Asymptotic behavior of evolution systems in arbitrary Banach spaces using general almost periodic splittings
We present sufficient conditions on the existence of solutions, with various specific almost periodicity properties, in the context of nonlinear, generally multivalued, non-autonomous initial value differential equations, and their whole line analogues, , , with a family of ω-dissipative operators i...
Uloženo v:
| Vydáno v: | Advances in nonlinear analysis Ročník 8; číslo 1; s. 1 - 28 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
De Gruyter
01.01.2019
|
| Témata: | |
| ISSN: | 2191-9496, 2191-950X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We present sufficient conditions on the existence of solutions, with various specific almost periodicity properties, in the context of nonlinear, generally multivalued, non-autonomous initial value differential equations,
and their whole line analogues,
,
,
with a family
of ω-dissipative operators
in a general Banach space
.
According to the classical DeLeeuw–Glicksberg theory, functions of various generalized almost periodic types uniquely decompose in a “dominating” and a “damping” part.
The second main object of the study – in the above context – is to determine the corresponding “dominating” part
of the operators
, and the corresponding “dominating” differential equation, |
|---|---|
| ISSN: | 2191-9496 2191-950X |
| DOI: | 10.1515/anona-2016-0075 |