Augmented Intelligence Dermatology: Deep Neural Networks Empower Medical Professionals in Diagnosing Skin Cancer and Predicting Treatment Options for 134 Skin Disorders

Although deep learning algorithms have demonstrated expert-level performance, previous efforts were mostly binary classifications of limited disorders. We trained an algorithm with 220,680 images of 174 disorders and validated it using Edinburgh (1,300 images; 10 disorders) and SNU datasets (2,201 i...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of investigative dermatology Ročník 140; číslo 9; s. 1753
Hlavní autoři: Han, Seung Seog, Park, Ilwoo, Eun Chang, Sung, Lim, Woohyung, Kim, Myoung Shin, Park, Gyeong Hun, Chae, Je Byeong, Huh, Chang Hun, Na, Jung-Im
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 01.09.2020
Témata:
ISSN:1523-1747, 1523-1747
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Although deep learning algorithms have demonstrated expert-level performance, previous efforts were mostly binary classifications of limited disorders. We trained an algorithm with 220,680 images of 174 disorders and validated it using Edinburgh (1,300 images; 10 disorders) and SNU datasets (2,201 images; 134 disorders). The algorithm could accurately predict malignancy, suggest primary treatment options, render multi-class classification among 134 disorders, and improve the performance of medical professionals. The area under the curves for malignancy detection were 0.928 ± 0.002 (Edinburgh) and 0.937 ± 0.004 (SNU). The area under the curves of primary treatment suggestion (SNU) were 0.828 ± 0.012, 0.885 ± 0.006, 0.885 ± 0.006, and 0.918 ± 0.006 for steroids, antibiotics, antivirals, and antifungals, respectively. For multi-class classification, the mean top-1 and top-5 accuracies were 56.7 ± 1.6% and 92.0 ± 1.1% (Edinburgh) and 44.8 ± 1.2% and 78.1 ± 0.3% (SNU), respectively. With the assistance of our algorithm, the sensitivity and specificity of 47 clinicians (21 dermatologists and 26 dermatology residents) for malignancy prediction (SNU; 240 images) were improved by 12.1% (P < 0.0001) and 1.1% (P < 0.0001), respectively. The malignancy prediction sensitivity of 23 non-medical professionals was significantly increased by 83.8% (P < 0.0001). The top-1 and top-3 accuracies of four doctors in the multi-class classification of 134 diseases (SNU; 2,201 images) were increased by 7.0% (P = 0.045) and 10.1% (P = 0.0020), respectively. The results suggest that our algorithm may serve as augmented intelligence that can empower medical professionals in diagnostic dermatology.
AbstractList Although deep learning algorithms have demonstrated expert-level performance, previous efforts were mostly binary classifications of limited disorders. We trained an algorithm with 220,680 images of 174 disorders and validated it using Edinburgh (1,300 images; 10 disorders) and SNU datasets (2,201 images; 134 disorders). The algorithm could accurately predict malignancy, suggest primary treatment options, render multi-class classification among 134 disorders, and improve the performance of medical professionals. The area under the curves for malignancy detection were 0.928 ± 0.002 (Edinburgh) and 0.937 ± 0.004 (SNU). The area under the curves of primary treatment suggestion (SNU) were 0.828 ± 0.012, 0.885 ± 0.006, 0.885 ± 0.006, and 0.918 ± 0.006 for steroids, antibiotics, antivirals, and antifungals, respectively. For multi-class classification, the mean top-1 and top-5 accuracies were 56.7 ± 1.6% and 92.0 ± 1.1% (Edinburgh) and 44.8 ± 1.2% and 78.1 ± 0.3% (SNU), respectively. With the assistance of our algorithm, the sensitivity and specificity of 47 clinicians (21 dermatologists and 26 dermatology residents) for malignancy prediction (SNU; 240 images) were improved by 12.1% (P < 0.0001) and 1.1% (P < 0.0001), respectively. The malignancy prediction sensitivity of 23 non-medical professionals was significantly increased by 83.8% (P < 0.0001). The top-1 and top-3 accuracies of four doctors in the multi-class classification of 134 diseases (SNU; 2,201 images) were increased by 7.0% (P = 0.045) and 10.1% (P = 0.0020), respectively. The results suggest that our algorithm may serve as augmented intelligence that can empower medical professionals in diagnostic dermatology.
Although deep learning algorithms have demonstrated expert-level performance, previous efforts were mostly binary classifications of limited disorders. We trained an algorithm with 220,680 images of 174 disorders and validated it using Edinburgh (1,300 images; 10 disorders) and SNU datasets (2,201 images; 134 disorders). The algorithm could accurately predict malignancy, suggest primary treatment options, render multi-class classification among 134 disorders, and improve the performance of medical professionals. The area under the curves for malignancy detection were 0.928 ± 0.002 (Edinburgh) and 0.937 ± 0.004 (SNU). The area under the curves of primary treatment suggestion (SNU) were 0.828 ± 0.012, 0.885 ± 0.006, 0.885 ± 0.006, and 0.918 ± 0.006 for steroids, antibiotics, antivirals, and antifungals, respectively. For multi-class classification, the mean top-1 and top-5 accuracies were 56.7 ± 1.6% and 92.0 ± 1.1% (Edinburgh) and 44.8 ± 1.2% and 78.1 ± 0.3% (SNU), respectively. With the assistance of our algorithm, the sensitivity and specificity of 47 clinicians (21 dermatologists and 26 dermatology residents) for malignancy prediction (SNU; 240 images) were improved by 12.1% (P < 0.0001) and 1.1% (P < 0.0001), respectively. The malignancy prediction sensitivity of 23 non-medical professionals was significantly increased by 83.8% (P < 0.0001). The top-1 and top-3 accuracies of four doctors in the multi-class classification of 134 diseases (SNU; 2,201 images) were increased by 7.0% (P = 0.045) and 10.1% (P = 0.0020), respectively. The results suggest that our algorithm may serve as augmented intelligence that can empower medical professionals in diagnostic dermatology.Although deep learning algorithms have demonstrated expert-level performance, previous efforts were mostly binary classifications of limited disorders. We trained an algorithm with 220,680 images of 174 disorders and validated it using Edinburgh (1,300 images; 10 disorders) and SNU datasets (2,201 images; 134 disorders). The algorithm could accurately predict malignancy, suggest primary treatment options, render multi-class classification among 134 disorders, and improve the performance of medical professionals. The area under the curves for malignancy detection were 0.928 ± 0.002 (Edinburgh) and 0.937 ± 0.004 (SNU). The area under the curves of primary treatment suggestion (SNU) were 0.828 ± 0.012, 0.885 ± 0.006, 0.885 ± 0.006, and 0.918 ± 0.006 for steroids, antibiotics, antivirals, and antifungals, respectively. For multi-class classification, the mean top-1 and top-5 accuracies were 56.7 ± 1.6% and 92.0 ± 1.1% (Edinburgh) and 44.8 ± 1.2% and 78.1 ± 0.3% (SNU), respectively. With the assistance of our algorithm, the sensitivity and specificity of 47 clinicians (21 dermatologists and 26 dermatology residents) for malignancy prediction (SNU; 240 images) were improved by 12.1% (P < 0.0001) and 1.1% (P < 0.0001), respectively. The malignancy prediction sensitivity of 23 non-medical professionals was significantly increased by 83.8% (P < 0.0001). The top-1 and top-3 accuracies of four doctors in the multi-class classification of 134 diseases (SNU; 2,201 images) were increased by 7.0% (P = 0.045) and 10.1% (P = 0.0020), respectively. The results suggest that our algorithm may serve as augmented intelligence that can empower medical professionals in diagnostic dermatology.
Author Park, Ilwoo
Eun Chang, Sung
Park, Gyeong Hun
Han, Seung Seog
Na, Jung-Im
Lim, Woohyung
Chae, Je Byeong
Huh, Chang Hun
Kim, Myoung Shin
Author_xml – sequence: 1
  givenname: Seung Seog
  surname: Han
  fullname: Han, Seung Seog
  organization: I Dermatology Clinic, Seoul, Korea
– sequence: 2
  givenname: Ilwoo
  surname: Park
  fullname: Park, Ilwoo
  organization: Department of Radiology, Chonnam National University Medical School and Hospital, Gwangju, Korea
– sequence: 3
  givenname: Sung
  surname: Eun Chang
  fullname: Eun Chang, Sung
  organization: Department of Dermatology, Asan Medical Center, Ulsan University College of Medicine, Seoul, Korea
– sequence: 4
  givenname: Woohyung
  surname: Lim
  fullname: Lim, Woohyung
  organization: LG Sciencepark, Seoul, Korea
– sequence: 5
  givenname: Myoung Shin
  surname: Kim
  fullname: Kim, Myoung Shin
  organization: Department of Dermatology, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Korea
– sequence: 6
  givenname: Gyeong Hun
  surname: Park
  fullname: Park, Gyeong Hun
  organization: Department of Dermatology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Dongtan, Korea
– sequence: 7
  givenname: Je Byeong
  surname: Chae
  fullname: Chae, Je Byeong
  organization: Department of Dermatology, Seoul National University Bundang Hospital, Seongnam, Korea
– sequence: 8
  givenname: Chang Hun
  surname: Huh
  fullname: Huh, Chang Hun
  organization: Department of Dermatology, Seoul National University Bundang Hospital, Seongnam, Korea
– sequence: 9
  givenname: Jung-Im
  surname: Na
  fullname: Na, Jung-Im
  email: jina1@snu.ac.kr
  organization: Department of Dermatology, Seoul National University Bundang Hospital, Seongnam, Korea. Electronic address: jina1@snu.ac.kr
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32243882$$D View this record in MEDLINE/PubMed
BookMark eNpNUMlKBDEQDaK4f4AXydHLjFm604k3mXEDN1DPQyapaTJ2J23Sjfg3nv0Mv8yMCwhFVT1evUfxdtC6Dx4QOqBkTAkVx8vx0tkxI4yMCc2l1tA2LRkf0aqo1v_tW2gnpSXJmqKUm2iLM1ZwKdk2-jgd6hZ8DxZf5d40rgZvAE8htroPTajfTjKADt_CEHWTR_8a4nPCZ20XXiHiG7DOZOI-hgWk5ILXTcLO46nTtQ_J-Ro_PGc80dk4Yu3t5_t9XKn6FfcYQferF_Bd12d1wosQMeXFt-rzfepSiBZi2kMbi2wN-79zFz2dnz1OLkfXdxdXk9PrkeEl70eVKiwIKihjCqCSyghTGjKnVlApFQcBpQLFS1pxUVhlFZkXQkgwhlFu5mwXHf34djG8DJD6WeuSydFoD2FIM8alYFJyovLp4e_pMG_BzrroWh3fZn_5si-gAoMb
CitedBy_id crossref_primary_10_1111_ics_12786
crossref_primary_10_1111_jdv_18541
crossref_primary_10_1038_s41598_022_20632_7
crossref_primary_10_1111_srt_13153
crossref_primary_10_1016_j_jid_2023_09_289
crossref_primary_10_3390_bioengineering11080758
crossref_primary_10_1109_ACCESS_2021_3054403
crossref_primary_10_1016_j_smhl_2025_100540
crossref_primary_10_1111_ijd_17981
crossref_primary_10_3390_jpm12111859
crossref_primary_10_1007_s00403_022_02492_3
crossref_primary_10_1186_s12909_023_04698_z
crossref_primary_10_3389_fmed_2023_1114362
crossref_primary_10_3389_fmed_2022_946937
crossref_primary_10_1007_s42600_024_00392_1
crossref_primary_10_1016_j_media_2022_102647
crossref_primary_10_1002_ima_22880
crossref_primary_10_1016_j_ejca_2022_04_015
crossref_primary_10_1111_jdv_18814
crossref_primary_10_1007_s42979_024_03072_0
crossref_primary_10_1016_j_det_2025_05_004
crossref_primary_10_1111_srt_13037
crossref_primary_10_2196_44030
crossref_primary_10_3390_diagnostics12051233
crossref_primary_10_3390_diagnostics11030451
crossref_primary_10_1089_pop_2024_0222
crossref_primary_10_1002_qute_202500234
crossref_primary_10_1080_1206212X_2024_2385923
crossref_primary_10_17116_klinderma202423031246
crossref_primary_10_1371_journal_pone_0260895
crossref_primary_10_3390_cosmetics10050120
crossref_primary_10_7759_cureus_65122
crossref_primary_10_3389_fmed_2023_1241484
crossref_primary_10_1007_s13671_024_00440_0
crossref_primary_10_1007_s00330_022_09165_9
crossref_primary_10_3390_ai5040144
crossref_primary_10_1001_jamadermatol_2021_1685
crossref_primary_10_1109_ACCESS_2023_3296792
crossref_primary_10_1001_jamanetworkopen_2021_7249
crossref_primary_10_3390_diagnostics15070939
crossref_primary_10_1007_s40257_023_00777_5
crossref_primary_10_3390_diagnostics13152531
crossref_primary_10_1016_j_ejca_2022_07_002
crossref_primary_10_1038_s41746_020_00380_6
crossref_primary_10_1016_j_compbiomed_2020_103980
crossref_primary_10_1111_jdv_20849
crossref_primary_10_2196_43832
crossref_primary_10_38124_ijisrt_24jul1574
crossref_primary_10_1016_j_ejca_2021_06_049
crossref_primary_10_1111_jdv_18354
crossref_primary_10_3389_fmed_2024_1331895
crossref_primary_10_3390_jimaging9020035
crossref_primary_10_1016_j_ejca_2021_06_047
crossref_primary_10_1016_j_health_2023_100259
crossref_primary_10_1109_JBHI_2023_3237875
crossref_primary_10_1001_jamanetworkopen_2021_1276
crossref_primary_10_32604_cmc_2024_052548
crossref_primary_10_1111_jdv_16979
crossref_primary_10_1186_s12880_023_01078_3
crossref_primary_10_1111_srt_13257
crossref_primary_10_1001_jamadermatol_2023_5550
crossref_primary_10_1016_j_jid_2022_03_019
crossref_primary_10_1111_jocd_16640
crossref_primary_10_3389_fmed_2021_670300
crossref_primary_10_1177_00031348241269430
crossref_primary_10_1111_ajd_13690
crossref_primary_10_1001_jamadermatol_2023_3521
crossref_primary_10_1007_s00105_020_04657_5
crossref_primary_10_3390_app15147856
crossref_primary_10_1177_11769351251349891
crossref_primary_10_1111_jdv_20319
crossref_primary_10_3390_cancers15041183
crossref_primary_10_1038_s41746_024_01031_w
crossref_primary_10_1016_j_xjidi_2025_100404
crossref_primary_10_1159_000530225
crossref_primary_10_1016_j_compbiomed_2024_108742
crossref_primary_10_1001_jamadermatol_2021_3129
crossref_primary_10_1007_s11831_023_09910_3
crossref_primary_10_1016_j_cie_2023_109754
crossref_primary_10_3389_fmed_2020_00318
crossref_primary_10_1016_j_jid_2021_12_033
crossref_primary_10_1287_mnsc_2023_01845
crossref_primary_10_1007_s40009_023_01319_7
crossref_primary_10_1007_s43621_024_00575_x
crossref_primary_10_1097_JD9_0000000000000404
crossref_primary_10_1007_s10489_024_05520_z
crossref_primary_10_1016_j_jid_2022_02_003
crossref_primary_10_3390_diagnostics10100803
crossref_primary_10_1007_s11831_025_10275_y
crossref_primary_10_1038_s41746_024_01103_x
crossref_primary_10_1016_j_jid_2020_08_024
crossref_primary_10_3390_jcm14092873
crossref_primary_10_1145_3555634
crossref_primary_10_1016_j_ejca_2020_11_020
crossref_primary_10_1007_s11912_023_01407_3
crossref_primary_10_1186_s12911_021_01596_6
crossref_primary_10_3389_fmed_2024_1420152
crossref_primary_10_1038_s41598_021_87064_7
crossref_primary_10_3390_jcm11226826
crossref_primary_10_1111_srt_13690
crossref_primary_10_1038_s41551_023_01160_9
crossref_primary_10_2196_39143
crossref_primary_10_1007_s11517_021_02321_1
crossref_primary_10_3390_s25020394
crossref_primary_10_1186_s12909_025_07321_5
crossref_primary_10_2196_20708
crossref_primary_10_1177_20552076231205736
crossref_primary_10_1111_pde_15298
crossref_primary_10_3390_life13112123
crossref_primary_10_1080_14737167_2023_2279107
crossref_primary_10_1097_SCS_0000000000011498
crossref_primary_10_1016_j_seminoncol_2025_152349
crossref_primary_10_3390_a15110438
crossref_primary_10_1016_j_jid_2020_06_040
crossref_primary_10_1007_s13555_022_00833_8
crossref_primary_10_1038_s41591_020_0942_0
crossref_primary_10_7717_peerj_cs_2530
crossref_primary_10_1038_s41467_024_50043_3
crossref_primary_10_1038_s41591_023_02225_7
ContentType Journal Article
Copyright Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.jid.2020.01.019
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
EISSN 1523-1747
ExternalDocumentID 32243882
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
.55
.GJ
0R~
1B1
29K
2WC
36B
3O-
4.4
457
53G
5GY
5RE
5VS
7X7
88E
8AO
8FI
8FJ
8R4
8R5
AAEDW
AAFWJ
AALRI
AAXUO
AAYWO
ABAWZ
ABJNI
ABLJU
ABMAC
ABUWG
ACGFO
ACGFS
ACPRK
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADVLN
AENEX
AEUPX
AEXQZ
AFEBI
AFETI
AFFNX
AFJKZ
AFKRA
AFPUW
AFTJW
AGCQF
AGHFR
AHMBA
AI.
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BAWUL
BENPR
BFHJK
BPHCQ
BVXVI
CAG
CCPQU
CGR
COF
CS3
CUY
CVF
D-I
DIK
E3Z
EBS
ECM
EFKBS
EIF
EJD
F5P
FDB
FRP
FYUFA
GX1
HMCUK
HZ~
IH2
IHE
J5H
JSO
KQ8
L7B
LH4
LW6
M1P
M41
MVM
NPM
NQ-
O9-
OK1
P2P
PHGZM
PHGZT
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
Q2X
R9-
RIG
RNS
ROL
RPZ
SSZ
TR2
UKHRP
VH1
W2D
X7M
Y6R
YFH
YOC
YUY
ZGI
7X8
ID FETCH-LOGICAL-c353t-794de6161229ee789c6c5c0b1d618893e6e59e93517364d9d90b4668ecc213cb2
IEDL.DBID 7X8
ISICitedReferencesCount 136
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000560065800015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1523-1747
IngestDate Sun Sep 28 03:10:16 EDT 2025
Mon Jul 21 05:57:50 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c353t-794de6161229ee789c6c5c0b1d618893e6e59e93517364d9d90b4668ecc213cb2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 32243882
PQID 2386288309
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2386288309
pubmed_primary_32243882
PublicationCentury 2000
PublicationDate 2020-09-00
20200901
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-00
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of investigative dermatology
PublicationTitleAlternate J Invest Dermatol
PublicationYear 2020
SSID ssj0016458
Score 2.6583884
Snippet Although deep learning algorithms have demonstrated expert-level performance, previous efforts were mostly binary classifications of limited disorders. We...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 1753
SubjectTerms Adolescent
Adult
Aged
Anti-Bacterial Agents - therapeutic use
Antifungal Agents - therapeutic use
Antiviral Agents - therapeutic use
Clinical Competence - statistics & numerical data
Datasets as Topic
Deep Learning
Dermatologists - statistics & numerical data
Dermatology - methods
Dermoscopy - methods
Drug Therapy, Computer-Assisted
Feasibility Studies
Female
Glucocorticoids - therapeutic use
Humans
Image Interpretation, Computer-Assisted
Internship and Residency - statistics & numerical data
Male
Middle Aged
Photography - methods
ROC Curve
Skin - diagnostic imaging
Skin Diseases - diagnosis
Skin Diseases - drug therapy
Skin Diseases - microbiology
Skin Neoplasms - diagnosis
Young Adult
Title Augmented Intelligence Dermatology: Deep Neural Networks Empower Medical Professionals in Diagnosing Skin Cancer and Predicting Treatment Options for 134 Skin Disorders
URI https://www.ncbi.nlm.nih.gov/pubmed/32243882
https://www.proquest.com/docview/2386288309
Volume 140
WOSCitedRecordID wos000560065800015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6-EC--H-uLEbwW2yZNEy-y-EAPrntQ2NvSJqmsYHfdquA_8mc6k7boSQQvhUJTSjOZ-ZL5-D7GjlWqDVdOBVlObUasqUFWpLhVKQTCfyOV1YU3m0h7PTUY6H5z4FY1tMo2J_pEbceGzshPsLR4Z9xQn01eAnKNou5qY6Exy-Y5QhmK6nTw3UWQwvtzYokiGU6Rtl1Nz-96GpFQaBx61c7oF4TpK83Vyn-_cZUtNxgTunVQrLEZV66zxdumi77BPrtvj16L08LND0VOuKAs7f1sP07xxk2ApDvwTb2aK17B5fOEXNWgae9A_4ewRwWjEi5q5h7WQyBbLzinoJpCVlp8lgYRyxruW3Y73NWcGkDoDBEX9aBWEbTaZA9Xl_fn10Hj2BAYnvDXABe3dRJBZBxr51KljTSJCfPIykghMnLSJdppnkQpl8Jqq8NcSKkwjuKImzzeYnPluHQ7DJRLiH0rsqxwwsZ5xlOFaKnIQ53hxjrvsKN2Doa4IqjNkZVu_FYNv2ehw7briRxOaumOIaYvwXFTsfuH0XtsieKjJpTts_kC_6Q7YAvm_XVUTQ99qOG117_9ApY8344
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Augmented+Intelligence+Dermatology%3A+Deep+Neural+Networks+Empower+Medical+Professionals+in+Diagnosing+Skin+Cancer+and%C2%A0Predicting+Treatment+Options+for+134+Skin%C2%A0Disorders&rft.jtitle=Journal+of+investigative+dermatology&rft.au=Han%2C+Seung+Seog&rft.au=Park%2C+Ilwoo&rft.au=Eun+Chang%2C+Sung&rft.au=Lim%2C+Woohyung&rft.date=2020-09-01&rft.eissn=1523-1747&rft.volume=140&rft.issue=9&rft.spage=1753&rft_id=info:doi/10.1016%2Fj.jid.2020.01.019&rft_id=info%3Apmid%2F32243882&rft_id=info%3Apmid%2F32243882&rft.externalDocID=32243882
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1523-1747&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1523-1747&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1523-1747&client=summon