions under evolving uncertainty in requirements and its application to advanced vehicles JonasMApplication of bayesian approach to numerical methods of global and stochastic optimizationJ Global Optim199444347365127575210.1007/BF01099263 Simpson TimothyWPeplinskiJDKoch PatrickNAllen JanetKMetamodels for computer-based engineering design: survey and recommendationsEng Comput200117212915010.1007/PL00007198 Filomeno Coelho RajanMetamodels for mixed variables based on moving least squaresOptim Eng2014152311329321385010.1007/s11081-013-9216-8 VictorPTobiasWDavidGA benchmark of kriging-based infill criteria for noisy optimizationStruct Multidiscipl Optim201348360762610.1007/s00158-013-0919-4 Frazier PI, Clark SC (2012) Parallel global optimization using an improved multi-points expected improvement criterion. In: INFORMS optimization society conference, Miami FL, vol 26 Ginsbourger D, Le Riche R, Carraro L (2010) Kriging is well-suited to parallelize optimization. In: Computational intelligence in expensive optimization problems, Springer, BErlin, pp 131–162 AlvarezMARosascoLLawrenceNDKernels for vector-valued functions: a reviewFound Trends Mach Learn20124319526610.1561/2200000036 Byrd RichardHPeihuangLJorgeNCiyouZA limited memory algorithm for bound constrained optimizationSIAM J Sci Comput199516511901208134630110.1137/0916069 Stelmack M, Nakashima N, Batill S (1998) Genetic algorithms for mixed discrete/continuous optimization in multidisciplinary design. In: 7th AIAA/USAF/NASA/ISSMO symposium on multidisciplinary analysis and optimization, Reston, Virigina, sep 1998. American Institute of Aeronautics and Astronautics AudetCDennisJEJrPattern search algorithms for mixed variable programmingSIAM J Optim2000113573594181403310.1137/S1052623499352024 SteinwartIChristmannASupport vector machines2008BerlinSpringer Science & Business Media1203.68171 Hutter F (2009) Automated configuration of algorithms for solving hard computational problems. PhD thesis, University of British Columbia StefanoLVeronicaPMarcoSAn algorithm model for mixed variable programmingSIAM J Optim200515410571084217848810.1137/S1052623403429573 Zhang Y, Notz WI (2015) Computer experiments with qualitative and quantitative variables: a review and reexamination. In: Quality engineering, Taylor & Francis, vol 27, pp 2–13 YichiZApley DanielWWeiCBayesian optimization for materials design with mixed quantitative and qualitative variablesSci Rep202010111310.1038/s41598-019-56847-4 Hutter F, Osborne MA (2013) A kernel for hierarchical parameter spaces. arXiv preprint arXiv:1310.5738 MeenNHOssamaANiluferOStructured-chromosome evolutionary algorithms for variable-size autonomous interplanetary trajectory planning optimizationJ Aerosp Inf Syst2015123314328 Halstrup M (2016) Black-box optimization of mixed discrete-continuous optimization problems. PhD thesis, TU Dortmund Sasena MJ (2002) Flexibility and efficiency enhancements for constrained global design optimization with kriging approximations. PhD thesis Roustant O, Padonou E, Deville Y, Clément A, Perrin G, Giorla J, Wynn H (2018) Group kernels for gaussian process metamodels with categorical inputs. arXiv preprint arXiv:1802.02368 Horn D, Stork J, Schüßler N-J, Zaefferer M (2019) Surrogates for hierarchical search spaces: the wedge-kernel and an automated analysis. In: Proceedings of the genetic and evolutionary computation conference, pp 916–924 SantnerTJWilliamsBJNotzWIThe design and analysis of computer experiments2003New YorkSpringer10.1007/978-1-4757-3799-8 Zaefferer M, Horn D (2018) A first analysis of kernels for kriging-based optimization in hierarchical search spaces. In: International conference on parallel problem solving from nature, pp 399–410. Springer, Berlin de MatthewsAGvan der WilkMNicksonTFujiiKBoukouvalasALeón-VillagráPGhahramaniZHensmanJGPflow: a Gaussian process library using TensorFlowJ Mach Learn Res201718401636466351437.62127 AbramsonMAAudetCChrissisJWWalstonJGMesh adaptive direct search algorithms for mixed variable optimizationOptim Lett2009313547245350310.1007/s11590-008-0089-2 RasmussenCEWilliamsCKIGaussian processes for machine learning2006CambridgeMIT Press1177.68165 LehelCManfredOSparse on-line gaussian processesNeural Comput200214364166810.1162/089976602317250933 Audet C, Denni J, Moore D, Booker A, Frank P (2000) A surrogate-model-based method for constrained optimization. In: 8th symposium on multidisciplinary analysis and optimization 9520_CR12 9520_CR11 9520_CR55 9520_CR14 9520_CR51 Z Yichi (9520_CR52) 2020; 10 9520_CR54 9520_CR53 F Félix-Antoine (9520_CR13) 2012; 13 M Jonas (9520_CR23) 1994; 4 9520_CR15 9520_CR18 9520_CR17 I Steinwart (9520_CR47) 2008 DE Goldberg (9520_CR16) 1989 B Scholkopf (9520_CR44) 2001 C Lehel (9520_CR28) 2002; 14 A Nelder John (9520_CR34) 1964; 7 9520_CR22 9520_CR21 P Julien (9520_CR26) 2019; 73 9520_CR20 MD McKay (9520_CR30) 1979; 21 C Audet (9520_CR6) 2000; 11 9520_CR7 D Cédric (9520_CR9) 2016; 63 R HoHo (9520_CR19) 1960; 3 MA Abramson (9520_CR3) 2009; 3 A Ossama (9520_CR35) 2013; 156 9520_CR36 9520_CR32 9520_CR38 9520_CR1 9520_CR37 9520_CR2 9520_CR39 MA Abramson (9520_CR4) 2007; 3 MA Alvarez (9520_CR5) 2012; 4 P Julien (9520_CR25) 2018 Q Zhou (9520_CR56) 2011; 53 CE Rasmussen (9520_CR40) 2006 NH Meen (9520_CR31) 2015; 12 L Stefano (9520_CR46) 2005; 15 TJ Santner (9520_CR42) 2003 DR Jones (9520_CR24) 1998; 13 P Victor (9520_CR50) 2013; 48 9520_CR41 9520_CR43 A Nachman (9520_CR33) 1950; 68 9520_CR49 9520_CR48 Filomeno Coelho Rajan (9520_CR10) 2014; 15 H Byrd Richard (9520_CR8) 1995; 16 AG de Matthews (9520_CR29) 2017; 18 AH Land (9520_CR27) 2010 W Simpson Timothy (9520_CR45) 2001; 17 |
| References_xml | – reference: McKayMDRichardBWilliamCA comparison of three methods for selecting values of input variables in the analysis of output from a computer codeTechnometrics1979212239533252 – reference: ScholkopfBSmolaAJLearning with kernels: support vector machines, regularization, optimization, and beyond2001CambridgeMIT press – reference: Hutter F, Osborne MA (2013) A kernel for hierarchical parameter spaces. arXiv preprint arXiv:1310.5738 – reference: Sasena MJ (2002) Flexibility and efficiency enhancements for constrained global design optimization with kriging approximations. PhD thesis – reference: AlvarezMARosascoLLawrenceNDKernels for vector-valued functions: a reviewFound Trends Mach Learn20124319526610.1561/2200000036 – reference: YichiZApley DanielWWeiCBayesian optimization for materials design with mixed quantitative and qualitative variablesSci Rep202010111310.1038/s41598-019-56847-4 – reference: Byrd RichardHPeihuangLJorgeNCiyouZA limited memory algorithm for bound constrained optimizationSIAM J Sci Comput199516511901208134630110.1137/0916069 – reference: GoldbergDEGenetic algorithms in search, optimization & machine learning1989Inc, New YorkAddison-Wesley Longman Publishing Co.0721.68056 – reference: JonasMApplication of bayesian approach to numerical methods of global and stochastic optimizationJ Global Optim199444347365127575210.1007/BF01099263 – reference: Swiler LP, Hough PD, Qian P, Xu X, Storlie C, Lee H (2014) Surrogate models for mixed discrete-continuous variables. In: Constraint programming and decision making, Springer, Berlin, pp 181–202 – reference: CédricDJulienMMathieuBAnalysis of multi-objective Kriging-based methods for constrained global optimizationComput Optim Appl2016633903926346546110.1007/s10589-015-9789-6 – reference: JonesDRMatthiasSWelch WilliamJEfficient global optimization of expensive black-box functionsJ Global Optim199813455492167346010.1023/A:1008306431147 – reference: OssamaAHidden genes genetic optimization for variable-size design space problemsJ Optim Theory Appl20131562450468301932310.1007/s10957-012-0122-6 – reference: SantnerTJWilliamsBJNotzWIThe design and analysis of computer experiments2003New YorkSpringer10.1007/978-1-4757-3799-8 – reference: LehelCManfredOSparse on-line gaussian processesNeural Comput200214364166810.1162/089976602317250933 – reference: Wertz JR (2001) Mission geometry: orbit and constellation design and management: spacecraft orbit and attitude systems. Mission geometry: orbit and constellation design and management: spacecraft orbit and attitude systems/James R. Wertz. El Segundo, CA; Boston: Microcosm: Kluwer Academic Publishers, 2001. Space technology library; 13 – reference: Abdelkhalik O (2013) Autonomous planning of multigravity-assist trajectories with deep space maneuvers using a differential evolution approach. Int J Aerosp Eng, 1–11 – reference: Ginsbourger D, Le Riche R, Carraro L (2010) Kriging is well-suited to parallelize optimization. In: Computational intelligence in expensive optimization problems, Springer, BErlin, pp 131–162 – reference: Hutter F (2009) Automated configuration of algorithms for solving hard computational problems. PhD thesis, University of British Columbia – reference: VictorPTobiasWDavidGA benchmark of kriging-based infill criteria for noisy optimizationStruct Multidiscipl Optim201348360762610.1007/s00158-013-0919-4 – reference: Pelamatti J, Brevault L, Balesdent M, Talbi E, Guerin Y (2020) Overview and comparison of gaussian process-based surrogate models for mixed continuous and discrete variables: application on aerospace design problems. In: High-performance simulation-based optimization, Springer, Berlin, pp 189–224 – reference: SteinwartIChristmannASupport vector machines2008BerlinSpringer Science & Business Media1203.68171 – reference: MeenNHOssamaANiluferOStructured-chromosome evolutionary algorithms for variable-size autonomous interplanetary trajectory planning optimizationJ Aerosp Inf Syst2015123314328 – reference: Prasadh N, Moss R, Collett K, Nelessen A, Edwards S, Mavris DN (2014) A systematic method for sme-driven space system architecture down-selection. In: AIAA SPACE 2014 conference and exposition, pp 4–7 – reference: Roustant O, Padonou E, Deville Y, Clément A, Perrin G, Giorla J, Wynn H (2018) Group kernels for gaussian process metamodels with categorical inputs. arXiv preprint arXiv:1802.02368 – reference: Girdziušas R, Janusevskis J, Le Riche R (2012) On integration of multi-point improvements – reference: Simpson TimothyWPeplinskiJDKoch PatrickNAllen JanetKMetamodels for computer-based engineering design: survey and recommendationsEng Comput200117212915010.1007/PL00007198 – reference: JulienPLoïcBMathieuBEl-GhazaliTYannickGEfficient global optimization of constrained mixed variable problemsJ Global Optim2019733583613391619510.1007/s10898-018-0715-1 – reference: AbramsonMAAudetCChrissisJWWalstonJGMesh adaptive direct search algorithms for mixed variable optimizationOptim Lett2009313547245350310.1007/s11590-008-0089-2 – reference: Stelmack M, Nakashima N, Batill S (1998) Genetic algorithms for mixed discrete/continuous optimization in multidisciplinary design. In: 7th AIAA/USAF/NASA/ISSMO symposium on multidisciplinary analysis and optimization, Reston, Virigina, sep 1998. American Institute of Aeronautics and Astronautics – reference: Félix-AntoineFMarc-AndréDRF-MGMarcPChristianGDEAP: evolutionary algorithms made easyJ Mach Learn Res201213217121752973597 – reference: AudetCDennisJEJrPattern search algorithms for mixed variable programmingSIAM J Optim2000113573594181403310.1137/S1052623499352024 – reference: Frank CP (2016) A design space exploration methodology to support decisions under evolving uncertainty in requirements and its application to advanced vehicles – reference: Zhang Y, Notz WI (2015) Computer experiments with qualitative and quantitative variables: a review and reexamination. In: Quality engineering, Taylor & Francis, vol 27, pp 2–13 – reference: Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow: large-scale machine learning on heterogeneous systems, 2015. Software available from tensorflow.org – reference: Nelder JohnARogerMA simplex method for function minimizationComput J196474308313336340910.1093/comjnl/7.4.308 – reference: RasmussenCEWilliamsCKIGaussian processes for machine learning2006CambridgeMIT Press1177.68165 – reference: HoHoRAn automatic method for finding the greatest or least value of a functionComput J19603317518413604210.1093/comjnl/3.3.175 – reference: LandAHDoigAGAn automatic method for solving discrete programming problems50 years of integer programming 1958–20082010BerlinSpringer10513210.1007/978-3-540-68279-0_5 – reference: Filomeno Coelho RajanMetamodels for mixed variables based on moving least squaresOptim Eng2014152311329321385010.1007/s11081-013-9216-8 – reference: Zaefferer M, Horn D (2018) A first analysis of kernels for kriging-based optimization in hierarchical search spaces. In: International conference on parallel problem solving from nature, pp 399–410. Springer, Berlin – reference: Zhang Y, Tao S, Chen W, Apley DW (2019) A latent variable approach to gaussian process modeling with qualitative and quantitative factors. Technometrics, pp 1–12 – reference: Pelamatti J, Brevault L, Balesdent M, Talbi E, Guerin Y (2019) Surrogate model based optimization of constrained mixed variable problems: application to the design of a launch vehicle thrust frame. In: AIAA Scitech 2019 Forum – reference: Minasny B, McBratney AB (2005) The Matérn function as a general model for soil variograms. In: Geoderma, Elsevier, Amsterdam, vol 128, pp 192–207 – reference: Audet C, Denni J, Moore D, Booker A, Frank P (2000) A surrogate-model-based method for constrained optimization. In: 8th symposium on multidisciplinary analysis and optimization – reference: Horn D, Stork J, Schüßler N-J, Zaefferer M (2019) Surrogates for hierarchical search spaces: the wedge-kernel and an automated analysis. In: Proceedings of the genetic and evolutionary computation conference, pp 916–924 – reference: StefanoLVeronicaPMarcoSAn algorithm model for mixed variable programmingSIAM J Optim200515410571084217848810.1137/S1052623403429573 – reference: Frazier PI, Clark SC (2012) Parallel global optimization using an improved multi-points expected improvement criterion. In: INFORMS optimization society conference, Miami FL, vol 26 – reference: JulienPLoïcBMathieuBEl-GhazaliTYannickGHow to deal with mixed-variable optimization problems: an overview of algorithms and formulationsAdvances in structural and multidisciplinary optimization2018ChamSpringer International Publishing6482 – reference: AbramsonMAAudetCDennisJEJrFilter pattern search algorithms for mixed variable constrained optimization problemsPac J Optim20073347750023545901138.65043 – reference: de MatthewsAGvan der WilkMNicksonTFujiiKBoukouvalasALeón-VillagráPGhahramaniZHensmanJGPflow: a Gaussian process library using TensorFlowJ Mach Learn Res201718401636466351437.62127 – reference: NachmanATheory of reproducing kernelsTrans Am Math Soc19506833374045143710.1090/S0002-9947-1950-0051437-7 – reference: Halstrup M (2016) Black-box optimization of mixed discrete-continuous optimization problems. PhD thesis, TU Dortmund – reference: Herbrich R, Lawrence ND, Seeger M (2003) Fast sparse gaussian process methods: the informative vector machine. In: Advances in neural information processing systems, pp 625–632 – reference: Priem R, Bartoli N, Diouane Y (2019) On the use of upper trust bounds in constrained bayesian optimization infill criteria. In: AIAA aviation 2019 forum, p 2986 – reference: ZhouQQianPZGZhouSA simple approach to emulation for computer models with qualitative and quantitative factorsTechnometrics2011533266273285770410.1198/TECH.2011.10025 – ident: 9520_CR14 doi: 10.1007/978-3-642-10701-6_6 – volume: 18 start-page: 1 issue: 40 year: 2017 ident: 9520_CR29 publication-title: J Mach Learn Res – volume: 10 start-page: 1 issue: 1 year: 2020 ident: 9520_CR52 publication-title: Sci Rep doi: 10.1038/s41598-019-56847-4 – volume: 3 start-page: 175 issue: 3 year: 1960 ident: 9520_CR19 publication-title: Comput J doi: 10.1093/comjnl/3.3.175 – ident: 9520_CR54 doi: 10.1080/08982112.2015.968039 – ident: 9520_CR1 – volume: 3 start-page: 35 issue: 1 year: 2009 ident: 9520_CR3 publication-title: Optim Lett doi: 10.1007/s11590-008-0089-2 – volume: 13 start-page: 455 year: 1998 ident: 9520_CR24 publication-title: J Global Optim doi: 10.1023/A:1008306431147 – volume-title: Support vector machines year: 2008 ident: 9520_CR47 – volume: 14 start-page: 641 issue: 3 year: 2002 ident: 9520_CR28 publication-title: Neural Comput doi: 10.1162/089976602317250933 – volume: 68 start-page: 337 issue: 3 year: 1950 ident: 9520_CR33 publication-title: Trans Am Math Soc doi: 10.1090/S0002-9947-1950-0051437-7 – volume: 4 start-page: 195 issue: 3 year: 2012 ident: 9520_CR5 publication-title: Found Trends Mach Learn doi: 10.1561/2200000036 – ident: 9520_CR55 doi: 10.1080/00401706.2019.1638834 – ident: 9520_CR7 doi: 10.2514/6.2000-4891 – ident: 9520_CR2 doi: 10.1155/2013/145369 – volume: 13 start-page: 2171 year: 2012 ident: 9520_CR13 publication-title: J Mach Learn Res – ident: 9520_CR36 doi: 10.2514/6.2019-1971 – volume: 11 start-page: 573 issue: 3 year: 2000 ident: 9520_CR6 publication-title: SIAM J Optim doi: 10.1137/S1052623499352024 – volume-title: The design and analysis of computer experiments year: 2003 ident: 9520_CR42 doi: 10.1007/978-1-4757-3799-8 – volume: 21 start-page: 239 issue: 2 year: 1979 ident: 9520_CR30 publication-title: Technometrics – ident: 9520_CR39 doi: 10.2514/6.2019-2986 – volume: 12 start-page: 314 issue: 3 year: 2015 ident: 9520_CR31 publication-title: J Aerosp Inf Syst – volume-title: Gaussian processes for machine learning year: 2006 ident: 9520_CR40 – ident: 9520_CR41 – start-page: 105 volume-title: 50 years of integer programming 1958–2008 year: 2010 ident: 9520_CR27 doi: 10.1007/978-3-540-68279-0_5 – ident: 9520_CR17 – volume: 3 start-page: 477 issue: 3 year: 2007 ident: 9520_CR4 publication-title: Pac J Optim – volume: 16 start-page: 1190 issue: 5 year: 1995 ident: 9520_CR8 publication-title: SIAM J Sci Comput doi: 10.1137/0916069 – ident: 9520_CR51 – ident: 9520_CR38 doi: 10.2514/6.2014-4242 – ident: 9520_CR32 doi: 10.1016/j.geoderma.2005.04.003 – ident: 9520_CR49 doi: 10.1007/978-3-319-04280-0_21 – volume-title: Learning with kernels: support vector machines, regularization, optimization, and beyond year: 2001 ident: 9520_CR44 doi: 10.7551/mitpress/4175.001.0001 – ident: 9520_CR21 – volume: 7 start-page: 308 issue: 4 year: 1964 ident: 9520_CR34 publication-title: Comput J doi: 10.1093/comjnl/7.4.308 – volume: 15 start-page: 1057 issue: 4 year: 2005 ident: 9520_CR46 publication-title: SIAM J Optim doi: 10.1137/S1052623403429573 – volume: 4 start-page: 347 issue: 4 year: 1994 ident: 9520_CR23 publication-title: J Global Optim doi: 10.1007/BF01099263 – ident: 9520_CR11 doi: 10.2514/6.2015-1010 – volume: 15 start-page: 311 issue: 2 year: 2014 ident: 9520_CR10 publication-title: Optim Eng doi: 10.1007/s11081-013-9216-8 – ident: 9520_CR53 doi: 10.1007/978-3-319-99259-4_32 – volume: 63 start-page: 903 issue: 3 year: 2016 ident: 9520_CR9 publication-title: Comput Optim Appl doi: 10.1007/s10589-015-9789-6 – ident: 9520_CR18 – volume: 156 start-page: 450 issue: 2 year: 2013 ident: 9520_CR35 publication-title: J Optim Theory Appl doi: 10.1007/s10957-012-0122-6 – start-page: 64 volume-title: Advances in structural and multidisciplinary optimization year: 2018 ident: 9520_CR25 – volume-title: Genetic algorithms in search, optimization & machine learning year: 1989 ident: 9520_CR16 – ident: 9520_CR12 – ident: 9520_CR43 – ident: 9520_CR48 doi: 10.2514/6.1998-4771 – ident: 9520_CR20 doi: 10.1145/3321707.3321765 – ident: 9520_CR22 – volume: 17 start-page: 129 issue: 2 year: 2001 ident: 9520_CR45 publication-title: Eng Comput doi: 10.1007/PL00007198 – ident: 9520_CR37 doi: 10.1007/978-3-030-18764-4_9 – volume: 48 start-page: 607 issue: 3 year: 2013 ident: 9520_CR50 publication-title: Struct Multidiscipl Optim doi: 10.1007/s00158-013-0919-4 – volume: 53 start-page: 266 issue: 3 year: 2011 ident: 9520_CR56 publication-title: Technometrics doi: 10.1198/TECH.2011.10025 – volume: 73 start-page: 583 issue: 3 year: 2019 ident: 9520_CR26 publication-title: J Global Optim doi: 10.1007/s10898-018-0715-1 – ident: 9520_CR15 |
| SSID | ssj0016528 |
| Score | 2.386646 |
| Snippet | Within the framework of complex system design, it is often necessary to solve mixed variable optimization problems, in which the objective and constraint... |
| SourceID | hal proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 387 |
| SubjectTerms | Bayesian analysis Budgets Complex systems Complex variables Continuity (mathematics) Control Covariance Design optimization Engineering Engineering Sciences Environmental Management Financial Engineering Kernel functions Mathematics Mathematics and Statistics Operations Research/Decision Theory Optimization Physics Research Article Systems design Systems Theory Variables |
| Title | Bayesian optimization of variable-size design space problems |
| URI | https://link.springer.com/article/10.1007/s11081-020-09520-z https://www.proquest.com/docview/2484286280 https://hal.science/hal-03247618 |
| Volume | 22 |
| WOSCitedRecordID | wos000544838800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-2924 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016528 issn: 1389-4420 databaseCode: RSV dateStart: 20000601 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58HfTgW1xfFPGmgaZJ0xS8qCgeVMQX3kqTTFHQXbHrgvvrndR2V0UFvRTaTpsyk86DmW8GYMtGLklRx8zZAplMipDlIimY9sZUpJpiH1kNm0jOzvTtbXpeg8LKptq9SUlWmnoIduNkvpgPd8gtoGN_FMbJ3Gk_sOHi8maQO1BxNVHVZ-CYlFFYQ2W-f8cnczR654shP3iaX5Kjlc05mvnf187CdO1jBnvvm2IORrA9D1MfOg_S2emgXWu5ALv7-St6NGXQIQ3yWEMzg04R9CiU9uAqVt73MXBVuUdASshiUI-iKRfh-ujw6uCY1WMVmBWx6LI8Risdl9xoLp3IkwjR5qkknZnHzirukAuTo7JOpTZUTplEGV6Qp0TUkRRLMNbutHEZghgNeShoilwbqQtuMESXcBQiDpGbtAW84W5m657jfvTFQzbsluz5lBGfsopPWb8F24Nnnt47bvxKvUlCGxD6ZtnHeyeZvxaSr5gornu8BWuNTLP6Fy2zSGoKvVSkwxbsNDIc3v55yZW_ka_CZOTrYKq6tTUY6z6_4DpM2F73vnzeqLbuGwZb50U |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED_adLD2od1Hx9KPzYy9bQLLkmUZ-tKWhoylYWzdyJuwpDMrbEmJs0Dz1_fk2kk31kH3YrB9tsydfB_c3e8A3rrEZznqlHlXIpNZGbNCZCXTwZiKXFPsI-thE9lwqEej_FPTFFa11e5tSrLW1KtmN07mi4Vwh9wCOi7WYUOSxQqI-Z-_fFvmDlRaT1QNGTgmZRI3rTJ_f8dv5mj9eyiGvONp_pEcrW1Ob-f_vvYJbDc-ZnR8uymewhqOn8HWHeRBOjtfwrVWz-HopLjG0E0ZTUiD_GxaM6NJGc0plA7NVay6XGDk63KPiJSQw6gZRVPtwtfe2cVpnzVjFZgTqZixIkUnPZfcai69KLIE0RW5JJ1ZpN4p7pELW6ByXuUuVl7ZTFlekqdE1IkUL6AznozxJUQpWvJQ0JaFtlKX3GKMPuMoRBojt3kXeMtd4xrM8TD64odZoSUHPhnik6n5ZBZdeLd85uoWceOf1G9IaEvCAJbdPx6YcC0mXzFTXM95Fw5amZrmF61MIjWFXirRcRfetzJc3b5_yb2Hkb-Gx_2L84EZfBh-3IfNJNTE1DVsB9CZTX_hITxy89llNX1Vb-Mb5dTqKQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS-wwEB68cdAHb0dxvRyL-OYJNk2apuCLt0VRF8ELvoUmmaKgu2LXBffXm3S7F0WFw3kptJ02ZZJmZpj5vgHYNpFNUpQxsSZHwpM8JBlLciK9MWWpdLEPL5tNJI2GvLtLL0dQ_GW1ez8l2cM0eJamZnv32ea7Q-AbdaaM-NDHuQju2B2HSe4L6X28fnU7yCOIuOyu6rNxhPMorGAzX7_jg2kav_eFkSNe56dEaWl_6nP__-XzMFv5nsF-b7EswBg2F2FmhJHQnV0MaFyL37B3kL2hR1kGLbezPFWQzaCVBx0XYnvQFSkeuhjYsgwkcJuTwaBqUVMswU39-PrwhFTtFohhMWuTLEbDLeVUS8oty5II0WQpd3tpFlsjqEXKdIbCWJGaUFihE6Fp7jwoJx1xtgwTzVYTVyCIUTvPBXWeSc1lTjWGaBOKjMUhUp3WgPY1rUzFRe5bYjyqIYuy15NyelKlnlS3BjuDZ557TBw_Sm-5CRwIehLtk_1z5a-FzodMBJUdWoP1_vyq6tctVMSlC8lEJMMa_O3P5_D290Ou_pv4Jvy6PKqr89PG2RpMR75UpixtW4eJ9ssrbsCU6bQfipc_5Yp-B1-T8w0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+optimization+of+variable-size+design+space+problems&rft.jtitle=Optimization+and+engineering&rft.au=Pelamatti+Julien&rft.au=Brevault+Lo%C3%AFc&rft.au=Balesdent+Mathieu&rft.au=El-Ghazali%2C+Talbi&rft.date=2021-03-01&rft.pub=Springer+Nature+B.V&rft.issn=1389-4420&rft.eissn=1573-2924&rft.volume=22&rft.issue=1&rft.spage=387&rft.epage=447&rft_id=info:doi/10.1007%2Fs11081-020-09520-z&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1389-4420&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1389-4420&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1389-4420&client=summon |