Mixed finite elements applied to acoustic wave problems in compressible viscous fluids under piezoelectric actuation

In the present contribution, we develop a mixed finite element method capable of the coupled multi-field simulation of a viscous fluid actuated by a piezoelectric resonator. Several challenges are met with in this setting, among which are the necessity of correct interface coupling, near incompressi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Acta mechanica Ročník 233; číslo 5; s. 1967 - 1986
Hlavní autori: Meindlhumer, Martin, Pechstein, Astrid, Jakoby, Bernhard
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Vienna Springer Vienna 01.05.2022
Springer
Springer Nature B.V
Predmet:
ISSN:0001-5970, 1619-6937
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In the present contribution, we develop a mixed finite element method capable of the coupled multi-field simulation of a viscous fluid actuated by a piezoelectric resonator. Several challenges are met with in this setting, among which are the necessity of correct interface coupling, near incompressibility of the fluid, adverse geometric dimensions of flat piezoelectric transducers and different length scales of shear and pressure wave. Assuming small deformations and velocities, we present a mixed variational formulation with consistent interface coupling conditions in (mechanic) frequency domain. Both fluid and piezoelectric solid domain are discretized using Tangential-Displacement Normal-Normal-Stress elements. These elements model not only the deformation, but add an independent tensor-valued stress approximation. The method has been rigorously proven to be free from shear locking for flat prismatic or hexahedral elements. Thus, modeling of the flat geometry of piezoelectric resonators as well as resolution of the fastly decaying shear wave are facilitated. To circumvent the problem of volume locking due to the near incompressibility of the fluid, an additional independent pressure field is introduced. We present computational results indicating the capability of the method.
AbstractList In the present contribution, we develop a mixed finite element method capable of the coupled multi-field simulation of a viscous fluid actuated by a piezoelectric resonator. Several challenges are met with in this setting, among which are the necessity of correct interface coupling, near incompressibility of the fluid, adverse geometric dimensions of flat piezoelectric transducers and different length scales of shear and pressure wave. Assuming small deformations and velocities, we present a mixed variational formulation with consistent interface coupling conditions in (mechanic) frequency domain. Both fluid and piezoelectric solid domain are discretized using Tangential-Displacement Normal-Normal-Stress elements. These elements model not only the deformation, but add an independent tensor-valued stress approximation. The method has been rigorously proven to be free from shear locking for flat prismatic or hexahedral elements. Thus, modeling of the flat geometry of piezoelectric resonators as well as resolution of the fastly decaying shear wave are facilitated. To circumvent the problem of volume locking due to the near incompressibility of the fluid, an additional independent pressure field is introduced. We present computational results indicating the capability of the method.
In the present contribution, we develop a mixed finite element method capable of the coupled multi-field simulation of a viscous fluid actuated by a piezoelectric resonator. Several challenges are met with in this setting, among which are the necessity of correct interface coupling, near incompressibility of the fluid, adverse geometric dimensions of flat piezoelectric transducers and different length scales of shear and pressure wave. Assuming small deformations and velocities, we present a mixed variational formulation with consistent interface coupling conditions in (mechanic) frequency domain. Both fluid and piezoelectric solid domain are discretized using Tangential-Displacement Normal-Normal-Stress elements. These elements model not only the deformation, but add an independent tensor-valued stress approximation. The method has been rigorously proven to be free from shear locking for flat prismatic or hexahedral elements. Thus, modeling of the flat geometry of piezoelectric resonators as well as resolution of the fastly decaying shear wave are facilitated. To circumvent the problem of volume locking due to the near incompressibility of the fluid, an additional independent pressure field is introduced. We present computational results indicating the capability of the method.
Audience Academic
Author Jakoby, Bernhard
Pechstein, Astrid
Meindlhumer, Martin
Author_xml – sequence: 1
  givenname: Martin
  surname: Meindlhumer
  fullname: Meindlhumer, Martin
  organization: Institute for Microelectronics and Microsensorics, Johannes Kepler University Linz
– sequence: 2
  givenname: Astrid
  orcidid: 0000-0002-1948-9753
  surname: Pechstein
  fullname: Pechstein, Astrid
  email: astrid.pechstein@jku.at
  organization: Institute of Technical Mechanics, Johannes Kepler University Linz
– sequence: 3
  givenname: Bernhard
  surname: Jakoby
  fullname: Jakoby, Bernhard
  organization: Institute for Microelectronics and Microsensorics, Johannes Kepler University Linz
BookMark eNp9kc1rHSEUxaUk0JePfyAroetJrzo6z2UITVNI6aZZi8-5BsM8naqTj_718XUC2XWjePidcy-eE3IUU0RCLhhcMoDha2kHDB1w3oFgWnbqE9kwxXSntBiOyAYAWCf1AJ_JSSmP7cWHnm1I_RlecKQ-xFCR4oR7jLVQO89TaHpN1Lq0lBocfbZPSOecdg0qNETq0n7OWEpoCn0K5QBSPy1hLHSJI2Y6B_ybWqiruQVYVxdbQ4pn5NjbqeD5-31K7m--_b6-7e5-ff9xfXXXOSFF7SwAjpyjRC3BM6UVcxz5lltn3XbH-50QnHFvlcah98yz3ZZ5B1IpNUjmxCn5sua2rf8sWKp5TEuObaThjWGM91o36nKlHuyEJkSfaj5MsCPug2v_7EPTrwboBfRaymbgq8HlVEpGb-Yc9ja_GgbmUIdZ6zCtDvOvDqOaSaym0uD4gPljl_-43gAlbZDk
Cites_doi 10.1016/S0003-2670(00)82721-X
10.1190/1.1441945
10.1007/s00211-017-0933-3
10.1201/9781420057881
10.1142/S0218202511005568
10.1006/jsvi.1999.2308
10.1177/1045389X20951252
10.1016/j.sna.2011.03.050
10.1007/BF01337937
10.1002/nme.1447
10.2514/3.2546
10.1002/(SICI)1097-0207(20000610)48:4<565::AID-NME890>3.0.CO;2-U
10.1016/j.cma.2021.113857
10.1007/BF02576171
10.1007/978-3-662-04775-0
10.1016/j.enganabound.2014.08.005
10.1080/19475411.2018.1556186
10.1088/0957-0233/19/5/052001
10.1088/0964-1726/18/6/065015
10.1177/1045389X18781026
10.1088/0957-0233/19/5/055201
10.1007/BF01389668
10.1021/ac00020a015
10.1002/nme.3319
10.1007/BF01396415
10.1007/s11831-016-9202-3
10.1016/0045-7930(73)90027-3
10.1007/978-3-642-36519-5
10.1093/imanum/drz022
10.1063/1.1697637
10.1190/1.1440881
10.1137/20M1338034
10.1007/978-3-7091-6442-6
ContentType Journal Article
Copyright The Author(s) 2022
COPYRIGHT 2022 Springer
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: COPYRIGHT 2022 Springer
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7TB
7XB
88I
8AO
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
GUQSH
HCIFZ
KR7
L6V
M2O
M2P
M7S
MBDVC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
DOI 10.1007/s00707-022-03195-6
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
ProQuest Research Library
Science Database
Engineering Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Research Library Prep

CrossRef

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1619-6937
EndPage 1986
ExternalDocumentID A704304955
10_1007_s00707_022_03195_6
GrantInformation_xml – fundername: Linz Center of Mechatronics
  funderid: http://dx.doi.org/10.13039/501100013332
GroupedDBID --Z
-5B
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
88I
8AO
8FE
8FG
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAS
LLZTM
M2O
M2P
M4Y
M7S
MA-
MK~
ML~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9P
PF-
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
T9H
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
Y6R
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8W
Z92
_50
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7TB
7XB
8FD
8FK
FR3
KR7
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c353t-a00ed22e5e950f16961c2e282acac8b24b33212fa69e74f1f1b81fc05666751c3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000788975100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0001-5970
IngestDate Wed Nov 05 14:45:41 EST 2025
Sat Nov 29 10:35:59 EST 2025
Sat Nov 29 05:42:55 EST 2025
Fri Feb 21 02:45:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c353t-a00ed22e5e950f16961c2e282acac8b24b33212fa69e74f1f1b81fc05666751c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1948-9753
OpenAccessLink https://link.springer.com/10.1007/s00707-022-03195-6
PQID 2666112499
PQPubID 47448
PageCount 20
ParticipantIDs proquest_journals_2666112499
gale_infotracacademiconefile_A704304955
crossref_primary_10_1007_s00707_022_03195_6
springer_journals_10_1007_s00707_022_03195_6
PublicationCentury 2000
PublicationDate 20220500
2022-05-00
20220501
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 5
  year: 2022
  text: 20220500
PublicationDecade 2020
PublicationPlace Vienna
PublicationPlace_xml – name: Vienna
– name: Wien
PublicationTitle Acta mechanica
PublicationTitleAbbrev Acta Mech
PublicationYear 2022
Publisher Springer Vienna
Springer
Springer Nature B.V
Publisher_xml – name: Springer Vienna
– name: Springer
– name: Springer Nature B.V
References Nguyen-XuanHLiuGNguyen-ThoiTNguyen-TranCAn edge-based smoothed finite element method for analysis of two-dimensional piezoelectric structuresSmart Mater. Struct.200918606501510.1088/0964-1726/18/6/065015
Keiji KanazawaKGordonJGThe oscillation frequency of a quartz resonator in contact with liquidAnal. Chim. Acta19851759910510.1016/S0003-2670(00)82721-X
CerjanCKosloffDKosloffRReshefMA nonreflecting boundary condition for discrete acoustic and elastic wave equationsGeophysics198550470570810.1190/1.1441945
Warsi, Z.U.: Fluid Dynamics: Theoretical and Computational Approaches. CRC press (2005)
NédélecJCMixed finite elements in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{R}^3$$\end{document}Numer. Math.19803531534159216010.1007/BF01396415
Voglhuber-BrunnmaierTJakobyBModeling of an LFE piezoelectric fluid sensor as layered structure in the spectral domainSens. Actuators, A2011172112913410.1016/j.sna.2011.03.050
TaylorCHoodPA numerical solution of the Navier-Stokes equations using the finite element techniqueComput. Fluids1973117310033967710.1016/0045-7930(73)90027-3
MartinSJGranstaffVEFryeGCCharacterization of a quartz crystal microbalance with simultaneous mass and liquid loadingAnal. Chem.199163202272228110.1021/ac00020a015
ZengWLiuGSmoothed finite element methods (S-FEM): an overview and recent developmentsArch. Comput. Methods. Eng.2018252397435377647610.1007/s11831-016-9202-3
GopalakrishnanJLedererPLSchöberlJA mass conserving mixed stress formulation for the Stokes equationsIMA J. Numer. Anal.201940318381874412249210.1093/imanum/drz022
PechsteinASchöberlJAnisotropic mixed finite elements for elasticityInt. J. Numer. Methods Engrg.2012902196217291028910.1002/nme.3319
SauerbreyGVerwendung von Schwingquarzen zur Wägung dünner Schichten und zur MikrowägungZ. Phys.1959155220622210.1007/BF01337937
ShamesIMechancis of Fluids.1992McGraw-HillMcGraw-Hill Series in Mechanical Engineering
NédélecJCA new family of mixed finite elements in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{R}^3$$\end{document}Numer. Math.198650578186430510.1007/BF01389668
BoffiDBrezziFFortinMMixed finite element methods and applications, Springer Series in Computational Mathematics2013HeidelbergSpringer10.1007/978-3-642-36519-5
SzeKYYaoLQYiSA hybrid stress ANS solid-shell element and its generalization for smart structure modelling. Part II-smart structure modellingInt. J. Numer. Methods. Eng.200048456558210.1002/(SICI)1097-0207(20000610)48:4<565::AID-NME890>3.0.CO;2-U
Ziegler, F.: Technische Mechanik der festen und flüssigen Körper; 101 Aufgaben mit Lösungen, 3 edn. Springer-Lehrbuch : Technik. Springer, Wien (1998)
LiEHeZCChenLLiBXuXLiuGRAn ultra-accurate hybrid smoothed finite element method for piezoelectric problemEng. Anal. Boundary Elements201550188197328048710.1016/j.enganabound.2014.08.0051403.74114
OrtigosaRGilAJA new framework for large strain electromechanics based on convex multi-variable strain energies: Finite element discretisation and computational implementationCMAME201630232936034611151425.74086
Voigt, W.: Lehrbuch der Kristallphysik: (mit Ausschluss der Kristalloptik). B.G. Teubners Sammlung von Lehrbüchern auf dem Gebiete der mathematischen Wissenschaften ; Bd. XXXIV. B.G. Teubner (1910)
MeindlhumerMPechsteinA3d mixed finite elements for curved, flat piezoelectric structuresInt. J. Smart. Nano Mater.201910424926710.1080/19475411.2018.1556186
NeunteufelMPechsteinASSchöberlJThree-field mixed finite element methods for nonlinear elasticityComput. Methods Appl. Mech. Eng.2021382113857425152510.1016/j.cma.2021.113857
ArnoldDNBrezziFFortinMA stable finite element for the Stokes equationsCalcolo198421433734479999710.1007/BF02576171
Lindenbauer, T., Jakoby, B.: Fully three-dimensional analysis of tsm quartz sensors immersed in viscous liquids. In: Proceedings IEEE Sensors Conference, IEEE, pp. 1249–1252, (2005)
Haupt , P.: Continuum Mechanics and Theory of Materials, 2. ed. edn. Physics and Astronomy Online Library; Advanced Texts in Physics. Springer, Berlin (2002)
Neunteufel, M.: Mixed finite element methods for nonlinear continuum mechanics and shells. Ph.D. thesis, Wien (2021)
BeigelbeckRJakobyBA two-dimensional analysis of spurious compressional wave excitation by thickness-shear-mode resonatorsJ. Appl. Phys.20049594989499510.1063/1.1697637
LedererPLA Hellan-Herrmann-Johnson-like method for the stream function formulation of the Stokes equations in two and three space dimensionsSIAM J. Numer. Anal.2021591503524421840610.1137/20M1338034
MeindlhumerMPechsteinAHumerAVariational inequalities for ferroelectric constitutive modelingJ. Intell. Mater. Syst. Struct.202132331733010.1177/1045389X20951252
HempelULucklumRHauptmannPEerNisseEPuccioDDiazRFQuartz crystal resonator sensors under lateral field excitation-a theoretical and experimental analysisMeas. Sci. Technol.200819505520110.1088/0957-0233/19/5/055201
PechsteinASSchöberlJAn analysis of the TDNNS method using natural normsNumer. Math.2018139193120378566410.1007/s00211-017-0933-3
JakobyBEfficient semi-numerical analysis of acoustic sensors using spectral domain methods-a reviewMeas. Sci. Technol.200819505200110.1088/0957-0233/19/5/052001
PianTHDerivation of element stiffness matrices by assumed stress distributionsAIAA J.1964271333133610.2514/3.2546
Yang, J.: An introduction to the Theory of Piezoelectricity, vol. 9. Springer, USA (2005)
PechsteinASchöberlJTangential-displacement and normal-normal-stress continuous mixed finite elements for elasticityMath. Models Methods Appl. Sci.201121817611782282647210.1142/S0218202511005568
Sinwel, A.S.: A new family of mixed finite elements for elasticity. Ph.D. thesis, Johannes Kepler University Linz (2009). Published by Südwestdeutscher Verlag für Hochschulschriften.
SzeK PanYHybrid finite element models for piezoelectric materialsJ. Sound. Vibr.1999226351954710.1006/jsvi.1999.2308
PechsteinASMeindlhumerMHumerANew mixed finite elements for the discretization of piezoelectric structures or macro-fiber compositesJ. Intell. Mater. Syst. Struct.201829163266328310.1177/1045389X18781026
ReynoldsACBoundary conditions for the numerical solution of wave propagation problemsGeophysics19784361099111010.1190/1.1440881
KlinkelSWagnerWA geometrically non-linear piezoelectric solid shell element based on a mixed multi-field variational formulationInt. J. Numer. Methods Eng.200665334938210.1002/nme.1447
FilippiPBergassoliAHabaultDLefebvreJAcoustics: Basic physics, theory, and methods1999USAAcademic Press
Netgen/NGSolve. https://ngsolve.org/. Accessed: 2021-06-15
DN Arnold (3195_CR2) 1984; 21
K Sze (3195_CR34) 1999; 226
S Klinkel (3195_CR12) 2006; 65
PL Lederer (3195_CR13) 2021; 59
W Zeng (3195_CR41) 2018; 25
T Voglhuber-Brunnmaier (3195_CR37) 2011; 172
JC Nédélec (3195_CR19) 1980; 35
A Pechstein (3195_CR26) 2012; 90
M Neunteufel (3195_CR22) 2021; 382
R Ortigosa (3195_CR24) 2016; 302
3195_CR1
KY Sze (3195_CR35) 2000; 48
R Beigelbeck (3195_CR3) 2004; 95
JC Nédélec (3195_CR20) 1986; 50
3195_CR42
3195_CR21
3195_CR40
AS Pechstein (3195_CR28) 2018; 139
AS Pechstein (3195_CR27) 2018; 29
H Nguyen-Xuan (3195_CR23) 2009; 18
D Boffi (3195_CR4) 2013
E Li (3195_CR14) 2015; 50
J Gopalakrishnan (3195_CR7) 2019; 40
C Taylor (3195_CR36) 1973; 1
U Hempel (3195_CR9) 2008; 19
A Pechstein (3195_CR25) 2011; 21
M Meindlhumer (3195_CR17) 2019; 10
M Meindlhumer (3195_CR18) 2021; 32
SJ Martin (3195_CR16) 1991; 63
G Sauerbrey (3195_CR31) 1959; 155
3195_CR8
3195_CR39
K Keiji Kanazawa (3195_CR11) 1985; 175
3195_CR15
AC Reynolds (3195_CR30) 1978; 43
3195_CR38
I Shames (3195_CR32) 1992
TH Pian (3195_CR29) 1964; 2
B Jakoby (3195_CR10) 2008; 19
P Filippi (3195_CR6) 1999
C Cerjan (3195_CR5) 1985; 50
3195_CR33
References_xml – reference: NédélecJCMixed finite elements in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{R}^3$$\end{document}Numer. Math.19803531534159216010.1007/BF01396415
– reference: Neunteufel, M.: Mixed finite element methods for nonlinear continuum mechanics and shells. Ph.D. thesis, Wien (2021)
– reference: FilippiPBergassoliAHabaultDLefebvreJAcoustics: Basic physics, theory, and methods1999USAAcademic Press
– reference: LiEHeZCChenLLiBXuXLiuGRAn ultra-accurate hybrid smoothed finite element method for piezoelectric problemEng. Anal. Boundary Elements201550188197328048710.1016/j.enganabound.2014.08.0051403.74114
– reference: ArnoldDNBrezziFFortinMA stable finite element for the Stokes equationsCalcolo198421433734479999710.1007/BF02576171
– reference: Yang, J.: An introduction to the Theory of Piezoelectricity, vol. 9. Springer, USA (2005)
– reference: OrtigosaRGilAJA new framework for large strain electromechanics based on convex multi-variable strain energies: Finite element discretisation and computational implementationCMAME201630232936034611151425.74086
– reference: PechsteinASchöberlJTangential-displacement and normal-normal-stress continuous mixed finite elements for elasticityMath. Models Methods Appl. Sci.201121817611782282647210.1142/S0218202511005568
– reference: BeigelbeckRJakobyBA two-dimensional analysis of spurious compressional wave excitation by thickness-shear-mode resonatorsJ. Appl. Phys.20049594989499510.1063/1.1697637
– reference: MeindlhumerMPechsteinAHumerAVariational inequalities for ferroelectric constitutive modelingJ. Intell. Mater. Syst. Struct.202132331733010.1177/1045389X20951252
– reference: HempelULucklumRHauptmannPEerNisseEPuccioDDiazRFQuartz crystal resonator sensors under lateral field excitation-a theoretical and experimental analysisMeas. Sci. Technol.200819505520110.1088/0957-0233/19/5/055201
– reference: Nguyen-XuanHLiuGNguyen-ThoiTNguyen-TranCAn edge-based smoothed finite element method for analysis of two-dimensional piezoelectric structuresSmart Mater. Struct.200918606501510.1088/0964-1726/18/6/065015
– reference: KlinkelSWagnerWA geometrically non-linear piezoelectric solid shell element based on a mixed multi-field variational formulationInt. J. Numer. Methods Eng.200665334938210.1002/nme.1447
– reference: LedererPLA Hellan-Herrmann-Johnson-like method for the stream function formulation of the Stokes equations in two and three space dimensionsSIAM J. Numer. Anal.2021591503524421840610.1137/20M1338034
– reference: NeunteufelMPechsteinASSchöberlJThree-field mixed finite element methods for nonlinear elasticityComput. Methods Appl. Mech. Eng.2021382113857425152510.1016/j.cma.2021.113857
– reference: TaylorCHoodPA numerical solution of the Navier-Stokes equations using the finite element techniqueComput. Fluids1973117310033967710.1016/0045-7930(73)90027-3
– reference: NédélecJCA new family of mixed finite elements in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{R}^3$$\end{document}Numer. Math.198650578186430510.1007/BF01389668
– reference: Ziegler, F.: Technische Mechanik der festen und flüssigen Körper; 101 Aufgaben mit Lösungen, 3 edn. Springer-Lehrbuch : Technik. Springer, Wien (1998)
– reference: SauerbreyGVerwendung von Schwingquarzen zur Wägung dünner Schichten und zur MikrowägungZ. Phys.1959155220622210.1007/BF01337937
– reference: ZengWLiuGSmoothed finite element methods (S-FEM): an overview and recent developmentsArch. Comput. Methods. Eng.2018252397435377647610.1007/s11831-016-9202-3
– reference: PechsteinASchöberlJAnisotropic mixed finite elements for elasticityInt. J. Numer. Methods Engrg.2012902196217291028910.1002/nme.3319
– reference: Warsi, Z.U.: Fluid Dynamics: Theoretical and Computational Approaches. CRC press (2005)
– reference: MeindlhumerMPechsteinA3d mixed finite elements for curved, flat piezoelectric structuresInt. J. Smart. Nano Mater.201910424926710.1080/19475411.2018.1556186
– reference: Voglhuber-BrunnmaierTJakobyBModeling of an LFE piezoelectric fluid sensor as layered structure in the spectral domainSens. Actuators, A2011172112913410.1016/j.sna.2011.03.050
– reference: Sinwel, A.S.: A new family of mixed finite elements for elasticity. Ph.D. thesis, Johannes Kepler University Linz (2009). Published by Südwestdeutscher Verlag für Hochschulschriften.
– reference: PianTHDerivation of element stiffness matrices by assumed stress distributionsAIAA J.1964271333133610.2514/3.2546
– reference: Lindenbauer, T., Jakoby, B.: Fully three-dimensional analysis of tsm quartz sensors immersed in viscous liquids. In: Proceedings IEEE Sensors Conference, IEEE, pp. 1249–1252, (2005)
– reference: ReynoldsACBoundary conditions for the numerical solution of wave propagation problemsGeophysics19784361099111010.1190/1.1440881
– reference: Voigt, W.: Lehrbuch der Kristallphysik: (mit Ausschluss der Kristalloptik). B.G. Teubners Sammlung von Lehrbüchern auf dem Gebiete der mathematischen Wissenschaften ; Bd. XXXIV. B.G. Teubner (1910)
– reference: CerjanCKosloffDKosloffRReshefMA nonreflecting boundary condition for discrete acoustic and elastic wave equationsGeophysics198550470570810.1190/1.1441945
– reference: Netgen/NGSolve. https://ngsolve.org/. Accessed: 2021-06-15
– reference: MartinSJGranstaffVEFryeGCCharacterization of a quartz crystal microbalance with simultaneous mass and liquid loadingAnal. Chem.199163202272228110.1021/ac00020a015
– reference: PechsteinASSchöberlJAn analysis of the TDNNS method using natural normsNumer. Math.2018139193120378566410.1007/s00211-017-0933-3
– reference: ShamesIMechancis of Fluids.1992McGraw-HillMcGraw-Hill Series in Mechanical Engineering
– reference: BoffiDBrezziFFortinMMixed finite element methods and applications, Springer Series in Computational Mathematics2013HeidelbergSpringer10.1007/978-3-642-36519-5
– reference: JakobyBEfficient semi-numerical analysis of acoustic sensors using spectral domain methods-a reviewMeas. Sci. Technol.200819505200110.1088/0957-0233/19/5/052001
– reference: PechsteinASMeindlhumerMHumerANew mixed finite elements for the discretization of piezoelectric structures or macro-fiber compositesJ. Intell. Mater. Syst. Struct.201829163266328310.1177/1045389X18781026
– reference: SzeKYYaoLQYiSA hybrid stress ANS solid-shell element and its generalization for smart structure modelling. Part II-smart structure modellingInt. J. Numer. Methods. Eng.200048456558210.1002/(SICI)1097-0207(20000610)48:4<565::AID-NME890>3.0.CO;2-U
– reference: GopalakrishnanJLedererPLSchöberlJA mass conserving mixed stress formulation for the Stokes equationsIMA J. Numer. Anal.201940318381874412249210.1093/imanum/drz022
– reference: Haupt , P.: Continuum Mechanics and Theory of Materials, 2. ed. edn. Physics and Astronomy Online Library; Advanced Texts in Physics. Springer, Berlin (2002)
– reference: SzeK PanYHybrid finite element models for piezoelectric materialsJ. Sound. Vibr.1999226351954710.1006/jsvi.1999.2308
– reference: Keiji KanazawaKGordonJGThe oscillation frequency of a quartz resonator in contact with liquidAnal. Chim. Acta19851759910510.1016/S0003-2670(00)82721-X
– volume: 175
  start-page: 99
  year: 1985
  ident: 3195_CR11
  publication-title: Anal. Chim. Acta
  doi: 10.1016/S0003-2670(00)82721-X
– ident: 3195_CR15
– ident: 3195_CR40
– volume: 50
  start-page: 705
  issue: 4
  year: 1985
  ident: 3195_CR5
  publication-title: Geophysics
  doi: 10.1190/1.1441945
– volume: 139
  start-page: 93
  issue: 1
  year: 2018
  ident: 3195_CR28
  publication-title: Numer. Math.
  doi: 10.1007/s00211-017-0933-3
– ident: 3195_CR38
– ident: 3195_CR39
  doi: 10.1201/9781420057881
– volume: 21
  start-page: 1761
  issue: 8
  year: 2011
  ident: 3195_CR25
  publication-title: Math. Models Methods Appl. Sci.
  doi: 10.1142/S0218202511005568
– volume: 226
  start-page: 519
  issue: 3
  year: 1999
  ident: 3195_CR34
  publication-title: J. Sound. Vibr.
  doi: 10.1006/jsvi.1999.2308
– volume: 32
  start-page: 317
  issue: 3
  year: 2021
  ident: 3195_CR18
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X20951252
– volume: 172
  start-page: 129
  issue: 1
  year: 2011
  ident: 3195_CR37
  publication-title: Sens. Actuators, A
  doi: 10.1016/j.sna.2011.03.050
– ident: 3195_CR1
– volume: 155
  start-page: 206
  issue: 2
  year: 1959
  ident: 3195_CR31
  publication-title: Z. Phys.
  doi: 10.1007/BF01337937
– volume: 65
  start-page: 349
  issue: 3
  year: 2006
  ident: 3195_CR12
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.1447
– volume-title: Mechancis of Fluids.
  year: 1992
  ident: 3195_CR32
– ident: 3195_CR33
– volume: 2
  start-page: 1333
  issue: 7
  year: 1964
  ident: 3195_CR29
  publication-title: AIAA J.
  doi: 10.2514/3.2546
– volume: 48
  start-page: 565
  issue: 4
  year: 2000
  ident: 3195_CR35
  publication-title: Int. J. Numer. Methods. Eng.
  doi: 10.1002/(SICI)1097-0207(20000610)48:4<565::AID-NME890>3.0.CO;2-U
– ident: 3195_CR21
  doi: 10.1016/j.cma.2021.113857
– volume: 21
  start-page: 337
  issue: 4
  year: 1984
  ident: 3195_CR2
  publication-title: Calcolo
  doi: 10.1007/BF02576171
– ident: 3195_CR8
  doi: 10.1007/978-3-662-04775-0
– volume: 50
  start-page: 188
  year: 2015
  ident: 3195_CR14
  publication-title: Eng. Anal. Boundary Elements
  doi: 10.1016/j.enganabound.2014.08.005
– volume-title: Acoustics: Basic physics, theory, and methods
  year: 1999
  ident: 3195_CR6
– volume: 10
  start-page: 249
  issue: 4
  year: 2019
  ident: 3195_CR17
  publication-title: Int. J. Smart. Nano Mater.
  doi: 10.1080/19475411.2018.1556186
– volume: 19
  start-page: 052001
  issue: 5
  year: 2008
  ident: 3195_CR10
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/19/5/052001
– volume: 18
  start-page: 065015
  issue: 6
  year: 2009
  ident: 3195_CR23
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/18/6/065015
– volume: 29
  start-page: 3266
  issue: 16
  year: 2018
  ident: 3195_CR27
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X18781026
– volume: 19
  start-page: 055201
  issue: 5
  year: 2008
  ident: 3195_CR9
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/19/5/055201
– volume: 382
  start-page: 113857
  year: 2021
  ident: 3195_CR22
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2021.113857
– volume: 50
  start-page: 57
  year: 1986
  ident: 3195_CR20
  publication-title: Numer. Math.
  doi: 10.1007/BF01389668
– volume: 63
  start-page: 2272
  issue: 20
  year: 1991
  ident: 3195_CR16
  publication-title: Anal. Chem.
  doi: 10.1021/ac00020a015
– volume: 90
  start-page: 196
  issue: 2
  year: 2012
  ident: 3195_CR26
  publication-title: Int. J. Numer. Methods Engrg.
  doi: 10.1002/nme.3319
– volume: 35
  start-page: 315
  year: 1980
  ident: 3195_CR19
  publication-title: Numer. Math.
  doi: 10.1007/BF01396415
– volume: 25
  start-page: 397
  issue: 2
  year: 2018
  ident: 3195_CR41
  publication-title: Arch. Comput. Methods. Eng.
  doi: 10.1007/s11831-016-9202-3
– volume: 1
  start-page: 73
  issue: 1
  year: 1973
  ident: 3195_CR36
  publication-title: Comput. Fluids
  doi: 10.1016/0045-7930(73)90027-3
– volume-title: Mixed finite element methods and applications, Springer Series in Computational Mathematics
  year: 2013
  ident: 3195_CR4
  doi: 10.1007/978-3-642-36519-5
– volume: 40
  start-page: 1838
  issue: 3
  year: 2019
  ident: 3195_CR7
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/drz022
– volume: 95
  start-page: 4989
  issue: 9
  year: 2004
  ident: 3195_CR3
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1697637
– volume: 302
  start-page: 329
  year: 2016
  ident: 3195_CR24
  publication-title: CMAME
– volume: 43
  start-page: 1099
  issue: 6
  year: 1978
  ident: 3195_CR30
  publication-title: Geophysics
  doi: 10.1190/1.1440881
– volume: 59
  start-page: 503
  issue: 1
  year: 2021
  ident: 3195_CR13
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/20M1338034
– ident: 3195_CR42
  doi: 10.1007/978-3-7091-6442-6
SSID ssj0012741
Score 2.3102875
Snippet In the present contribution, we develop a mixed finite element method capable of the coupled multi-field simulation of a viscous fluid actuated by a...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 1967
SubjectTerms Acoustic waves
Acoustics
Actuation
Approximation
Classical and Continuum Physics
Compressibility
Control
Coupling
Decay rate
Deformation
Dynamical Systems
Elastic waves
Engineering
Engineering Fluid Dynamics
Engineering Thermodynamics
Finite element analysis
Finite element method
Fluids
Geometry
Heat and Mass Transfer
Incompressibility
Locking
Methods
Original Paper
Partial differential equations
Piezoelectric transducers
Resonators
Shear
Simulation
Solid Mechanics
Tensors
Theoretical and Applied Mechanics
Vibration
Viscous fluids
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB0V2gMcWsqHWEqRD5U4gEXsJN74VKGqq15AHEDiZiX-kCKh3WUTFsSvZ8bJLrSoXLgmkW3pjWee45l5AD8Kq4sycdS3VQWeZTbhldNI5DCaV95LbRMXxSaG5-fF9bW-6H-4NX1a5cInRkftJpb-kZ9gIFGClJL1z-ktJ9Uoul3tJTRW4CMyG0EpXWfyYnmLQK1ZOvorOBLnpC-aiaVzsc8Np1x2quPJuforMP3rnl_dk8bwM_ry3oVvwOeeeLLTzlK-wgc_3oT1F-0It6A9qx-8Y6EmHsp8l1jesLIjqqydMHSfUf2L3Zdzz3oxmobVY0ap6TGlFp-wed3Qhyzc3NWuYVSnNmPT2j9OOtUdHKCkwhUyim24Gv2-_PWH96oM3KZ52vIySbyT0ude50kQSithpceTW2lLW1Qyq9IU42EolfbDLIggqkIEi0RL4eFE2HQHVseTsd8FprOhCtLpNLc-c8EWSihZySoNeChCMjGAowUkZto13zDLNssRQIMAmgigUQM4JNQM7cx2RqvpCgxwLupxZU6H1N8MD4T5APYXUJl-yzbmGacBHC_Afn79_3n33h7tG6zJaGaUJLkPq-3szn-HT3be1s3sIBrsE1ha8do
  priority: 102
  providerName: ProQuest
Title Mixed finite elements applied to acoustic wave problems in compressible viscous fluids under piezoelectric actuation
URI https://link.springer.com/article/10.1007/s00707-022-03195-6
https://www.proquest.com/docview/2666112499
Volume 233
WOSCitedRecordID wos000788975100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1619-6937
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012741
  issn: 0001-5970
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xOpRDebSIpXTlQyUOJVLsJE58pBWoF5YVL3GzEseWIqFdtAkL4tcz4yRb2sKhXHxILNvyjD3fyDPfAHzLjMrysCTeVumCODZhUJQKgRxa88JaoUxY-mIT6WiU3dyocZcUVvfR7v2TpL-pF8lunpkmoOhzyrxJArkMq2juMirYcH5xvXg7IEKWFvTyAOFy2KXKvD7GH-bo70v5n9dRb3RONt633E342IFMdtRqxRYs2ck2rL-gHvwEzWn1aEvmKsKczLZB5DXLW1DKminDq9JX-mIP-dyyrvBMzaoJozB0Hz6LX9i8qqkjc7f3VVkzykmbsbvKPk3bCjs4QE5JKqQAn-Hq5Pjy56-gq8AQmCiJmiAPQ1sKYROrktBxqSQ3wqKXlpvcZIWIiyhC2-dyqWwaO-54kXFnEFRJdES4iXZgZTKd2F1gKk6lE6WKEmPj0plMcikKUUQOHSAEDgP43gtC37VEG3pBqez3UuNear-XWg7ggGSl6RQ2M1pNm0yAcxGflT5KicsMnb9kAPu9OHV3PGuNqERyKrutBnDYi-_377fn3fu_7l_gg_AaQAGS-7DSzO7tV1gz86aqZ0NY_XE8Gp8PYflUnPl2TG16MfQK_Qy9mew5
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQcylssLeADiANYjZ3EGx8qVAFVq7arHorUm0n8kCKh3WWTboEfxW_sjJO0PAS3HrgmkZ3H55lv4plvAF4UVhdl4ki3VQWeZTbhldNI5NCbV95LbRMXm02MJ5Pi5EQfrcCPoRaG0ioHmxgNtZtZ-ke-iY5ECeqUrN_Ov3DqGkW7q0MLjQ4W-_7bGYZszdbee_y-L6Xc-XD8bpf3XQW4TfO05WWSeCelz73OkyCUVsJKj5FHaUtbVDKr0hTteSiV9uMsiCCqQgSLREEhuRY2xXGvwfWMlMUoVVAeXexakBRMR7cFR6Ke9EU6sVQv6upwyp2nuqGcq18c4e_u4I992ejudu78by_qLqz1xJptdyvhHqz46X24_ZPc4gNoD-uv3rFQE89mvkucb1jZEXHWzhi6h9jdjJ2VS8_6ZjsNq6eMUu9jyjAeYcu6oQtZ-Hxau4ZRHd6CzWv_fdZ1FcIBSirMIdA_hI9X8tiPYHU6m_rHwHQ2VkE6nebWZy7YQgklK1mlAYM-JEsjeD1AwMw7cRFzISMdAWMQMCYCxqgRvCKUGLI87YLupiugwLlIw8tsj0m_DQPefAQbAzRMb5Iac4mLEbwZwHV5-u_zPvn3aM_h5u7x4YE52Jvsr8MtGSFOCaEbsNouTv1TuGGXbd0snsXFwuDTVYPuHGwUTbc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLUJw4I1YKOADiANYjZ3EiQ8IFdoVVWG1QiD15iaOLUVCu8sm3QI_jV_HjJO0PAS3HrgmkZ3H55lv4pn5AB7nVudFVFHfVuV5ktiIl5VGIofevHROahtVQWwim07zw0M924DvQy0MpVUONjEY6mph6R_5NjoSJUgpWW_7Pi1itjt5ufzMSUGKdloHOY0OIgfu6wmGb82L_V381k-knOx9eP2G9woD3MZp3PIiilwlpUudTiMvlFbCSodRSGELm5cyKeMYbbsvlHZZ4oUXZS68RdKgkGgLG-O4F2AzQ5KRjGDz1d509v50D4Maw3TkW3Ck7VFfshMK90KXHU6Z9FRFlHL1i1v83Tn8sUsbnN_k2v_82q7D1Z5ys51ujdyADTe_CVd-asR4C9p39RdXMV8TA2euS6lvWNFRdNYuGDqOoHvGToq1Y70MT8PqOaOk_JBMjEfYum7oQuY_HddVw6hCb8WWtfu26PSGcICCSnZoOdyGj-fy2HdgNF_M3V1gOsmUl5WOU-uSyttcCSVLWcYew0GkUWN4NsDBLLu2I-a0wXQAj0HwmAAeo8bwlBBjyCa1K7qbrrQC56LuXmYno85uGAqnY9gaYGJ6Y9WYM4yM4fkAtLPTf5_33r9HewSXEGvm7f704D5clgHtlCm6BaN2dewewEW7butm9bBfOQyOzht1PwDzVFfR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mixed+finite+elements+applied+to+acoustic+wave+problems+in+compressible+viscous+fluids+under+piezoelectric+actuation&rft.jtitle=Acta+mechanica&rft.au=Meindlhumer%2C+Martin&rft.au=Pechstein%2C+Astrid&rft.au=Jakoby%2C+Bernhard&rft.date=2022-05-01&rft.issn=0001-5970&rft.eissn=1619-6937&rft.volume=233&rft.issue=5&rft.spage=1967&rft.epage=1986&rft_id=info:doi/10.1007%2Fs00707-022-03195-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00707_022_03195_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-5970&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-5970&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-5970&client=summon