Risk-Averse Stochastic Programming and Distributionally Robust Optimization Via Operator Splitting

This work deals with a broad class of convex optimization problems under uncertainty. The approach is to pose the original problem as one of finding a zero of the sum of two appropriate monotone operators, which is solved by the celebrated Douglas-Rachford splitting method. The resulting algorithm,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Set-valued and variational analysis Ročník 29; číslo 4; s. 861 - 891
Hlavní autor: de Oliveira, Welington
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Netherlands 01.12.2021
Springer Nature B.V
Springer
Témata:
ISSN:1877-0533, 1877-0541
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This work deals with a broad class of convex optimization problems under uncertainty. The approach is to pose the original problem as one of finding a zero of the sum of two appropriate monotone operators, which is solved by the celebrated Douglas-Rachford splitting method. The resulting algorithm, suitable for risk-averse stochastic programs and distributionally robust optimization with fixed support, separates the random cost mapping from the risk function composing the problem’s objective. Such a separation is exploited to compute iterates by alternating projections onto different convex sets. Scenario subproblems, free from the risk function and thus parallelizable, are projections onto the cost mappings’ epigraphs. The risk function is handled in an independent and dedicated step consisting of evaluating its proximal mapping that, in many important cases, amounts to projecting onto a certain ambiguity set. Variables get updated by straightforward projections on subspaces through independent computations for the various scenarios. The investigated approach enjoys significant flexibility and opens the way to handle, in a single algorithm, several classes of risk measures and ambiguity sets.
AbstractList This work deals with a broad class of convex optimization problems under uncertainty. The approach is to pose the original problem as one of finding a zero of the sum of two appropriate monotone operators, which is solved by the celebrated Douglas-Rachford splitting method. The resulting algorithm, suitable for risk-averse stochastic programs and distributionally robust optimization with fixed support, separates the random cost mapping from the risk function composing the problem’s objective. Such a separation is exploited to compute iterates by alternating projections onto different convex sets. Scenario subproblems, free from the risk function and thus parallelizable, are projections onto the cost mappings’ epigraphs. The risk function is handled in an independent and dedicated step consisting of evaluating its proximal mapping that, in many important cases, amounts to projecting onto a certain ambiguity set. Variables get updated by straightforward projections on subspaces through independent computations for the various scenarios. The investigated approach enjoys significant flexibility and opens the way to handle, in a single algorithm, several classes of risk measures and ambiguity sets.
Author de Oliveira, Welington
Author_xml – sequence: 1
  givenname: Welington
  surname: de Oliveira
  fullname: de Oliveira, Welington
  email: welington.oliveira@mines-paristech.fr
  organization: MINES ParisTech, PSL – Research University, CMA – Centre de Mathématiques Appliquées
BackLink https://hal.science/hal-03330577$$DView record in HAL
BookMark eNp9kEtPwzAQhC1UJGjhD3CKxIlDYG0ndXqsylOqBGqBq2U7TjGkcbHdSvDrcRoeEoeedjWab7UzfdRrbKMROsFwjgHYhceYkCIFglOAIUCa76FDXDCWQp7h3u9O6QHqe_8aGYARPkRyZvxbOt5o53UyD1a9CB-MSh6cXTixXJpmkYimTC6ND87IdTC2EXX9kcysXPuQ3K-CWZpP0erJsxFR0E4E65L5qjYhRP4I7Vei9vr4ew7Q0_XV4-Q2nd7f3E3G01TRnIZ0VEqSaUylgkISrMusiDuhmaSgiBKsKkbDKFVaqrzQGWZFjJyxEjLNSibpAJ11d19EzVfOLIX74FYYfjue8lYDSinkjG1w9J523pWz72vtA3-1axeTeU6G8TLQDLeuonMpZ713uuLKhG3U4ISpOQbets-79nlsn2_b53lEyT_056OdEO0gH83NQru_r3ZQX-8LmZ4
CitedBy_id crossref_primary_10_1287_ijoc_2023_0167
crossref_primary_10_1007_s10957_024_02574_4
Cites_doi 10.1561/2200000016
10.1137/1.9780898718751
10.1137/110825054
10.1287/moor.16.1.119
10.1109/TPWRS.2017.2658444
10.1007/s10107-015-0873-6
10.1051/ro/2015065
10.1080/1055678021000034008
10.1007/s11228-018-0496-1
10.1137/0716071
10.1137/15M1024950
10.1007/978-3-319-08843-3
10.1007/s11228-017-0437-4
10.1007/s10589-019-00165-y
10.1109/CDC.2013.6760448
10.1007/s10107-016-1000-z
10.1090/S0002-9947-1956-0084194-4
10.1007/s10479-020-03811-5
10.1137/19M1290097
10.1007/BF01581204
10.1007/978-3-319-48311-5
10.1137/16M1076290
10.1515/9781400873173
10.1561/2400000003
10.1007/s10287-010-0125-4
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2021
The Author(s), under exclusive licence to Springer Nature B.V. 2021.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021
– notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
DOI 10.1007/s11228-021-00600-5
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1877-0541
EndPage 891
ExternalDocumentID oai:HAL:hal-03330577v1
10_1007_s11228_021_00600_5
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
199
1N0
203
2J2
2JN
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
5VS
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
AXYYD
AYJHY
AZFZN
B-.
BAPOH
BDATZ
BGNMA
BSONS
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
H13
HF~
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
ITM
IWAJR
IZIGR
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KOV
LAK
LLZTM
M4Y
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9J
P9R
PF0
PT4
QOS
R89
R9I
ROL
RSV
S16
S3B
SAP
SCLPG
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
TSG
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
ZWQNP
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
1XC
ID FETCH-LOGICAL-c353t-9db24e13bc08b21ed483bc234b30c2ca7f89683bfebc58e417822847d04e7d7b3
IEDL.DBID RSV
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000690701800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1877-0533
IngestDate Tue Oct 14 20:23:35 EDT 2025
Thu Sep 25 00:38:45 EDT 2025
Sat Nov 29 01:59:32 EST 2025
Tue Nov 18 21:34:56 EST 2025
Fri Feb 21 02:46:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Splitting methods
49J53
49J52
90C25
Progressive hedging
Distributionally robust optimization
90C15
Multistage stochastic programs
ADMM
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c353t-9db24e13bc08b21ed483bc234b30c2ca7f89683bfebc58e417822847d04e7d7b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2617803411
PQPubID 2044238
PageCount 31
ParticipantIDs hal_primary_oai_HAL_hal_03330577v1
proquest_journals_2617803411
crossref_citationtrail_10_1007_s11228_021_00600_5
crossref_primary_10_1007_s11228_021_00600_5
springer_journals_10_1007_s11228_021_00600_5
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle Theory and Applications
PublicationTitle Set-valued and variational analysis
PublicationTitleAbbrev Set-Valued Var. Anal
PublicationYear 2021
Publisher Springer Netherlands
Springer Nature B.V
Springer
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
– name: Springer
References EcksteinJBertsekasDPOn the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operatorsMath. Program.1992551-3293318116818310.1007/BF01581204
BolandNChristiansenJDandurandBEberhardALinderothJLuedtkeJOliveiraFCombining progressive hedging with a Frank-Wolfe method to compute lagrangian dual bounds in stochastic mixed-integer programmingSIAM J. Optim.201828213121336379906610.1137/16M1076290
ShapiroAKleywegtAMinimax analysis of stochastic problemsOptim. Methods Softw.2002173523542194429410.1080/1055678021000034008
de OliveiraWSolodovMA doubly stabilized bundle method for nonsmooth convex optimizationMath. Program.20161561125159345919710.1007/s10107-015-0873-6
BeltránFde OliveiraWFinardiECApplication of scenario tree reduction via quadratic process to medium-term hydrothermal scheduling problemIEEE Trans. Power Syst.20173264351436110.1109/TPWRS.2017.2658444
Glowinski, R., Le Tallec, P.: Augmented lagrangian methods for the solution of variational problems, 45–121 (1987)
PflugGCPichlerAA distance for multistage stochastic optimization modelsSIAM J. Optim.2012221123290268210.1137/110825054
BareillesGLaguelYGrishchenkoDIutzelerFMalickJRandomized progressive hedging methods for multi-stage stochastic programmingAnn. Oper. Res.20202952535560418169910.1007/s10479-020-03811-5
WatsonJPWoodruffDLProgressive hedging innovations for a class of stochastic mixed-integer resource allocation problemsComput. Manag. Sci.201084355370284220910.1007/s10287-010-0125-4
DouglasJRachfordHHOn the numerical solution of heat conduction problems in two and three space variablesTrans. Am. Math. Soc.19568224214398419410.1090/S0002-9947-1956-0084194-4
Ben-TalAEl GhaouiLNemirovskiARobust Optimization. Princeton series in Applied Mathematics2009PrincetonPrinceton University Press1221.90001
RockafellarRTProgressive decoupling of linkages in optimization and variational inequalities with elicitable convexity or monotonicitySet-Valued Variat. Anal.2019274863893402766210.1007/s11228-018-0496-1
BauschkeHHCombettesPLConvex Analysis and Monotone Operator Theory in Hilbert Spaces20172nd edn.BerlinSpringer International Publishing10.1007/978-3-319-48311-5
Eckstein, J., Watson, J.P., Woodruff, D.L.: Asynchronous projective hedging for stochastic programming. Tech. Rep. 6895, Optimization Online. http://www.optimization-online.org/DB_HTML/2018/10/6895.html (2018)
PflugGCPichlerAMultistage Stochastic Optimization2014BerlinSpringer International Publishing10.1007/978-3-319-08843-3
FuAZhangJBoydSAnderson accelerated douglas–rachford splittingSIAM J. Sci. Comput.2020426A3560A3583417158710.1137/19M1290097
LenoirAMaheyPA survey on operator splitting and decomposition of convex programsRAIRO Oper. Res.20175111741358926210.1051/ro/2015065
RockafellarRTWetsRJBScenarios and policy aggregation in optimization under uncertaintyMath. Oper. Res.1991161119147110679310.1287/moor.16.1.119
BorweinJMA very complicated proof of the minimax theoremMinimax Theor. Appl.201611212734778941337.46049
ShapiroADentchevaDRuszczyńskiALectures on Stochastic Programming. Modeling and Theory MPS-SIAM Series on Optimization, vol. 92009PhiladelphiaSIAM and MPS10.1137/1.9780898718751
RockafellarRConvex Analysis19701st edn.PrincetonPrinceton University Press10.1515/9781400873173
AlvesMMEcksteinJGeremiaMMeloJGRelative-error inertial-relaxed inexact versions of douglas-rachford and ADMM splitting algorithmsComput. Optim. Appl.2020752389422406459510.1007/s10589-019-00165-y
LionsPLMercierBSplitting algorithms for the sum of two nonlinear operatorsSIAM J. Numer. Anal.197916696497955131910.1137/0716071
Iutzeler, F., Bianchi, P., Ciblat, P., Hachem, W.: Asynchronous distributed optimization using a randomized alternating direction method of multipliers. In: 52nd IEEE conference on decision and control. IEEE (2013)
RockafellarRTUryasevSThe fundamental risk quadrangle in risk management, optimization and statistical estimationSurveys Oper. Res. Manag. Sci.2013181-233533103448
PengZXuYYanMYinWAROck: An algorithmic framework for asynchronous parallel coordinate updatesSIAM J. Sci. Comput.2016385A2851A2879354485310.1137/15M1024950
ParikhNBoydSProximal algorithmsFound. Trends Optim.20141312723910.1561/2400000003
GadeDHackebeilGRyanSMWatsonJPWetsRJBWoodruffDLObtaining lower bounds from the progressive hedging algorithm for stochastic mixed-integer programsMath. Program.201615714767349206710.1007/s10107-016-1000-z
Eckstein, J.: Splitting method for monotone operators with applications to parallel optimization. Ph.D. thesis, Massachusetts institut of technology (1989)
BoydSParikhNChuEPeleatoBEcksteinJDistributed optimization and statistical learning via the alternating direction method of multipliersFound. Trends Mach. Learn.201131112210.1561/2200000016
RockafellarRTSolving stochastic programming problems with risk measures by progressive hedgingSet-Valued Variation. Anal.2018264759768388194010.1007/s11228-017-0437-4
BonnansJGilbertJLemaréchalCSagastizábalCNumerical Optimization: Theoretical and Practical Aspects20062nd edn.BerlinSpringer1108.65060
A Shapiro (600_CR4) 2002; 17
J Douglas (600_CR5) 1956; 82
Z Peng (600_CR24) 2016; 38
HH Bauschke (600_CR7) 2017
R Rockafellar (600_CR26) 1970
S Boyd (600_CR11) 2011; 3
600_CR17
RT Rockafellar (600_CR9) 1991; 16
RT Rockafellar (600_CR13) 2018; 26
600_CR10
A Ben-Tal (600_CR2) 2009
600_CR31
F Beltrán (600_CR30) 2017; 32
A Fu (600_CR22) 2020; 42
N Boland (600_CR15) 2018; 28
J Eckstein (600_CR12) 1992; 55
PL Lions (600_CR6) 1979; 16
RT Rockafellar (600_CR20) 2019; 27
A Lenoir (600_CR32) 2017; 51
MM Alves (600_CR23) 2020; 75
G Bareilles (600_CR18) 2020; 295
RT Rockafellar (600_CR25) 2013; 18
600_CR19
N Parikh (600_CR21) 2014; 1
A Shapiro (600_CR1) 2009
JP Watson (600_CR14) 2010; 8
JM Borwein (600_CR8) 2016; 1
GC Pflug (600_CR3) 2014
J Bonnans (600_CR27) 2006
D Gade (600_CR16) 2016; 157
W de Oliveira (600_CR28) 2016; 156
GC Pflug (600_CR29) 2012; 22
References_xml – reference: de OliveiraWSolodovMA doubly stabilized bundle method for nonsmooth convex optimizationMath. Program.20161561125159345919710.1007/s10107-015-0873-6
– reference: ShapiroADentchevaDRuszczyńskiALectures on Stochastic Programming. Modeling and Theory MPS-SIAM Series on Optimization, vol. 92009PhiladelphiaSIAM and MPS10.1137/1.9780898718751
– reference: RockafellarRConvex Analysis19701st edn.PrincetonPrinceton University Press10.1515/9781400873173
– reference: BorweinJMA very complicated proof of the minimax theoremMinimax Theor. Appl.201611212734778941337.46049
– reference: WatsonJPWoodruffDLProgressive hedging innovations for a class of stochastic mixed-integer resource allocation problemsComput. Manag. Sci.201084355370284220910.1007/s10287-010-0125-4
– reference: Eckstein, J.: Splitting method for monotone operators with applications to parallel optimization. Ph.D. thesis, Massachusetts institut of technology (1989)
– reference: Glowinski, R., Le Tallec, P.: Augmented lagrangian methods for the solution of variational problems, 45–121 (1987)
– reference: Iutzeler, F., Bianchi, P., Ciblat, P., Hachem, W.: Asynchronous distributed optimization using a randomized alternating direction method of multipliers. In: 52nd IEEE conference on decision and control. IEEE (2013)
– reference: RockafellarRTUryasevSThe fundamental risk quadrangle in risk management, optimization and statistical estimationSurveys Oper. Res. Manag. Sci.2013181-233533103448
– reference: ShapiroAKleywegtAMinimax analysis of stochastic problemsOptim. Methods Softw.2002173523542194429410.1080/1055678021000034008
– reference: LionsPLMercierBSplitting algorithms for the sum of two nonlinear operatorsSIAM J. Numer. Anal.197916696497955131910.1137/0716071
– reference: BoydSParikhNChuEPeleatoBEcksteinJDistributed optimization and statistical learning via the alternating direction method of multipliersFound. Trends Mach. Learn.201131112210.1561/2200000016
– reference: RockafellarRTWetsRJBScenarios and policy aggregation in optimization under uncertaintyMath. Oper. Res.1991161119147110679310.1287/moor.16.1.119
– reference: BareillesGLaguelYGrishchenkoDIutzelerFMalickJRandomized progressive hedging methods for multi-stage stochastic programmingAnn. Oper. Res.20202952535560418169910.1007/s10479-020-03811-5
– reference: PengZXuYYanMYinWAROck: An algorithmic framework for asynchronous parallel coordinate updatesSIAM J. Sci. Comput.2016385A2851A2879354485310.1137/15M1024950
– reference: RockafellarRTSolving stochastic programming problems with risk measures by progressive hedgingSet-Valued Variation. Anal.2018264759768388194010.1007/s11228-017-0437-4
– reference: GadeDHackebeilGRyanSMWatsonJPWetsRJBWoodruffDLObtaining lower bounds from the progressive hedging algorithm for stochastic mixed-integer programsMath. Program.201615714767349206710.1007/s10107-016-1000-z
– reference: BonnansJGilbertJLemaréchalCSagastizábalCNumerical Optimization: Theoretical and Practical Aspects20062nd edn.BerlinSpringer1108.65060
– reference: LenoirAMaheyPA survey on operator splitting and decomposition of convex programsRAIRO Oper. Res.20175111741358926210.1051/ro/2015065
– reference: Ben-TalAEl GhaouiLNemirovskiARobust Optimization. Princeton series in Applied Mathematics2009PrincetonPrinceton University Press1221.90001
– reference: FuAZhangJBoydSAnderson accelerated douglas–rachford splittingSIAM J. Sci. Comput.2020426A3560A3583417158710.1137/19M1290097
– reference: EcksteinJBertsekasDPOn the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operatorsMath. Program.1992551-3293318116818310.1007/BF01581204
– reference: BolandNChristiansenJDandurandBEberhardALinderothJLuedtkeJOliveiraFCombining progressive hedging with a Frank-Wolfe method to compute lagrangian dual bounds in stochastic mixed-integer programmingSIAM J. Optim.201828213121336379906610.1137/16M1076290
– reference: PflugGCPichlerAA distance for multistage stochastic optimization modelsSIAM J. Optim.2012221123290268210.1137/110825054
– reference: BeltránFde OliveiraWFinardiECApplication of scenario tree reduction via quadratic process to medium-term hydrothermal scheduling problemIEEE Trans. Power Syst.20173264351436110.1109/TPWRS.2017.2658444
– reference: RockafellarRTProgressive decoupling of linkages in optimization and variational inequalities with elicitable convexity or monotonicitySet-Valued Variat. Anal.2019274863893402766210.1007/s11228-018-0496-1
– reference: ParikhNBoydSProximal algorithmsFound. Trends Optim.20141312723910.1561/2400000003
– reference: AlvesMMEcksteinJGeremiaMMeloJGRelative-error inertial-relaxed inexact versions of douglas-rachford and ADMM splitting algorithmsComput. Optim. Appl.2020752389422406459510.1007/s10589-019-00165-y
– reference: BauschkeHHCombettesPLConvex Analysis and Monotone Operator Theory in Hilbert Spaces20172nd edn.BerlinSpringer International Publishing10.1007/978-3-319-48311-5
– reference: PflugGCPichlerAMultistage Stochastic Optimization2014BerlinSpringer International Publishing10.1007/978-3-319-08843-3
– reference: Eckstein, J., Watson, J.P., Woodruff, D.L.: Asynchronous projective hedging for stochastic programming. Tech. Rep. 6895, Optimization Online. http://www.optimization-online.org/DB_HTML/2018/10/6895.html (2018)
– reference: DouglasJRachfordHHOn the numerical solution of heat conduction problems in two and three space variablesTrans. Am. Math. Soc.19568224214398419410.1090/S0002-9947-1956-0084194-4
– volume: 3
  start-page: 1
  issue: 1
  year: 2011
  ident: 600_CR11
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000016
– ident: 600_CR19
– volume-title: Lectures on Stochastic Programming. Modeling and Theory MPS-SIAM Series on Optimization, vol. 9
  year: 2009
  ident: 600_CR1
  doi: 10.1137/1.9780898718751
– ident: 600_CR17
– volume-title: Numerical Optimization: Theoretical and Practical Aspects
  year: 2006
  ident: 600_CR27
– volume: 1
  start-page: 21
  issue: 1
  year: 2016
  ident: 600_CR8
  publication-title: Minimax Theor. Appl.
– volume: 22
  start-page: 1
  issue: 1
  year: 2012
  ident: 600_CR29
  publication-title: SIAM J. Optim.
  doi: 10.1137/110825054
– volume: 16
  start-page: 119
  issue: 1
  year: 1991
  ident: 600_CR9
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.16.1.119
– volume: 32
  start-page: 4351
  issue: 6
  year: 2017
  ident: 600_CR30
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2017.2658444
– volume: 156
  start-page: 125
  issue: 1
  year: 2016
  ident: 600_CR28
  publication-title: Math. Program.
  doi: 10.1007/s10107-015-0873-6
– volume: 51
  start-page: 17
  issue: 1
  year: 2017
  ident: 600_CR32
  publication-title: RAIRO Oper. Res.
  doi: 10.1051/ro/2015065
– volume: 17
  start-page: 523
  issue: 3
  year: 2002
  ident: 600_CR4
  publication-title: Optim. Methods Softw.
  doi: 10.1080/1055678021000034008
– volume: 27
  start-page: 863
  issue: 4
  year: 2019
  ident: 600_CR20
  publication-title: Set-Valued Variat. Anal.
  doi: 10.1007/s11228-018-0496-1
– volume: 16
  start-page: 964
  issue: 6
  year: 1979
  ident: 600_CR6
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0716071
– volume: 38
  start-page: A2851
  issue: 5
  year: 2016
  ident: 600_CR24
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/15M1024950
– volume-title: Multistage Stochastic Optimization
  year: 2014
  ident: 600_CR3
  doi: 10.1007/978-3-319-08843-3
– volume: 26
  start-page: 759
  issue: 4
  year: 2018
  ident: 600_CR13
  publication-title: Set-Valued Variation. Anal.
  doi: 10.1007/s11228-017-0437-4
– volume: 75
  start-page: 389
  issue: 2
  year: 2020
  ident: 600_CR23
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-019-00165-y
– ident: 600_CR31
  doi: 10.1109/CDC.2013.6760448
– volume-title: Robust Optimization. Princeton series in Applied Mathematics
  year: 2009
  ident: 600_CR2
– volume: 157
  start-page: 47
  issue: 1
  year: 2016
  ident: 600_CR16
  publication-title: Math. Program.
  doi: 10.1007/s10107-016-1000-z
– volume: 82
  start-page: 421
  issue: 2
  year: 1956
  ident: 600_CR5
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-1956-0084194-4
– volume: 18
  start-page: 33
  issue: 1-2
  year: 2013
  ident: 600_CR25
  publication-title: Surveys Oper. Res. Manag. Sci.
– volume: 295
  start-page: 535
  issue: 2
  year: 2020
  ident: 600_CR18
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-020-03811-5
– volume: 42
  start-page: A3560
  issue: 6
  year: 2020
  ident: 600_CR22
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/19M1290097
– volume: 55
  start-page: 293
  issue: 1-3
  year: 1992
  ident: 600_CR12
  publication-title: Math. Program.
  doi: 10.1007/BF01581204
– volume-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces
  year: 2017
  ident: 600_CR7
  doi: 10.1007/978-3-319-48311-5
– volume: 28
  start-page: 1312
  issue: 2
  year: 2018
  ident: 600_CR15
  publication-title: SIAM J. Optim.
  doi: 10.1137/16M1076290
– volume-title: Convex Analysis
  year: 1970
  ident: 600_CR26
  doi: 10.1515/9781400873173
– volume: 1
  start-page: 127
  issue: 3
  year: 2014
  ident: 600_CR21
  publication-title: Found. Trends Optim.
  doi: 10.1561/2400000003
– ident: 600_CR10
– volume: 8
  start-page: 355
  issue: 4
  year: 2010
  ident: 600_CR14
  publication-title: Comput. Manag. Sci.
  doi: 10.1007/s10287-010-0125-4
SSID ssj0070091
Score 2.268913
Snippet This work deals with a broad class of convex optimization problems under uncertainty. The approach is to pose the original problem as one of finding a zero of...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 861
SubjectTerms Algorithms
Ambiguity
Analysis
Computational geometry
Convexity
Mapping
Mathematics
Mathematics and Statistics
Optimization
Risk
Robustness
Splitting
Stochastic programming
Subspaces
Title Risk-Averse Stochastic Programming and Distributionally Robust Optimization Via Operator Splitting
URI https://link.springer.com/article/10.1007/s11228-021-00600-5
https://www.proquest.com/docview/2617803411
https://hal.science/hal-03330577
Volume 29
WOSCitedRecordID wos000690701800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1877-0541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0070091
  issn: 1877-0533
  databaseCode: RSV
  dateStart: 20090601
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5aPejBt1itEsSbBnaT3SZ7LD7w4ItWi7clr8VibcVdC_57J-luq6KC3pZkNgmTZOYLmfmC0IGSRgvDY2JCKkmkaURk00rYV0ozbpTJmj5R-IJfXYn7--SmTArLq2j36krSW-ppsltIHZsyheNvAG6axLNoDtydcNux3elW9pcDavDHLME5cZmmZarM9218ckezDy4Y8gPS_HI56n3O2fL_RruClkqMiVvjRbGKZuxgDS1eTgha83Wk2r38kbRcTIbFnWKoH6QjbMY343CtJ-gKy4HBJ45Xt3wSS_b7b7g9VK95ga_B0jyVKZy425NQYP2FPe4AqvWx1Bvo7uz09viclM8tEM1iVpDEKBrZkCkdCEVDayIB35RFigWaaskzkTShKLNKx8JGoQMX4NxMEFluuGKbqDYYDuwWwrqZAUzLOLMZHOCMSCItoDUD6E-KILF1FFZaT3XJRe6exOinUxZlp78U9Jd6_aVxHR1O_nkeM3H8Kr0PkzkRdCTa562L1JUFjIGR43wU1lGjmuu03Lp56ijqRQDOHaqPqrmdVv_c5fbfxHfQAnXLw4fGNFCteHm1u2hej4pe_rLnl_Q7VDXvVA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFL1iAwl44HOIwgAL8QaWEtupnceKbSqiK1M7pr1Z_opW0bVoySbx77l2k3ZMgARvkePY0bV977F87jHAO2u8U14W1OfMUOGYoKYfDK4r67j01lf9lCg8kuOxOj0tj9qksLpju3dHkslTb5LdchbVlBlufzMM07TYgtsCI1Yk8k2mJ53_lYga0jZLSUljpmmbKvP7Nn4JR1tnkQx5DWneOBxNMefg4f_97SN40GJMMlhNisdwKyyewP3DtUBr_RTsZFZ_o4PIyQhk2izdmYmCzeRoRdc6x66IWXiyF3V12yuxzHz-g0yW9rJuyBf0NOdtCic5mRksCOnAnkwR1SYu9Q58Pdg__jik7XUL1PGCN7T0lomQc-syZVkevFD4zLiwPHPMGVmpso9FVbCuUEHkEVxgcPOZCNJLy5_B9mK5CM-BuH6FMK2SPFS4gfOqFE5hax7Rn1FZGXqQd1bXrtUij1dizPVGRTnaT6P9dLKfLnrwfv3N95USx19rv8XBXFeMItrDwUjHsoxzdHJSXuU92O3GWrdLt9ZRol5lGNzx9YdubDev_9zli3-r_gbuDo8PR3r0afz5JdxjcaokmswubDcXl-EV3HFXzay-eJ2m90-T4fI4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swELcGmyZ4YOwD0Y0Na9rbZpHYTu08VkDFtFIquiHeLH9FVCspIgGJ_56zm7RsYpOmvUW2Y1s-23cn3-93CH0y2lnpREZcSjXhlnKiu17DuTKWCWdc0Y1A4YEYDuX5eT56gOKP0e7tk-Qc0xBYmsp678oVe0vgW0oDszIFVzgBlU2yFfSUh6RBwV8fn7V3sQALIrpcUggSUKcNbObxPn5RTSsXITDygdX520Np1D_9F_8_80200dieuDffLC_RE1--QuvHC-LW6jUyp5PqJ-mFWA2Px_XMXuhA5IxH8zCuSxgW69Lhg8C326TK0tPpHT6dmZuqxidwA1020E58NtFQ4ONDPh6DtRtjrN-gH_3D7_tHpEnDQCzLWE1yZyj3KTM2kYam3nEJ35RxwxJLrRaFzLtQVHhjM-l5GowOUHou4V44YdgWWi1npd9G2HYLMN8KwXwBjp2TObcSenNgFWqZ5L6D0lYCyjYc5SFVxlQt2ZXD-ilYPxXXT2Ud9Hnxz9WcoeOvrT-CYBcNA7n2UW-gQlnCGFx-QtymHbTTyl01R7pSgbpeJqD0ofpLK-dl9Z-HfPtvzXfR89FBXw2-Dr-9Q2s07JQYPbODVuvrG_8ePbO39aS6_hB3-j3-Dfsc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Risk-Averse+Stochastic+Programming+and+Distributionally+Robust+Optimization+Via+Operator+Splitting&rft.jtitle=Set-valued+and+variational+analysis&rft.au=de+Oliveira%2C+Welington&rft.date=2021-12-01&rft.issn=1877-0533&rft.eissn=1877-0541&rft.volume=29&rft.issue=4&rft.spage=861&rft.epage=891&rft_id=info:doi/10.1007%2Fs11228-021-00600-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11228_021_00600_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0533&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0533&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0533&client=summon