An accelerated approach for solving fuzzy relation equations with a linear objective function
In literature, the optimization model with a linear objective function subject to fuzzy relation equations has been converted into a 0-1 integer programming problem by Fang and Li (1999). They proposed a jump-tracking branch-and-bound method to solve this 0-1 integer programming problem. In this pap...
Uloženo v:
| Vydáno v: | IEEE transactions on fuzzy systems Ročník 10; číslo 4; s. 552 - 558 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.08.2002
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1063-6706, 1941-0034 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In literature, the optimization model with a linear objective function subject to fuzzy relation equations has been converted into a 0-1 integer programming problem by Fang and Li (1999). They proposed a jump-tracking branch-and-bound method to solve this 0-1 integer programming problem. In this paper, we propose an upper bound for the optimal objective value. Based on this upper bound and rearranging the structure of the problem, we present a backward jump-tracking branch-and-bound scheme for solving this optimization problem. A numerical example is provided to illustrate our scheme. Furthermore, testing examples show that the performance of our scheme is superior to the procedure in the paper by Fang and Li. Several testing examples show that our initial upper bound is sharp. |
|---|---|
| Bibliografie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 content type line 23 |
| ISSN: | 1063-6706 1941-0034 |
| DOI: | 10.1109/TFUZZ.2002.800657 |