An efficient propositional system for Abductive Logic Programming
Abductive logic programming (ALP) extends logic programming with hypothetical reasoning by means of abducibles, an extension able to handle interesting problems, such as diagnosis, planning, and verification with formal methods. Implementations of this extension have been using Prolog meta-interpret...
Saved in:
| Published in: | The Artificial intelligence review Vol. 57; no. 12; p. 334 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Dordrecht
Springer Netherlands
01.12.2024
Springer Springer Nature B.V |
| Subjects: | |
| ISSN: | 1573-7462, 0269-2821, 1573-7462 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abductive logic programming (ALP) extends logic programming with hypothetical reasoning by means of abducibles, an extension able to handle interesting problems, such as diagnosis, planning, and verification with formal methods. Implementations of this extension have been using Prolog meta-interpreters and Prolog programs with Constraint Handling Rules (CHR). While the latter adds a clean and efficient interface to the host system, it still suffers in performance for large programs. Here, the concern is to obtain a more performant implementation of the SCIFF system following a compiled approach. This paper, as a first step in this long term goal, sets out a propositional ALP system following SCIFF, eliminating the need for CHR and achieving better performance. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1573-7462 0269-2821 1573-7462 |
| DOI: | 10.1007/s10462-024-10928-7 |