Low-Rank Structure Learning via Nonconvex Heuristic Recovery
In this paper, we propose a nonconvex framework to learn the essential low-rank structure from corrupted data. Different from traditional approaches, which directly utilizes convex norms to measure the sparseness, our method introduces more reasonable nonconvex measurements to enhance the sparsity i...
Uloženo v:
| Vydáno v: | IEEE transaction on neural networks and learning systems Ročník 24; číslo 3; s. 383 - 396 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York, NY
IEEE
01.03.2013
Institute of Electrical and Electronics Engineers |
| Témata: | |
| ISSN: | 2162-237X, 2162-2388 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!