Robust text line detection in historical documents: learning and evaluation methods

Text line segmentation is one of the key steps in historical document understanding. It is challenging due to the variety of fonts, contents, writing styles and the quality of documents that have degraded through the years. In this paper, we address the limitations that currently prevent people from...

Full description

Saved in:
Bibliographic Details
Published in:International journal on document analysis and recognition Vol. 25; no. 2; pp. 95 - 114
Main Authors: Boillet, Mélodie, Kermorvant, Christopher, Paquet, Thierry
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2022
Springer Nature B.V
Springer Verlag
Subjects:
ISSN:1433-2833, 1433-2825
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Text line segmentation is one of the key steps in historical document understanding. It is challenging due to the variety of fonts, contents, writing styles and the quality of documents that have degraded through the years. In this paper, we address the limitations that currently prevent people from building line segmentation models with a high generalization capacity. We present a study conducted using three state-of-the-art systems Doc-UFCN, dhSegment and ARU-Net and show that it is possible to build generic models trained on a wide variety of historical document datasets that can correctly segment diverse unseen pages. This paper also highlights the importance of the annotations used during training: Each existing dataset is annotated differently. We present a unification of the annotations and show its positive impact on the final text recognition results. In this end, we present a complete evaluation strategy using standard pixel-level metrics, object-level ones and introducing goal-oriented metrics.
AbstractList Text line segmentation is one of the key steps in historical document understanding. It is challenging due to the variety of fonts, contents, writing styles and the quality of documents that have degraded through the years. In this paper, we address the limitations that currently prevent people from building line segmentation models with a high generalization capacity. We present a study conducted using three state-of-the-art systems Doc-UFCN, dhSegment and ARU-Net and show that it is possible to build generic models trained on a wide variety of historical document datasets that can correctly segment diverse unseen pages. This paper also highlights the importance of the annotations used during training: Each existing dataset is annotated differently. We present a unification of the annotations and show its positive impact on the final text recognition results. In this end, we present a complete evaluation strategy using standard pixel-level metrics, object-level ones and introducing goal-oriented metrics.
Author Kermorvant, Christopher
Boillet, Mélodie
Paquet, Thierry
Author_xml – sequence: 1
  givenname: Mélodie
  orcidid: 0000-0002-0618-7852
  surname: Boillet
  fullname: Boillet, Mélodie
  email: boillet@teklia.com
  organization: TEKLIA, LITIS, Normandie University
– sequence: 2
  givenname: Christopher
  surname: Kermorvant
  fullname: Kermorvant, Christopher
  organization: TEKLIA, LITIS, Normandie University
– sequence: 3
  givenname: Thierry
  surname: Paquet
  fullname: Paquet, Thierry
  organization: LITIS, Normandie University
BackLink https://hal.science/hal-03923710$$DView record in HAL
BookMark eNp9kElLAzEYhoNUsC5_wFPAk4fRbJNMvZWiVigILueQmWRsZJrUJFP03xs7LuChhyyE5_l48x6CkfPOAHCK0QVGSFzGvFNSIJIXopOyEHtgjBmlBalIOfq9U3oADmN8RQgLLqoxeHzwdR8TTOY9wc46A7VJpknWO2gdXNqYfLCN6qD2Tb8yLsUr2BkVnHUvUDkNzUZ1vdoKK5OWXsdjsN-qLpqT7_MIPN9cP83mxeL-9m42XRQNLWkqFJ1UWjRtWzNKECuR0WWLBeFCc1ZXlUJMlNjUCGumOVUtYxrVohEUcy24okfgfJi7VJ1cB7tS4UN6ZeV8upBfb7kJQgVGG5zZs4FdB__Wm5jkq--Dy_Ek4ZwhzkrMM1UNVBN8jMG0srFp-7cUlO0kRvKrbjnULXPdclu3FFkl_9SfRDslOkgxw-7FhL9UO6xPpoGTfQ
CitedBy_id crossref_primary_10_1109_TPAMI_2023_3235826
crossref_primary_10_1007_s10032_025_00526_w
crossref_primary_10_2514_1_B38960
crossref_primary_10_1016_j_culher_2024_02_001
crossref_primary_10_3390_jimaging10030065
crossref_primary_10_1007_s10044_024_01235_6
crossref_primary_10_1016_j_eswa_2025_126453
Cites_doi 10.1109/ICPR48806.2021.9412447
10.1109/ICDAR.2017.222
10.1007/s10032-009-0083-y
10.1109/ICDAR.2017.311
10.1109/ICFHR-2018.2018.00072
10.1109/ICIP.2014.7025525
10.1109/ICDAR.2019.00208
10.1109/CVPR.2016.90
10.1109/ICDAR.2017.155
10.1109/CVPR.2017.462
10.1109/ICDAR.2017.226
10.1109/ICASSP.2014.6854572
10.1016/j.patrec.2020.01.026.ISSN0167-8655
10.1145/3352631.3352633
10.1109/ICCV.2017.242
10.1109/CVPR42600.2020.01472
10.1007/s10032-018-0304-3
10.1109/34.476511
10.1007/978-3-030-01231-1_23
10.1109/ICDAR.2019.00066
10.1109/ICDAR.2019.00111
10.1007/s100320200071
10.1109/ICDAR.2017.307
10.1117/1.3446803
10.51964/hlcs9299
10.1007/978-3-030-57058-3_31
10.1109/DAS.2018.38
10.1109/ICFHR2020.2020.00023
10.1109/ICFHR2020.2020.00025
10.1109/CVPR.2017.690
10.1109/ICFHR.2016.0014
10.1145/3352631.3352636
10.1109/CVPR.2016.91
10.1007/s10032-019-00332-1
10.1109/ICCV.2015.169
10.1109/CVPR.2014.81
10.1007/s10032-006-0014-0
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
JQ2
1XC
VOOES
DOI 10.1007/s10032-022-00395-7
DatabaseName CrossRef
ProQuest Computer Science Collection
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection


DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1433-2825
EndPage 114
ExternalDocumentID oai:HAL:hal-03923710v1
10_1007_s10032_022_00395_7
GrantInformation_xml – fundername: CIFRE ANRT
  grantid: 2020/0390
– fundername: Agence Nationale de la Recherche (ANR)
  grantid: ANR-17-JPCH-0006; ANR-17-CE38-0008
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.86
06D
0R~
0VY
1N0
1SB
203
29J
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAGAY
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
MQGED
N2Q
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P9O
PF0
PT4
PT5
QOS
R89
R9I
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
PHGZM
PHGZT
PQGLB
JQ2
1XC
VOOES
ID FETCH-LOGICAL-c353t-a398d7cffb4320450ed5f17267d64b88a04751eb01d4d63af44d0b7c7316d76a3
IEDL.DBID RSV
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000771889900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1433-2833
IngestDate Tue Oct 14 20:48:48 EDT 2025
Wed Sep 17 23:57:53 EDT 2025
Tue Nov 18 21:53:33 EST 2025
Sat Nov 29 06:22:35 EST 2025
Fri Feb 21 02:47:21 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Generic architecture
Evaluation strategy
Text line detection
Historical documents
Goal-directed evaluation
Text line detection ; Historical documents;Generic architecture;Evaluation strategy ; Goal-directed evaluation
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c353t-a398d7cffb4320450ed5f17267d64b88a04751eb01d4d63af44d0b7c7316d76a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0618-7852
0000-0002-2044-7542
0000-0002-7508-4080
OpenAccessLink https://hal.science/hal-03923710
PQID 2664064516
PQPubID 2043688
PageCount 20
ParticipantIDs hal_primary_oai_HAL_hal_03923710v1
proquest_journals_2664064516
crossref_citationtrail_10_1007_s10032_022_00395_7
crossref_primary_10_1007_s10032_022_00395_7
springer_journals_10_1007_s10032_022_00395_7
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle International journal on document analysis and recognition
PublicationTitleAbbrev IJDAR
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: Springer Verlag
References WolfCJolionJ-MObject count/area graphs for the evaluation of object detection and segmentation algorithmsInt. J. Document Anal. Recogn.20068428029610.1007/s10032-006-0014-0
Oparin, I., Kahn, J., Galibert, O.: First maurdor 2013 evaluation campaign in scanned document image processing. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5090–5094 (May 2014)
Boillet, M., Bonhomme, M.-L., Stutzmann, D., Kermorvant, C.: HORAE: an annotated dataset of books of hours. In: Proceedings of the 5th International Workshop on Historical Document Imaging and Processing, HIP ’19, pp. 7-12. Association for Computing Machinery, (September 2019)
Dolfing, H.J.G.A., Bellegarda, J., Chorowski, J., Marxer, R. and Laurent, A.Dolfing, H.J., Bellegarda, J., Chorowski, J., Marxer, R. and Laurent, A.: The “ScribbleLens” Dutch historical handwriting corpus. In: International Conference on Frontiers of Handwriting Recognition (ICFHR), pp. 67–72 (September 2020)
Kahle, P., Colutto, S., Hackl, G., Mühlberger, G.: Transkribus - a service platform for transcription, recognition and retrieval of historical documents. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), Vol. 04, pp. 19–24, (November 2017)
PeskinAWilthanBMajurskiMDetection of dense, overlapping, geometric objectsInt. J. Artif. Intell. Appl. (IJAIA)2020112940
Alberti, M., Bouillon, M., Ingold, R., Liwicki, M.: Open evaluation tool for layout analysis of document images. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), pp. 43–47, Kyoto, Japan, (November 2017)
Girshick, R.B., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 580–587, (November 2013)
Markus, D., Florian, K., Robert, S., Basilis, G.: cBAD: ICDAR2019 competition on baseline detection. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 1494–1498 (September 2019)
Vézina, H., Bournival, J-S.: An overview of the BALSAC population database. current state and future prospects. In: Historical Life Course Studies, Past Developments (2020)
Arora, A., Chang, C.C., Rekabdar, B., BabaAli, B., Povey, D., Etter, D., Raj, D., Hadian, H., Trmal, J., Garcia, P., Watanabe, S., Manohar, V., Shao, Y., Khudanpur, S.: Using ASR methods for OCR. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 663–668 (September 2019)
RentonGSoullardYChatelainCAdamSKermorvantCPaquetTFully convolutional network with dilated convolutions for handwritten text line segmentationInt. J. Doc. Anal. Recogn. (IJDAR)20182117718610.1007/s10032-018-0304-3
Stutzmann, D., Torres Aguilar, S., Kermorvant, C., Miret, B.: C3PO4: A corpus of annotated medieval cartularies (image, text, named entities). Unpublished
Galibert, O., Kahn, J., Oparin, I.: The zonemap metric for page segmentation and area classification in scanned documents. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 2594–2598 (January 2015)
Yousef, M., Bishop, To.: OrigamiNet: weakly-supervised, segmentation-free, one-step, full page text recognition by learning to unfold. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14698–14707, (June 2020)
Sánchez, J.A., Romero, V., Toselli, A.H., Villegas, M., Vidal, E.: Dataset for ICDAR2017 competition on handwritten text recognition on the READ dataset (ICDAR2017 HTR), (2017)
Bluche, T.: Joint line segmentation and transcription for end-to-end handwritten paragraph recognition. In: Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R. (Eds.), Advances in Neural Information Processing Systems 29, pp. 838–846. Curran Associates, Inc., (April 2016)
Barakat, B., Droby, A., Kassis, M., El-Sana, J.: Text line segmentation for challenging handwritten document images using fully convolutional network. In: 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 374–379 (August 2018)
MartiU-VBunkeHThe IAM-database: An English sentence database for offline handwriting recognitionInt. J. Document Anal. Recogn. (IJDAR)20025394610.1007/s100320200071
Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. In: arXiv:abs/1804.02767 (April 2018)
Diem, M., Kleber, F., Fiel, S., Grüning, T., Gatos, B.: cBAD: ICDAR2017 competition on baseline detection. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), Vol. 01, pp. 1355–1360 (November 2017)
TrierODJainAKGoal-directed evaluation of binarization methodsIEEE Trans. Pattern Anal. Mach. Intell.1995171191120110.1109/34.476511
Bušta, M., Neumann, L., Matas, J.: Deep TextSpotter: an end-to-end trainable scene text localization and recognition framework. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2223–2231, (October 2017)
Girshick, R.B.: Fast R-CNN. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1440–1448 (June 2015)
Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6517–6525, (July 2017)
Moysset, B., Louradour, J., Kermorvant, C., Wolf, C.: Learning text-line localization with shared and local regression neural networks. In: 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 1–6 (October 2016)
MelnikovAZagaynovIXiangBDimosthenisKDanielLFast and lightweight text line detection on historical documentsDocument Analysis Systems2020BerlinSpringer44145010.1007/978-3-030-57058-3_31
Sánchez, J.A., Romero, V., Toselli, A.H., Vidal, E.: READ dataset Bozen (December 2016)
Wigington, C., Tensmeyer, C., Davis, B., Barrett, W., Price, B., Cohen S.: Start, follow, read: end-to-end full-page handwriting recognition. In: Vittorio, F., Martial, H., Cristian, S., Yair, W. (Eds.), 15th European Conference on Computer Vision (ECCV), pp. 372–388. Springer International Publishing, (September 2018)
Shaoqing, R., Kaiming, H., Ross, G., Jian, S.: Faster R-CNN: towards real-time object detection with region proposal networks. In: IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), Vol. 39 (June 2015)
RonnebergerOFischerPBroxTU-net: convolutional networks for biomedical image segmentationLNCS20159351234241
Michael, J., Labahn, R., Gruning, T., Zollner, J.: Evaluating Sequence-to-Sequence Models for Handwritten Text Recognition. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 1286–1293, (September 2019)
Jia D., Wei D., Richard S., Li-Jia L., Kai L., and Fei-Fei L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (June 2009)
Boros, E., Romero, V., Maarand, M., Zenklova, K., Kreckova, J., Vidal, E., Stutzmann, D. and Kermorvant, C.: A comparison of sequential and combined approaches for named entity recognition in a corpus of handwritten medieval charters. In: 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 79–84, Dortmund, Germany, (September 2020). IEEE
Boillet, M., Kermorvant, C., Paquet, T.: Multiple document datasets pre-training improves text line detection with deep neural networks. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 2134–2141, (January 2021)
GrüningTLeifertGStraußTLabahnRA Two-Stage Method for Text Line Detection in Historical DocumentsInt. J. Document Anal. Recogn. (IJDAR)20192228530210.1007/s10032-019-00332-1
Soullard, Y., Tranouez, P., Chatelain, C., Nicolas, S., Paquet, T.: Multi-scale gated fully convolutional densenets for semantic labeling of historical newspaper images. Pattern Recogn. Lett. 131, 435–441 (2020). https://doi.org/10.1016/j.patrec.2020.01.026.ISSN0167-8655
Oliveira, S.A., Seguin, B., Kaplan, F.: dhSegment: a generic deep-learning approach for document segmentation. In: 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 7–12. IEEE, (August 2018)
Mechi, O., Mehri, M., Ingold, R., Amara, N.E.B.: Text line segmentation in historical document images using an adaptive U-net architecture. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 369–374 (September 2019)
Yang, X., Yumer, E., Asente, P., Kraley, M., Kifer, D., Giles, C.L.: Learning to extract semantic structure from documents using multimodal fully convolutional neural network. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4342–4351 (June 2017)
Tarride, S., Lemaitre, A., Couasnon, B., Tardivel, S.: Signature detection as a way to recognise historical parish register structure. In: HIP 2019, pp. 54–59, Sydney, Australia, (September 2019). ACM Press
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (June 2016)
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779–788 (June 2016)
Grüning, T., Labahn, R., Diem, M., Kleber, F., Fiel, S.: READ-BAD: a new dataset and evaluation scheme for baseline detection in archival documents. In: 2018 13th IAPR International Workshop on Document Analysis Systems (DAS), pp. 351–356 (May 2017)
HemeryBLaurentHEmileBRosenbergerCComparative study of localization metrics for the evaluation of image interpretation systemsJ. Electron. Imaging20101910.1117/1.3446803
RusiñolMLladósJA performance evaluation protocol for symbol spotting systems in terms of recognition and location indicesInt. J. Document Anal. Recogn. (IJDAR)200912839610.1007/s10032-009-0083-y
Zhong, Z., Sun, L., Huo, Q.: Improved localization accuracy by locNet for R-CNN based text detection. In: 2017 14th IAPR International Confe
395_CR7
395_CR47
395_CR26
395_CR48
395_CR2
395_CR23
395_CR45
395_CR1
395_CR24
G Renton (395_CR25) 2018; 21
395_CR46
395_CR4
395_CR29
395_CR3
395_CR6
395_CR27
395_CR28
395_CR10
395_CR11
395_CR30
U-V Marti (395_CR9) 2002; 5
T Grüning (395_CR8) 2019; 22
O Ronneberger (395_CR22) 2015; 9351
C Wolf (395_CR35) 2006; 8
395_CR14
A Melnikov (395_CR31) 2020
395_CR36
395_CR15
A Peskin (395_CR32) 2020; 11
395_CR37
395_CR12
395_CR13
OD Trier (395_CR5) 1995; 17
395_CR18
395_CR19
B Hemery (395_CR33) 2010; 19
395_CR16
395_CR38
395_CR17
395_CR39
395_CR40
395_CR21
395_CR43
395_CR44
395_CR41
395_CR20
395_CR42
M Rusiñol (395_CR34) 2009; 12
References_xml – reference: Tarride, S., Lemaitre, A., Couasnon, B., Tardivel, S.: Signature detection as a way to recognise historical parish register structure. In: HIP 2019, pp. 54–59, Sydney, Australia, (September 2019). ACM Press
– reference: Bušta, M., Neumann, L., Matas, J.: Deep TextSpotter: an end-to-end trainable scene text localization and recognition framework. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2223–2231, (October 2017)
– reference: Bluche, T.: Joint line segmentation and transcription for end-to-end handwritten paragraph recognition. In: Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R. (Eds.), Advances in Neural Information Processing Systems 29, pp. 838–846. Curran Associates, Inc., (April 2016)
– reference: Boillet, M., Bonhomme, M.-L., Stutzmann, D., Kermorvant, C.: HORAE: an annotated dataset of books of hours. In: Proceedings of the 5th International Workshop on Historical Document Imaging and Processing, HIP ’19, pp. 7-12. Association for Computing Machinery, (September 2019)
– reference: Alberti, M., Bouillon, M., Ingold, R., Liwicki, M.: Open evaluation tool for layout analysis of document images. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), pp. 43–47, Kyoto, Japan, (November 2017)
– reference: Boros, E., Romero, V., Maarand, M., Zenklova, K., Kreckova, J., Vidal, E., Stutzmann, D. and Kermorvant, C.: A comparison of sequential and combined approaches for named entity recognition in a corpus of handwritten medieval charters. In: 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 79–84, Dortmund, Germany, (September 2020). IEEE
– reference: Yang, X., Yumer, E., Asente, P., Kraley, M., Kifer, D., Giles, C.L.: Learning to extract semantic structure from documents using multimodal fully convolutional neural network. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4342–4351 (June 2017)
– reference: Arora, A., Chang, C.C., Rekabdar, B., BabaAli, B., Povey, D., Etter, D., Raj, D., Hadian, H., Trmal, J., Garcia, P., Watanabe, S., Manohar, V., Shao, Y., Khudanpur, S.: Using ASR methods for OCR. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 663–668 (September 2019)
– reference: Jia D., Wei D., Richard S., Li-Jia L., Kai L., and Fei-Fei L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (June 2009)
– reference: Markus, D., Florian, K., Robert, S., Basilis, G.: cBAD: ICDAR2019 competition on baseline detection. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 1494–1498 (September 2019)
– reference: Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. In: arXiv:abs/1804.02767 (April 2018)
– reference: RentonGSoullardYChatelainCAdamSKermorvantCPaquetTFully convolutional network with dilated convolutions for handwritten text line segmentationInt. J. Doc. Anal. Recogn. (IJDAR)20182117718610.1007/s10032-018-0304-3
– reference: Oliveira, S.A., Seguin, B., Kaplan, F.: dhSegment: a generic deep-learning approach for document segmentation. In: 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 7–12. IEEE, (August 2018)
– reference: RonnebergerOFischerPBroxTU-net: convolutional networks for biomedical image segmentationLNCS20159351234241
– reference: Mechi, O., Mehri, M., Ingold, R., Amara, N.E.B.: Text line segmentation in historical document images using an adaptive U-net architecture. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 369–374 (September 2019)
– reference: Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779–788 (June 2016)
– reference: PeskinAWilthanBMajurskiMDetection of dense, overlapping, geometric objectsInt. J. Artif. Intell. Appl. (IJAIA)2020112940
– reference: Diem, M., Kleber, F., Fiel, S., Grüning, T., Gatos, B.: cBAD: ICDAR2017 competition on baseline detection. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), Vol. 01, pp. 1355–1360 (November 2017)
– reference: Shaoqing, R., Kaiming, H., Ross, G., Jian, S.: Faster R-CNN: towards real-time object detection with region proposal networks. In: IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), Vol. 39 (June 2015)
– reference: Moysset, B., Louradour, J., Kermorvant, C., Wolf, C.: Learning text-line localization with shared and local regression neural networks. In: 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 1–6 (October 2016)
– reference: Vézina, H., Bournival, J-S.: An overview of the BALSAC population database. current state and future prospects. In: Historical Life Course Studies, Past Developments (2020)
– reference: Galibert, O., Kahn, J., Oparin, I.: The zonemap metric for page segmentation and area classification in scanned documents. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 2594–2598 (January 2015)
– reference: Dolfing, H.J.G.A., Bellegarda, J., Chorowski, J., Marxer, R. and Laurent, A.Dolfing, H.J., Bellegarda, J., Chorowski, J., Marxer, R. and Laurent, A.: The “ScribbleLens” Dutch historical handwriting corpus. In: International Conference on Frontiers of Handwriting Recognition (ICFHR), pp. 67–72 (September 2020)
– reference: Soullard, Y., Tranouez, P., Chatelain, C., Nicolas, S., Paquet, T.: Multi-scale gated fully convolutional densenets for semantic labeling of historical newspaper images. Pattern Recogn. Lett. 131, 435–441 (2020). https://doi.org/10.1016/j.patrec.2020.01.026.ISSN0167-8655
– reference: Grüning, T., Labahn, R., Diem, M., Kleber, F., Fiel, S.: READ-BAD: a new dataset and evaluation scheme for baseline detection in archival documents. In: 2018 13th IAPR International Workshop on Document Analysis Systems (DAS), pp. 351–356 (May 2017)
– reference: Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6517–6525, (July 2017)
– reference: Sánchez, J.A., Romero, V., Toselli, A.H., Villegas, M., Vidal, E.: Dataset for ICDAR2017 competition on handwritten text recognition on the READ dataset (ICDAR2017 HTR), (2017)
– reference: Zhong, Z., Sun, L., Huo, Q.: Improved localization accuracy by locNet for R-CNN based text detection. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), Vol. 01, pp. 923–928 (August 2017)
– reference: Barakat, B., Droby, A., Kassis, M., El-Sana, J.: Text line segmentation for challenging handwritten document images using fully convolutional network. In: 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 374–379 (August 2018)
– reference: MartiU-VBunkeHThe IAM-database: An English sentence database for offline handwriting recognitionInt. J. Document Anal. Recogn. (IJDAR)20025394610.1007/s100320200071
– reference: Boillet, M., Kermorvant, C., Paquet, T.: Multiple document datasets pre-training improves text line detection with deep neural networks. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 2134–2141, (January 2021)
– reference: MelnikovAZagaynovIXiangBDimosthenisKDanielLFast and lightweight text line detection on historical documentsDocument Analysis Systems2020BerlinSpringer44145010.1007/978-3-030-57058-3_31
– reference: Michael, J., Labahn, R., Gruning, T., Zollner, J.: Evaluating Sequence-to-Sequence Models for Handwritten Text Recognition. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 1286–1293, (September 2019)
– reference: Girshick, R.B., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 580–587, (November 2013)
– reference: GrüningTLeifertGStraußTLabahnRA Two-Stage Method for Text Line Detection in Historical DocumentsInt. J. Document Anal. Recogn. (IJDAR)20192228530210.1007/s10032-019-00332-1
– reference: HemeryBLaurentHEmileBRosenbergerCComparative study of localization metrics for the evaluation of image interpretation systemsJ. Electron. Imaging20101910.1117/1.3446803
– reference: Oparin, I., Kahn, J., Galibert, O.: First maurdor 2013 evaluation campaign in scanned document image processing. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5090–5094 (May 2014)
– reference: Sánchez, J.A., Romero, V., Toselli, A.H., Vidal, E.: READ dataset Bozen (December 2016)
– reference: Wigington, C., Tensmeyer, C., Davis, B., Barrett, W., Price, B., Cohen S.: Start, follow, read: end-to-end full-page handwriting recognition. In: Vittorio, F., Martial, H., Cristian, S., Yair, W. (Eds.), 15th European Conference on Computer Vision (ECCV), pp. 372–388. Springer International Publishing, (September 2018)
– reference: He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (June 2016)
– reference: Stutzmann, D., Torres Aguilar, S., Kermorvant, C., Miret, B.: C3PO4: A corpus of annotated medieval cartularies (image, text, named entities). Unpublished
– reference: TrierODJainAKGoal-directed evaluation of binarization methodsIEEE Trans. Pattern Anal. Mach. Intell.1995171191120110.1109/34.476511
– reference: Fotini, S., Mathias, S., Nicole, E., Angelika, G., Marcus, L., Rolf, I.: DIVA-HisDB: a precisely annotated large dataset of challenging medieval manuscripts. In: 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 471–476 (October 2016)
– reference: RusiñolMLladósJA performance evaluation protocol for symbol spotting systems in terms of recognition and location indicesInt. J. Document Anal. Recogn. (IJDAR)200912839610.1007/s10032-009-0083-y
– reference: WolfCJolionJ-MObject count/area graphs for the evaluation of object detection and segmentation algorithmsInt. J. Document Anal. Recogn.20068428029610.1007/s10032-006-0014-0
– reference: Kahle, P., Colutto, S., Hackl, G., Mühlberger, G.: Transkribus - a service platform for transcription, recognition and retrieval of historical documents. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), Vol. 04, pp. 19–24, (November 2017)
– reference: Yousef, M., Bishop, To.: OrigamiNet: weakly-supervised, segmentation-free, one-step, full page text recognition by learning to unfold. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14698–14707, (June 2020)
– reference: Girshick, R.B.: Fast R-CNN. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1440–1448 (June 2015)
– ident: 395_CR6
  doi: 10.1109/ICPR48806.2021.9412447
– ident: 395_CR16
– ident: 395_CR26
  doi: 10.1109/ICDAR.2017.222
– volume: 12
  start-page: 83
  year: 2009
  ident: 395_CR34
  publication-title: Int. J. Document Anal. Recogn. (IJDAR)
  doi: 10.1007/s10032-009-0083-y
– ident: 395_CR47
  doi: 10.1109/ICDAR.2017.311
– ident: 395_CR23
  doi: 10.1109/ICFHR-2018.2018.00072
– volume: 11
  start-page: 29
  year: 2020
  ident: 395_CR32
  publication-title: Int. J. Artif. Intell. Appl. (IJAIA)
– ident: 395_CR36
  doi: 10.1109/ICIP.2014.7025525
– ident: 395_CR1
  doi: 10.1109/ICDAR.2019.00208
– ident: 395_CR28
  doi: 10.1109/CVPR.2016.90
– ident: 395_CR17
  doi: 10.1109/ICDAR.2017.155
– ident: 395_CR27
  doi: 10.1109/CVPR.2017.462
– ident: 395_CR10
  doi: 10.1109/ICDAR.2017.226
– ident: 395_CR39
– ident: 395_CR21
  doi: 10.1109/ICASSP.2014.6854572
– ident: 395_CR30
  doi: 10.1016/j.patrec.2020.01.026.ISSN0167-8655
– ident: 395_CR42
  doi: 10.1145/3352631.3352633
– ident: 395_CR11
  doi: 10.1109/ICCV.2017.242
– ident: 395_CR3
  doi: 10.1109/CVPR42600.2020.01472
– volume: 21
  start-page: 177
  year: 2018
  ident: 395_CR25
  publication-title: Int. J. Doc. Anal. Recogn. (IJDAR)
  doi: 10.1007/s10032-018-0304-3
– ident: 395_CR45
– volume: 17
  start-page: 1191
  year: 1995
  ident: 395_CR5
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.476511
– ident: 395_CR4
– volume: 9351
  start-page: 234
  year: 2015
  ident: 395_CR22
  publication-title: LNCS
– ident: 395_CR40
– ident: 395_CR13
  doi: 10.1007/978-3-030-01231-1_23
– ident: 395_CR24
  doi: 10.1109/ICDAR.2019.00066
– ident: 395_CR48
  doi: 10.1109/ICDAR.2019.00111
– volume: 5
  start-page: 39
  year: 2002
  ident: 395_CR9
  publication-title: Int. J. Document Anal. Recogn. (IJDAR)
  doi: 10.1007/s100320200071
– ident: 395_CR19
– ident: 395_CR46
  doi: 10.1109/ICDAR.2017.307
– volume: 19
  year: 2010
  ident: 395_CR33
  publication-title: J. Electron. Imaging
  doi: 10.1117/1.3446803
– ident: 395_CR37
  doi: 10.51964/hlcs9299
– start-page: 441
  volume-title: Document Analysis Systems
  year: 2020
  ident: 395_CR31
  doi: 10.1007/978-3-030-57058-3_31
– ident: 395_CR38
– ident: 395_CR43
  doi: 10.1109/DAS.2018.38
– ident: 395_CR44
  doi: 10.1109/ICFHR2020.2020.00023
– ident: 395_CR41
  doi: 10.1109/ICFHR2020.2020.00025
– ident: 395_CR12
  doi: 10.1109/CVPR.2017.690
– ident: 395_CR20
  doi: 10.1109/ICFHR.2016.0014
– ident: 395_CR2
  doi: 10.1145/3352631.3352636
– ident: 395_CR18
  doi: 10.1109/CVPR.2016.91
– volume: 22
  start-page: 285
  year: 2019
  ident: 395_CR8
  publication-title: Int. J. Document Anal. Recogn. (IJDAR)
  doi: 10.1007/s10032-019-00332-1
– ident: 395_CR7
– ident: 395_CR15
  doi: 10.1109/ICCV.2015.169
– ident: 395_CR14
  doi: 10.1109/CVPR.2014.81
– ident: 395_CR29
– volume: 8
  start-page: 280
  issue: 4
  year: 2006
  ident: 395_CR35
  publication-title: Int. J. Document Anal. Recogn.
  doi: 10.1007/s10032-006-0014-0
SSID ssj0017678
Score 2.440834
Snippet Text line segmentation is one of the key steps in historical document understanding. It is challenging due to the variety of fonts, contents, writing styles...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 95
SubjectTerms Annotations
Computer Science
Datasets
Documents
Engineering Sciences
Fonts
Image Processing and Computer Vision
Original Paper
Pattern Recognition
Segmentation
Signal and Image processing
Title Robust text line detection in historical documents: learning and evaluation methods
URI https://link.springer.com/article/10.1007/s10032-022-00395-7
https://www.proquest.com/docview/2664064516
https://hal.science/hal-03923710
Volume 25
WOSCitedRecordID wos000771889900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1433-2825
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017678
  issn: 1433-2833
  databaseCode: RSV
  dateStart: 19980201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwED7c9MEX50-sTgnimwbaJW0634Y49iBDNpW9lbRJnSCdrN3-fi9duk1RQV_Ta1rukt5Hc_d9AJcSs5zpV6SYqmPKQ85pjImT-rGUnqcMiHZLsQnR74ejUfvBNoXlVbV7dSRZfqnXmt1cnNNUn5uGUp-KGmxiuguNYMNg-Lw8OxCL7y8CAUYxeTLbKvP9HJ_SUW1siiHXkOaXw9Ey53Qb_3vbXdixGJN0FotiDzZ0tg8NizeJ3c05DlWSDtXYAQwHk3iWF8TUgxCDQInSRVmtlZHXjIyXpCJETZJZ2R53Q6zyxAuRmSIr-nCyUKfOD-Gpe_d426NWd4EmzGcFlawdKpGkaYxBRMjnauWnCHQCoQIeh6F0ufA9Hbue4ipgMuVcubFIjAiWEoFkR1DPJpk-BhJqlbaYr32hDS2MRnDCw9STrgxEG8GlA17l_iixpORGG-MtWtEpG0dG6MiodGQkHLha3vO-oOT41foCo7o0NGzavc59ZMbQoMUQYc09B5pV0CO7h_MIoQs3bH5e4MB1FeTV5Z8fefI381PYbpXrxPzaaUK9mM70GWwl8-I1n56Xa_sDF3_u6g
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwED6cCvrib3H-DOKbBtolbTrfRBwT5xCdsreQNqkTpBPb-fd76dJNRQV9Ta9puUv6fTR33wEcKUQ5W69IEapjyiPOaYzASYNYKd_XlkR7ZbMJ0e1G_X7zxhWF5VW2e3UkWX6pPxS7eTinzT63BaUBFTWY44hYVjH_9u5hcnYgxt9fJAKMIngyVyrz_Ryf4Kg2sMmQH5jml8PREnNay_972xVYchyTnI0XxSrMmGwNlh3fJG435zhUtXSoxtbh7nYYj_KC2HwQYhko0aYos7Uy8pSRwURUhOhhMirL406J6zzxSFSmyVQ-nIy7U-cbcN-66J23qeu7QBMWsIIq1oy0SNI0xiAi5fOMDlIkOqHQIY-jSHlcBL6JPV9zHTKVcq69WCS2CZYWoWKbMJsNM7MFJDI6bbDABMJYWRiD5IRHqa88FYomkss6-JX7ZeJEyW1vjGc5lVO2jpToSFk6Uoo6HE_ueRlLcvxqfYhRnRhaNe32WUfaMTRoMGRYb34ddqugS7eHc4nUhVs1Pz-sw0kV5Onlnx-5_TfzA1ho9647snPZvdqBxUa5Zuxvnl2YLV5HZg_mk7fiKX_dL9f5O1HN8c4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED-NDiFe1o0P0Q2GNe0NLJLaidO9oY2qE6hCK6C-WU7sABJKEUn793OXj7YgQEJ7dS4f8p1zv8T3-x3AT4NZjviKHFN1zGUkJY8xcfIgNsb3LYFor2w2oYbDaDzunS-x-Mtq92ZLsuI0kEpTVhzd2_Roifjm4fWpEp3IpQFXK_BRUiE9fa-Prub7CKp6FyMoEBwTqahpMy9f40lqWrmhwsgl1Plso7TMP_32_z_5Z_hUY092XAXLF_jgsg1o1ziU1as8x6Gm1UMztgmjf5N4mheM6kQYIVNmXVFWcWXsNmM3c7ERZifJtKTN_WJ1R4prZjLLFrLirOpanW_BZf_k4veA1_0YeCICUXAjepFVSZrG6FyEgp6zQYoAKFQ2lHEUGU-qwHex51tpQ2FSKa0Xq4SaY1kVGrENrWySuR1gkbNpVwQuUI7kYhyCFhmlvvFMqHoIOjvgN67QSS1WTj0z7vRCZpkmUuNE6nIiterAwfyc-0qq403rH-jhuSGpbA-OzzSNoUFXIPKa-R3YbQJA12s71whpJKn8-WEHDhuHLw6_fsuv7zPfh7XzP3199nd4-g3Wu2XI0N-fXWgVD1O3B6vJrLjNH76XIf8I3Tf6sg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+text+line+detection+in+historical+documents%3A+learning+and+evaluation+methods&rft.jtitle=International+journal+on+document+analysis+and+recognition&rft.au=M%C3%A9lodie%2C+Boillet&rft.au=Kermorvant+Christopher&rft.au=Paquet+Thierry&rft.date=2022-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1433-2833&rft.eissn=1433-2825&rft.volume=25&rft.issue=2&rft.spage=95&rft.epage=114&rft_id=info:doi/10.1007%2Fs10032-022-00395-7&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-2833&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-2833&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-2833&client=summon