Adaptive stream processing on edge devices through active inference

The current scenario of IoT is witnessing a constant increase on the volume of data, which is generated in constant stream, calling for novel architectural and logical solutions for processing it. Moving the data handling towards the edge of the computing spectrum guarantees better distribution of l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Evolving systems Jg. 16; H. 4; S. 130
Hauptverfasser: Sedlak, Boris, Casamayor Pujol, Victor, Morichetta, Andrea, Donta, Praveen Kumar, Dustdar, Schahram
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2025
Springer Nature B.V
Schlagworte:
ISSN:1868-6478, 1868-6486, 1868-6486
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The current scenario of IoT is witnessing a constant increase on the volume of data, which is generated in constant stream, calling for novel architectural and logical solutions for processing it. Moving the data handling towards the edge of the computing spectrum guarantees better distribution of load and, in principle, lower latency and better privacy. However, managing such a structure is complex, especially when requirements, also referred to Service Level Objectives (SLOs), specified by applications’ owners and infrastructure managers need to be ensured. Despite the rich number of proposals of Machine Learning (ML) based management solutions, researchers and practitioners yet struggle to guarantee long-term prediction and control, and accurate troubleshooting. Therefore, we present a novel ML paradigm based on Active Inference (AIF)—a concept from neuroscience that describes how the brain constantly predicts and evaluates sensory information to decrease long-term surprise. We implement it and evaluate it in a heterogeneous real stream processing use case, where an AIF-based agent continuously optimizes the fulfillment of three SLOs for three autonomous driving services running on multiple devices. The agent used causal knowledge to gradually develop an understanding of how its actions are related to requirements fulfillment, and which configurations to favor. Through this approach, our agent requires up to thirty iterations to converge to the optimal solution, showing the capability of offering accurate results in a short amount of time. Furthermore, thanks to AIF and its causal structures, our method guarantees full transparency on the decision making, making the interpretation of the results and the troubleshooting effortless.
AbstractList The current scenario of IoT is witnessing a constant increase on the volume of data, which is generated in constant stream, calling for novel architectural and logical solutions for processing it. Moving the data handling towards the edge of the computing spectrum guarantees better distribution of load and, in principle, lower latency and better privacy. However, managing such a structure is complex, especially when requirements, also referred to Service Level Objectives (SLOs), specified by applications’ owners and infrastructure managers need to be ensured. Despite the rich number of proposals of Machine Learning (ML) based management solutions, researchers and practitioners yet struggle to guarantee long-term prediction and control, and accurate troubleshooting. Therefore, we present a novel ML paradigm based on Active Inference (AIF)—a concept from neuroscience that describes how the brain constantly predicts and evaluates sensory information to decrease long-term surprise. We implement it and evaluate it in a heterogeneous real stream processing use case, where an AIF-based agent continuously optimizes the fulfillment of three SLOs for three autonomous driving services running on multiple devices. The agent used causal knowledge to gradually develop an understanding of how its actions are related to requirements fulfillment, and which configurations to favor. Through this approach, our agent requires up to thirty iterations to converge to the optimal solution, showing the capability of offering accurate results in a short amount of time. Furthermore, thanks to AIF and its causal structures, our method guarantees full transparency on the decision making, making the interpretation of the results and the troubleshooting effortless.
ArticleNumber 130
Author Dustdar, Schahram
Donta, Praveen Kumar
Sedlak, Boris
Casamayor Pujol, Victor
Morichetta, Andrea
Author_xml – sequence: 1
  givenname: Boris
  orcidid: 0009-0001-2365-8265
  surname: Sedlak
  fullname: Sedlak, Boris
  email: b.sedlak@dsg.tuwien.ac.at
  organization: Distributed Systems Group, TU Wien
– sequence: 2
  givenname: Victor
  orcidid: 0000-0003-2830-8368
  surname: Casamayor Pujol
  fullname: Casamayor Pujol, Victor
  organization: Distributed Intelligence and Systems-Engineering Lab (DISL), Universitat Pompeu Fabra
– sequence: 3
  givenname: Andrea
  surname: Morichetta
  fullname: Morichetta, Andrea
  organization: Distributed Systems Group, TU Wien
– sequence: 4
  givenname: Praveen Kumar
  orcidid: 0000-0002-8233-6071
  surname: Donta
  fullname: Donta, Praveen Kumar
  organization: Department of Computer and Systems Sciences, Stockholm University
– sequence: 5
  givenname: Schahram
  orcidid: 0000-0001-6872-8821
  surname: Dustdar
  fullname: Dustdar, Schahram
  organization: Distributed Systems Group, TU Wien, Distributed Intelligence and Systems-Engineering Lab (DISL), Universitat Pompeu Fabra
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-250011$$DView record from Swedish Publication Index (Stockholms universitet)
BookMark eNp9kM1OwzAQhC1UJErpC3CKxJXA2nFs51iVX6kSF-BqOc4mTUWTYCdFvD2mqcqN065W34x25pxMmrZBQi4p3FAAeespSxOIgaUxZDJNYnZCplQJFQuuxOS4S3VG5t5vAIBRDsDllCwXhen6eoeR7x2abdS51qL3dVNFbRNhUWFU4K4Ot6hfu3ao1pGxe0HdlOiwsXhBTkvz4XF-mDPy9nD_unyKVy-Pz8vFKrZJmvSx4VZxmZdWAU0zgSUvMpNYYSXPslIoWaIwYHlRYMkUSBsEhvJcYkiV5TyZkevR139hN-S6c_XWuG_dmlrf1e8L3bpK-0GzFIDSgF-NeIj0OaDv9aYdXBM-1AmToLhQmQgUGynrWu8dlkdbCvq3Xj3Wq0O9el-vZkGUHD4JcFOh-7P-R_UDrfR_KA
Cites_doi 10.1109/TKDE.2022.3142856
10.1038/nrn2787
10.1162/neco_a_01357
10.1109/SSE60056.2023.00017
10.1007/s13164-021-00579-w
10.1080/01621459.2017.1285773
10.1109/SOSE62363.2024.00008
10.1109/TSC.2023.3335412
10.1109/TMC.2020.3036871
10.1109/MIC.2023.3344248
10.1109/IWCMC55113.2022.9824275
10.1002/ett.4418
10.1109/TETC.2023.3315131
10.1109/ADICS58448.2024.10533619
10.1117/12.2679910
10.1109/PerComWorkshops59983.2024.10502828
10.1109/IJCNN48605.2020.9207382
10.1109/JSYST.2023.3249217
10.1098/rsif.2017.0792
10.1109/MIC.2020.2987739
10.1007/s12530-024-09590-9
10.1016/j.jpse.2022.100053
10.1109/CLOUD60044.2023.00013
10.1177/26339137231222481
10.1016/j.jmp.2021.102632
10.21105/joss.04098
10.1109/JIOT.2020.2984887
10.1016/j.future.2024.05.056
10.1016/j.jtbi.2018.07.002
10.1109/SOSE62363.2024.00018
10.1109/TITS.2023.3242997
10.1371/journal.pone.0006421
10.1016/j.visres.2008.09.007
10.1016/B978-0-08-051489-5.50008-4
10.48550/arXiv.2302.06975
10.1109/MNET.101.2000364
10.1016/j.comnet.2023.109924
10.1109/TSC.2016.2607739
10.1145/3555802
10.1145/1402946.1402971
10.1109/MNET.001.1900200
10.1007/s10462-022-10351-w
10.1109/ICCV48922.2021.00453
10.1007/978-3-031-48421-6_4
10.1145/2619239.2626296
10.1016/B978-0-12-817636-8.00004-1
10.1007/978-3-031-48424-7_18
10.1098/rsif.2013.0475
10.1109/EDGE67623.2025.00020
10.7551/mitpress/12441.001.0001
10.1214/09-SS057
10.1145/3132211.3134459
10.1109/IEEECloudSummit48914.2020.00007
10.1109/TETC.2019.2902661
10.1109/EDGE50951.2020.00008
10.1145/3514496
ContentType Journal Article
Copyright The Author(s) 2025
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
JQ2
ABAVF
ADTPV
AOWAS
D8T
DG7
ZZAVC
DOI 10.1007/s12530-025-09753-2
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Computer Science Collection
SWEPUB Stockholms universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Stockholms universitet
SwePub Articles full text
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection
CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1868-6486
ExternalDocumentID oai_DiVA_org_su_250011
10_1007_s12530_025_09753_2
GrantInformation_xml – fundername: TU Wien (TUW)
GroupedDBID 06D
0R~
0VY
1N0
203
29~
2JY
30V
4.4
406
408
409
40D
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATLR
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAZMS
ABAKF
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMLO
ACOKC
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AETCA
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ATHPR
AUKKA
AXYYD
AYFIA
AYJHY
BGNMA
C6C
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
ESBYG
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FYJPI
GGCAI
GGRSB
GJIRD
GQ7
GQ8
HG6
HMJXF
HQYDN
HRMNR
I0C
IKXTQ
IWAJR
IXD
IZIGR
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O93
O9J
P9P
PT4
QOS
R89
R9I
RLLFE
ROL
RSV
S1Z
S27
S3B
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
WK8
Z45
ZMTXR
~A9
2VQ
AAAVM
AARHV
AAYTO
AAYXX
ABULA
AEBTG
AFFHD
AFKRA
AFLOW
AHSBF
AJBLW
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
EJD
FINBP
FSGXE
H13
HCIFZ
HF~
HZ~
K7-
O9-
PHGZM
PHGZT
PQGLB
JQ2
ABAVF
ADTPV
AGGLG
AOWAS
D8T
DG7
ZZAVC
ID FETCH-LOGICAL-c353t-a4c847bfc801596ef4d9a3c6c7499f687fe6a0c4ddef2807ca4ca14b7e0979b43
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001614838300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1868-6478
1868-6486
IngestDate Wed Dec 10 07:24:06 EST 2025
Tue Dec 02 16:50:00 EST 2025
Sat Nov 29 06:55:10 EST 2025
Wed Dec 10 12:43:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Markov blanket
Active inference
Service level objectives
Machine learning
Edge intelligence
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c353t-a4c847bfc801596ef4d9a3c6c7499f687fe6a0c4ddef2807ca4ca14b7e0979b43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2830-8368
0000-0001-6872-8821
0000-0002-8233-6071
0009-0001-2365-8265
OpenAccessLink https://link.springer.com/10.1007/s12530-025-09753-2
PQID 3270846896
PQPubID 2043919
ParticipantIDs swepub_primary_oai_DiVA_org_su_250011
proquest_journals_3270846896
crossref_primary_10_1007_s12530_025_09753_2
springer_journals_10_1007_s12530_025_09753_2
PublicationCentury 2000
PublicationDate 2025-12-01
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle An Interdisciplinary Journal for Advanced Science and Technology
PublicationTitle Evolving systems
PublicationTitleAbbrev Evolving Systems
PublicationYear 2025
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References MG Vilas (9753_CR61) 2022; 13
9753_CR30
T Parr (9753_CR43) 2022
VC Pujol (9753_CR47) 2024; 28
M Yazdi (9753_CR63) 2022; 2
9753_CR39
H Hua (9753_CR22) 2023; 55
C Cao (9753_CR5) 2023; 235
9753_CR32
9753_CR1
9753_CR33
J Pearl (9753_CR45) 2009; 3
9753_CR36
9753_CR35
9753_CR38
9753_CR37
9753_CR7
J Wang (9753_CR62) 2019; 9
9753_CR6
9753_CR8
9753_CR3
9753_CR2
9753_CR60
NK Kitson (9753_CR31) 2023; 56
M Tang (9753_CR56) 2020; 21
Y Ju (9753_CR28) 2023; 24
S Deng (9753_CR9) 2020
KJ Friston (9753_CR16) 2009; 4
9753_CR29
M Togacar (9753_CR58) 2022
L Itti (9753_CR27) 2009; 49
9753_CR21
9753_CR65
9753_CR20
9753_CR64
9753_CR23
9753_CR25
9753_CR26
J Bruineberg (9753_CR4) 2018; 455
S Dustdar (9753_CR10) 2023; 35
9753_CR50
9753_CR52
9753_CR51
H Guo (9753_CR19) 2020; 34
9753_CR18
9753_CR17
Z Liu (9753_CR34) 2021; 35
9753_CR54
9753_CR53
9753_CR12
9753_CR11
9753_CR55
9753_CR13
9753_CR57
J Huang (9753_CR24) 2023; 17
9753_CR59
9753_CR41
K Friston (9753_CR14) 2010; 11
9753_CR40
K Friston (9753_CR15) 2013; 10
9753_CR42
9753_CR44
9753_CR46
9753_CR49
9753_CR48
References_xml – volume: 35
  start-page: 4092
  issue: 4
  year: 2023
  ident: 9753_CR10
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2022.3142856
– volume: 11
  start-page: 127
  issue: 2
  year: 2010
  ident: 9753_CR14
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn2787
– ident: 9753_CR48
  doi: 10.1162/neco_a_01357
– ident: 9753_CR49
  doi: 10.1109/SSE60056.2023.00017
– volume: 13
  start-page: 859
  issue: 4
  year: 2022
  ident: 9753_CR61
  publication-title: Rev Philos Psychol
  doi: 10.1007/s13164-021-00579-w
– ident: 9753_CR3
  doi: 10.1080/01621459.2017.1285773
– ident: 9753_CR53
  doi: 10.1109/SOSE62363.2024.00008
– ident: 9753_CR35
  doi: 10.1109/TSC.2023.3335412
– volume: 21
  start-page: 1985
  issue: 6
  year: 2020
  ident: 9753_CR56
  publication-title: IEEE Trans Mob Comput
  doi: 10.1109/TMC.2020.3036871
– volume: 28
  start-page: 57
  issue: 2
  year: 2024
  ident: 9753_CR47
  publication-title: IEEE Internet Comput
  doi: 10.1109/MIC.2023.3344248
– ident: 9753_CR37
  doi: 10.1109/IWCMC55113.2022.9824275
– year: 2022
  ident: 9753_CR58
  publication-title: Trans Telecommun Technol
  doi: 10.1002/ett.4418
– ident: 9753_CR36
– ident: 9753_CR50
  doi: 10.1109/TETC.2023.3315131
– ident: 9753_CR60
  doi: 10.1109/ADICS58448.2024.10533619
– ident: 9753_CR1
  doi: 10.1117/12.2679910
– ident: 9753_CR51
  doi: 10.1109/PerComWorkshops59983.2024.10502828
– ident: 9753_CR42
– ident: 9753_CR59
  doi: 10.1109/IJCNN48605.2020.9207382
– volume: 17
  start-page: 2500
  issue: 2
  year: 2023
  ident: 9753_CR24
  publication-title: IEEE Syst J
  doi: 10.1109/JSYST.2023.3249217
– ident: 9753_CR30
  doi: 10.1098/rsif.2017.0792
– ident: 9753_CR41
  doi: 10.1109/MIC.2020.2987739
– ident: 9753_CR7
  doi: 10.1007/s12530-024-09590-9
– volume: 2
  start-page: 100053
  issue: 2
  year: 2022
  ident: 9753_CR63
  publication-title: J Pipeline Sci Eng
  doi: 10.1016/j.jpse.2022.100053
– ident: 9753_CR40
  doi: 10.1109/CLOUD60044.2023.00013
– ident: 9753_CR13
  doi: 10.1177/26339137231222481
– ident: 9753_CR55
  doi: 10.1016/j.jmp.2021.102632
– ident: 9753_CR20
  doi: 10.21105/joss.04098
– year: 2020
  ident: 9753_CR9
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2020.2984887
– ident: 9753_CR12
– ident: 9753_CR54
  doi: 10.1016/j.future.2024.05.056
– volume: 455
  start-page: 161
  year: 2018
  ident: 9753_CR4
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2018.07.002
– ident: 9753_CR39
  doi: 10.1109/SOSE62363.2024.00018
– volume: 24
  start-page: 5555
  issue: 5
  year: 2023
  ident: 9753_CR28
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2023.3242997
– volume: 4
  start-page: 6421
  issue: 7
  year: 2009
  ident: 9753_CR16
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0006421
– volume: 49
  start-page: 1295
  issue: 10
  year: 2009
  ident: 9753_CR27
  publication-title: Vision Res
  doi: 10.1016/j.visres.2008.09.007
– ident: 9753_CR44
  doi: 10.1016/B978-0-08-051489-5.50008-4
– ident: 9753_CR11
– ident: 9753_CR18
  doi: 10.48550/arXiv.2302.06975
– volume: 35
  start-page: 202
  issue: 5
  year: 2021
  ident: 9753_CR34
  publication-title: IEEE Netw
  doi: 10.1109/MNET.101.2000364
– volume: 235
  start-page: 109924
  year: 2023
  ident: 9753_CR5
  publication-title: Comput Netw
  doi: 10.1016/j.comnet.2023.109924
– ident: 9753_CR8
  doi: 10.1109/TSC.2016.2607739
– volume: 55
  start-page: 1
  issue: 9
  year: 2023
  ident: 9753_CR22
  publication-title: ACM Comput Surv
  doi: 10.1145/3555802
– ident: 9753_CR57
  doi: 10.1145/1402946.1402971
– volume: 34
  start-page: 128
  issue: 2
  year: 2020
  ident: 9753_CR19
  publication-title: IEEE Netw
  doi: 10.1109/MNET.001.1900200
– volume: 56
  start-page: 8721
  issue: 8
  year: 2023
  ident: 9753_CR31
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-022-10351-w
– ident: 9753_CR29
  doi: 10.1109/ICCV48922.2021.00453
– ident: 9753_CR52
  doi: 10.1007/978-3-031-48421-6_4
– ident: 9753_CR23
  doi: 10.1145/2619239.2626296
– ident: 9753_CR46
– ident: 9753_CR21
– ident: 9753_CR17
– ident: 9753_CR38
– ident: 9753_CR2
– ident: 9753_CR33
  doi: 10.1016/B978-0-12-817636-8.00004-1
– ident: 9753_CR65
  doi: 10.1007/978-3-031-48424-7_18
– volume: 10
  start-page: 20130475
  issue: 86
  year: 2013
  ident: 9753_CR15
  publication-title: J R Soc Interface
  doi: 10.1098/rsif.2013.0475
– ident: 9753_CR32
  doi: 10.1109/EDGE67623.2025.00020
– volume-title: Active inference: the free energy principle in mind, brain, and behavior
  year: 2022
  ident: 9753_CR43
  doi: 10.7551/mitpress/12441.001.0001
– volume: 3
  start-page: 96
  year: 2009
  ident: 9753_CR45
  publication-title: Stat Surv.
  doi: 10.1214/09-SS057
– ident: 9753_CR64
  doi: 10.1145/3132211.3134459
– ident: 9753_CR26
  doi: 10.1109/IEEECloudSummit48914.2020.00007
– volume: 9
  start-page: 1529
  issue: 3
  year: 2019
  ident: 9753_CR62
  publication-title: IEEE Trans Emerg Top Comput
  doi: 10.1109/TETC.2019.2902661
– ident: 9753_CR25
  doi: 10.1109/EDGE50951.2020.00008
– ident: 9753_CR6
  doi: 10.1145/3514496
SSID ssj0002140047
ssib031263332
Score 2.3524182
Snippet The current scenario of IoT is witnessing a constant increase on the volume of data, which is generated in constant stream, calling for novel architectural and...
SourceID swepub
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 130
SubjectTerms Active Inference
Artificial Intelligence
Complex Systems
Complexity
Computer and Systems Sciences
data- och systemvetenskap
Edge Intelligence
Engineering
Inference
Machine Learning
Markov Blanket
Neurosciences
Original Paper
Quality of service
Service Level Objectives
Troubleshooting
Title Adaptive stream processing on edge devices through active inference
URI https://link.springer.com/article/10.1007/s12530-025-09753-2
https://www.proquest.com/docview/3270846896
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-250011
Volume 16
WOSCitedRecordID wos001614838300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Standard Collection
  customDbUrl:
  eissn: 1868-6486
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002140047
  issn: 1868-6486
  databaseCode: RSV
  dateStart: 20100801
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQYYCBN6JQkAeYwFJiu44zVgXEVCEeVTfLr6AOtFXT8vuxnbgBhJBgtnKRz5fvO8f-7gC4SAxNk0QxJAmhyPE1RxLLDDluVYrzIrW5Ds0mssGAj0b5Qy0KK-Nt93gkGZC6EbvhLkmQb7-aeDUocsC77uiO-4YNj0_DGEUkxYzEolwej3Hq4zR0WeGMIy-urNUzP5v9ylBN2rk6Kf1WVTQw0d3O_-awC7brzBP2qlDZA2t2sg-2PtUjPAD9npEzj3_QS0jkG5xVMgI3CKcT6H-9QWMDtsC6wQ-UATDhOAoHD8HL3e1z_x7VXRaQJl2yQJJqx1Cq0I6rujmzBTW5JJrpzG2GCsazwjKZaOpwsPClc7R7QKZUZdZNIVeUHIHWZDqxxwByQzlTqlBEul2KwYobyag1WCqbUp22wVX0rJhVxTREUzbZu0Y414jgGoHboBOdL-oPqxQEZ4lLmXjO2uA6-rgZ_s3aZbVoqzf7wto342FPTOevolwKlww6sDv5m9lTsIn9coYLLh3QWsyX9gxs6PfFuJyfh8D8ABdA2ys
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA4yBfXgb3E6NQc9aaBNsjQ9jumYOIfoHLuFJE1lB7uxbv79Jlm7qYig59BX8vL6vZcm3_cAuAgSGgaBYkgSQpHN1xxJLCNkc6tSnKehibVvNhF1u3wwiB8LUlhe3nYvjyQ9Ui_JbrhOAuTarwaODYos8K5Sm7GcYv7Tc7-MIhJiRkpRLofHOHRx6ruscMaRI1cW7JmfzX7NUMuyc3FS-k1V1Gei1vb_5rADtorKEzbmobILVky2BzY_6RHug2YjkWOHf9BRSOQbHM9pBHYQjjLofr3BxHhsgUWDHyg9YMJhSRw8AC-t216zjYouC0iTOpkiSbXNUCrVNlfVY2ZSmsSSaKYjuxlKGY9Sw2SgqcXB1EnnaPuADKmKjJ1CrCg5BJVslJkjAHlCOVMqVUTaXUqCFU8koybBUpmQ6rAKrkrPivFcTEMsZZOda4R1jfCuEbgKaqXzRfFh5YLgKLAlE49ZFVyXPl4O_2btcr5oizc7Ye2bYb8hRpNXkc-ELQYt2B3_zew5WG_3Hjqic9e9PwEb2C2tv-xSA5XpZGZOwZp-nw7zyZkP0g9mHd4P
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6iInrwLVar5qAnDd1N0mz2WNSiKKXgg95CXis9uC19-PtNsrttFRHEc9gsmcx-M9nM9w0A55GhcRQphiQhFLl4zZHEMkEutirFeRbbVIdmE0mnw3u9tLvA4g_V7tWVZMFp8CpN-aQxNFljTnzDTRIh34o18sxQ5EB4hfpCen9ef3qtPIrEmJFKoMtjM469z4aOK5xx5ImWJZPm52m_Rqt5Cjq7Nf2mMBqiUnvr_-vZBptlRgpbhQvtgCWb74KNBZ3CPXDdMnLocRF6aol8h8OCXuAG4SCH_pccNDZgDiwb_0AZgBT2K0LhPnhp3z5f36Gy-wLSpEkmSFLtIpfKtIthzZTZjJpUEs104g5JGeNJZpmMNHX4mHlJHe0ekDFViXVLSBUlB2A5H-T2EEBuKGdKZYpId3oxWHEjGbUGS2VjquMauKysLIaFyIaYyyl70whnGhFMI3AN1KuNEOUHNxYEJ5FLpXjKauCqsvd8-LfZLooNnL3ZC27f9F9bYjB6E-OpcEmiA8Gjv017Bta6N23xeN95OAbr2O9sqIGpg-XJaGpPwKr-mPTHo9Pgr5-FEubz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Stream+Processing+on+Edge+Devices+through+Active+Inference&rft.jtitle=Evolving+systems&rft.au=Sedlak%2C+Boris&rft.au=Casamayor+Pujol%2C+Victor&rft.au=Morichetta%2C+Andrea&rft.au=Donta%2C+Praveen+Kumar&rft.date=2025-12-01&rft.issn=1868-6486&rft.eissn=1868-6486&rft_id=info:doi/10.1007%2Fs12530-025-09753-2&rft.externalDocID=oai_DiVA_org_su_250011
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-6478&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-6478&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-6478&client=summon