Asymptotic behavior of evolution systems in arbitrary Banach spaces using general almost periodic splittings

We present sufficient conditions on the existence of solutions, with various specific almost periodicity properties, in the context of nonlinear, generally multivalued, non-autonomous initial value differential equations, and their whole line analogues, , , with a family of ω-dissipative operators i...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advances in nonlinear analysis Ročník 8; číslo 1; s. 1 - 28
Hlavní autor: Kreulich, Josef
Médium: Journal Article
Jazyk:angličtina
Vydáno: De Gruyter 01.01.2019
Témata:
ISSN:2191-9496, 2191-950X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We present sufficient conditions on the existence of solutions, with various specific almost periodicity properties, in the context of nonlinear, generally multivalued, non-autonomous initial value differential equations, and their whole line analogues, , , with a family of ω-dissipative operators in a general Banach space . According to the classical DeLeeuw–Glicksberg theory, functions of various generalized almost periodic types uniquely decompose in a “dominating” and a “damping” part. The second main object of the study – in the above context – is to determine the corresponding “dominating” part of the operators , and the corresponding “dominating” differential equation,
ISSN:2191-9496
2191-950X
DOI:10.1515/anona-2016-0075