Nonlinear optimal control: a numerical scheme based on occupation measures and interval analysis

This paper presents an approximation scheme for optimal control problems using finite-dimensional linear programs and interval analysis. This is done in two parts. Following Vinter approach (SIAM J Control Optim 31(2):518–538, 1993) and using occupation measures, the optimal control problem is writt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational optimization and applications Jg. 77; H. 1; S. 307 - 334
Hauptverfasser: Delanoue, Nicolas, Lhommeau, Mehdi, Lagrange, Sébastien
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.09.2020
Springer Nature B.V
Springer Verlag
Schlagworte:
ISSN:0926-6003, 1573-2894
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper presents an approximation scheme for optimal control problems using finite-dimensional linear programs and interval analysis. This is done in two parts. Following Vinter approach (SIAM J Control Optim 31(2):518–538, 1993) and using occupation measures, the optimal control problem is written into a linear programming problem of infinite-dimension (weak formulation). Thanks to Interval arithmetic, we provide a relaxation of this infinite-dimensional linear programming problem by a finite dimensional linear programming problem. A proof that the optimal value of the finite dimensional linear programming problem is a lower bound to the optimal value of the control problem is given. Moreover, according to the fineness of the discretization and the size of the chosen test function family, obtained optimal values of each finite dimensional linear programming problem form a sequence of lower bounds which converges to the optimal value of the initial optimal control problem. Examples will illustrate the principle of the methodology.
AbstractList This paper presents an approximation scheme for optimal control problems using finite-dimensional linear programs and interval analysis. This is done in two parts. Following Vinter approach (SIAM J Control Optim 31(2):518–538, 1993) and using occupation measures, the optimal control problem is written into a linear programming problem of infinite-dimension (weak formulation). Thanks to Interval arithmetic, we provide a relaxation of this infinite-dimensional linear programming problem by a finite dimensional linear programming problem. A proof that the optimal value of the finite dimensional linear programming problem is a lower bound to the optimal value of the control problem is given. Moreover, according to the fineness of the discretization and the size of the chosen test function family, obtained optimal values of each finite dimensional linear programming problem form a sequence of lower bounds which converges to the optimal value of the initial optimal control problem. Examples will illustrate the principle of the methodology.
Author Lhommeau, Mehdi
Lagrange, Sébastien
Delanoue, Nicolas
Author_xml – sequence: 1
  givenname: Nicolas
  orcidid: 0000-0001-6927-6281
  surname: Delanoue
  fullname: Delanoue, Nicolas
  email: nicolas.delanoue@univ-angers.fr
  organization: LARIS, Université d’Angers
– sequence: 2
  givenname: Mehdi
  surname: Lhommeau
  fullname: Lhommeau, Mehdi
  organization: LARIS, Université d’Angers
– sequence: 3
  givenname: Sébastien
  surname: Lagrange
  fullname: Lagrange, Sébastien
  organization: LARIS, Université d’Angers
BackLink https://univ-angers.hal.science/hal-02863203$$DView record in HAL
BookMark eNp9kEFv3CAQhVGVSN0k_QM9IfXUg5sBbAy9RVHTRFq1l_ZMJ3jcEHlhC3ak_PuycZVKOUQcQKP3vXm8E3YUUyTG3gv4JAD68yKgM7YBCQ2AsKYxb9hGdL1qpLHtEduAlbrRAOotOynlHgBsr-SG_fqW4hQiYeZpP4cdTtynOOc0febI47KjHHwdFn9HO-K3WGjgKfLk_bLHOdTnjrAsmQrHOPAQZ8oPFcCI02MJ5YwdjzgVevfvPmU_r778uLxutt-_3lxebBuvOjU3mnoSQ6eVHT3oVg8dSdv51qDBWy-tUGhrZCn7sev1MIpB1kOo0Y-2RVCn7OPqe4eT2-f6k_zoEgZ3fbF1hxlIo5UE9SCq9sOq3ef0Z6Eyu_u05Bq4ONlKZTX07cFRriqfUymZxmdbAe7Qultbr87gnlp3pkLmBeTD_NTTnDFMr6NqRUvdE39T_p_qFeovDgaY8A
CitedBy_id crossref_primary_10_1109_TAES_2024_3404915
crossref_primary_10_1016_j_engappai_2024_109052
Cites_doi 10.1137/040616802
10.1137/1030153
10.1093/imamci/17.2.167
10.1073/pnas.38.8.716
10.1090/S0002-9947-1983-0690039-8
10.1016/S0362-546X(00)85016-6
10.1137/1.9781611973051
10.1090/gsm/058
10.1109/CDC.2008.4739136
10.1090/S0025-5718-1984-0744921-8
10.1007/s10589-015-9794-9
10.1137/1.9780898718577
10.1137/S1052623497315768
10.1007/s00245-014-9257-1
10.1137/070685051
10.1137/0331024
10.1007/978-1-4471-4820-3
10.1090/S0002-9947-1984-0732102-X
10.1090/S0273-0979-1992-00266-5
10.1137/060655286
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
1XC
DOI 10.1007/s10589-020-00198-8
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)


Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Mathematics
EISSN 1573-2894
EndPage 334
ExternalDocumentID oai:HAL:hal-02863203v1
10_1007_s10589_020_00198_8
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
7WY
88I
8AO
8FE
8FG
8FL
8FW
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EBU
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8U
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
1XC
ID FETCH-LOGICAL-c353t-6e7e1d5639fc0646d5e295c48a8abc2913a9097227f576df1d2d2dea6acf94a03
IEDL.DBID M2P
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000539379700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0926-6003
IngestDate Tue Oct 14 20:35:56 EDT 2025
Wed Nov 26 14:42:57 EST 2025
Sat Nov 29 01:51:29 EST 2025
Tue Nov 18 20:55:33 EST 2025
Fri Feb 21 02:30:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Nonlinear optimal control
Interval arithmetic
Continuous programming
Optimization
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c353t-6e7e1d5639fc0646d5e295c48a8abc2913a9097227f576df1d2d2dea6acf94a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6927-6281
0000-0002-9658-7891
PQID 2423960740
PQPubID 30811
PageCount 28
ParticipantIDs hal_primary_oai_HAL_hal_02863203v1
proquest_journals_2423960740
crossref_primary_10_1007_s10589_020_00198_8
crossref_citationtrail_10_1007_s10589_020_00198_8
springer_journals_10_1007_s10589_020_00198_8
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal
PublicationTitle Computational optimization and applications
PublicationTitleAbbrev Comput Optim Appl
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Springer Verlag
References The gnu multiple precision arithmetic library. https://gmplib.org
Hernández-HernándezDHernández-LermaOTaksarMThe linear programming approach to deterministic optimal control problemsAppl. Math.1996241173314049810871.49005
CrandallMGLionsPLTwo approximations of solutions of Hamilton–Jacobi equationsMath. Comput.19844316711974492110.1090/S0025-5718-1984-0744921-8
High performance computing cluster of leria.: Slurm/debian cluster of 27 nodes(700 logical CPU, 2 nvidia GPU tesla k20m, 1 nvidia P100 GPU), 120TB of beegfs scratch storage (2018)
CrandallMGIshiiHLionsPLUser’s guide to viscosity solutions of second order partial differential equations.Bull. Am. Math. Soc. New Ser.1992271167111869910.1090/S0273-0979-1992-00266-50755.35015
Filib++ interval library. http://www2.math.uni-wuppertal.de/~xsc/software/filib.html
JaulinLKiefferMDidritOWalterEApplied Interval Analysis: With Examples in Parameter and State Estimation. Robust Control and Robotics.2012LondonSpringer1023.65037
GaitsgoryVRossomakhineSLinear programming approach to deterministic long run average problems of optimal controlSIAM J. Control Optim.200644620062037224817310.1137/0406168021109.93017
GaitsgoryVRossomakhineSAveraging and linear programming in some singularly perturbed problems of optimal controlAppl. Math. Optim.2015712195276332358910.1007/s00245-014-9257-11317.49042
ClarkeFFunctional Analysis. Calculus of Variations and Optimal Control. Graduate Texts in Mathematics.2013LondonSpringer10.1007/978-1-4471-4820-3
LasserreJMoments. Positive Polynomials and Their Applications: Imperial College Press Optimization Series2010LondonImperial College Press
WangSGaoFTeoKAn upwind finite-difference method for the approximation of viscosity solutions to Hamilton–Jacobi–Bellman equationsIMA J. Math. Control Inf.2000172167178176927410.1093/imamci/17.2.167
RudinWReal and Complex Analysis19873New YorkMcGraw-Hill Book Co.0925.00005
JungeOOsingaHMA set oriented approach to global optimal controlESAIM: Control Optim. Calc. Var.200410225927020834871072.49014
Hairer, E., Nørsett, S., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Lecture Notes in Economic and Mathematical Systems. Springer, Berlin (1993)
CrandallMGLionsPLViscosity solutions of Hamilton–Jacobi equationsTrans. Am. Math. Soc.1983277114269003910.1090/S0002-9947-1983-0690039-8
Falcone, M., Ferretti, R.: Semi-Lagrangian Approximation Schemes for Linear and Hamilton–Jacobi Equations. SIAM (2014). https://hal.inria.fr/hal-00916055
Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I (2nd Revised. Ed.): Nonstiff Problems. Springer, New York (1993)
LasserreJBHenrionDPrieurCTrélatENonlinear optimal control via occupation measures and lmi-relaxationsSIAM J. Control Optim.200847416431666242132410.1137/0706850511188.90193
Henrion, D., Lasserre, J.B., Savorgnan, C.: Nonlinear optimal control synthesis via occupation measures. In: 47th IEEE Conference on Decision and Control, pp. 4749–4754 (2008). https://doi.org/10.1109/CDC.2008.4739136
VillaniCTopics in Optimal Transportation: Graduate Studies in Mathematics2003ProvidenceAmerican Mathematical Society10.1090/gsm/058
CrandallMGEvansLCLionsPLSome properties of viscosity solutions of Hamilton–Jacobi equationsTrans. Am. Math. Soc.1984282248750273210210.1090/S0002-9947-1984-0732102-X
Glpk: Gnu linear programming kit. http://www.gnu.org/software/glpk
AkianMGaubertSLakhouaAThe max-plus finite element method for solving deterministic optimal control problems: basic properties and convergence analysisSIAM J. Control Optim.2008472817848238586410.1137/0606552861157.49034
Betts, J.: Practical methods for optimal control and estimation using nonlinear programming, 2nd edn. Society for Industrial and Applied Mathematics (2010). https://doi.org/10.1137/1.9780898718577
FalconeMNumerical solution of dynamic programming equations: optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman equations1997BaselBirkhäuser
NeumaierAInterval Methods for Systems of Equations1990CambridgeCambridge University Press, Cambridge Middle East Library0715.65030
Hernández-LermaOLasserreJBApproximation schemes for infinite linear programsSIAM J. Optim.199884973988164128210.1137/S10526234973157680912.90219
RubioJControl and Optimization: The Linear Treatment of Nonlinear Problems1986ManchesterManchester University Press1095.49500
HuangCSWangSTeoKSolving Hamilton–Jacobi–Bellman equations by a modified method of characteristicsNonlinear Anal. Theory Methods Appl.2000401–8279293176841310.1016/S0362-546X(00)85016-6
VinterRConvex duality and nonlinear optimal controlSIAM J. Control Optim.1993312518538120598710.1137/03310240781.49012
Evans, L.: An Introduction to Mathematical Optimal Control Theory, version 0.2. http://math.berkeley.edu/~evans
MooreRInterval Analysis. Prentice-Hall Series in Automatic Computation1966Upper Saddle RiverPrentice-Hall
DelanoueNLhommeauMLucidarmePNumerical enclosures of the optimal cost of the kantorovitch’s mass transportation problemComput. Optim. Appl.2015111910.1007/s10589-015-9794-91364.90211
BalderEControl and optimisation: the linear treatment of nonlinear problems (J. E. Rubio)SIAM Rev.198830466366310.1137/1030153
BellmanROn the theory of dynamic programmingProc. Natl. Acad. Sci.19523887167195085610.1073/pnas.38.8.716
N Delanoue (198_CR11) 2015; 1
MG Crandall (198_CR8) 1992; 27
R Moore (198_CR30) 1966
MG Crandall (198_CR10) 1984; 43
C Villani (198_CR34) 2003
R Vinter (198_CR35) 1993; 31
M Akian (198_CR2) 2008; 47
O Junge (198_CR27) 2004; 10
A Neumaier (198_CR31) 1990
W Rudin (198_CR33) 1987
198_CR12
E Balder (198_CR3) 1988; 30
198_CR19
198_CR5
198_CR18
198_CR15
198_CR1
198_CR14
CS Huang (198_CR25) 2000; 40
F Clarke (198_CR6) 2013
V Gaitsgory (198_CR17) 2015; 71
J Lasserre (198_CR28) 2010
MG Crandall (198_CR7) 1984; 282
V Gaitsgory (198_CR16) 2006; 44
J Rubio (198_CR32) 1986
JB Lasserre (198_CR29) 2008; 47
L Jaulin (198_CR26) 2012
M Falcone (198_CR13) 1997
R Bellman (198_CR4) 1952; 38
198_CR22
O Hernández-Lerma (198_CR24) 1998; 8
198_CR20
198_CR21
S Wang (198_CR36) 2000; 17
MG Crandall (198_CR9) 1983; 277
D Hernández-Hernández (198_CR23) 1996; 24
References_xml – reference: CrandallMGIshiiHLionsPLUser’s guide to viscosity solutions of second order partial differential equations.Bull. Am. Math. Soc. New Ser.1992271167111869910.1090/S0273-0979-1992-00266-50755.35015
– reference: DelanoueNLhommeauMLucidarmePNumerical enclosures of the optimal cost of the kantorovitch’s mass transportation problemComput. Optim. Appl.2015111910.1007/s10589-015-9794-91364.90211
– reference: Glpk: Gnu linear programming kit. http://www.gnu.org/software/glpk/
– reference: HuangCSWangSTeoKSolving Hamilton–Jacobi–Bellman equations by a modified method of characteristicsNonlinear Anal. Theory Methods Appl.2000401–8279293176841310.1016/S0362-546X(00)85016-6
– reference: VinterRConvex duality and nonlinear optimal controlSIAM J. Control Optim.1993312518538120598710.1137/03310240781.49012
– reference: CrandallMGLionsPLTwo approximations of solutions of Hamilton–Jacobi equationsMath. Comput.19844316711974492110.1090/S0025-5718-1984-0744921-8
– reference: NeumaierAInterval Methods for Systems of Equations1990CambridgeCambridge University Press, Cambridge Middle East Library0715.65030
– reference: RubioJControl and Optimization: The Linear Treatment of Nonlinear Problems1986ManchesterManchester University Press1095.49500
– reference: The gnu multiple precision arithmetic library. https://gmplib.org/
– reference: GaitsgoryVRossomakhineSAveraging and linear programming in some singularly perturbed problems of optimal controlAppl. Math. Optim.2015712195276332358910.1007/s00245-014-9257-11317.49042
– reference: MooreRInterval Analysis. Prentice-Hall Series in Automatic Computation1966Upper Saddle RiverPrentice-Hall
– reference: RudinWReal and Complex Analysis19873New YorkMcGraw-Hill Book Co.0925.00005
– reference: VillaniCTopics in Optimal Transportation: Graduate Studies in Mathematics2003ProvidenceAmerican Mathematical Society10.1090/gsm/058
– reference: AkianMGaubertSLakhouaAThe max-plus finite element method for solving deterministic optimal control problems: basic properties and convergence analysisSIAM J. Control Optim.2008472817848238586410.1137/0606552861157.49034
– reference: LasserreJBHenrionDPrieurCTrélatENonlinear optimal control via occupation measures and lmi-relaxationsSIAM J. Control Optim.200847416431666242132410.1137/0706850511188.90193
– reference: High performance computing cluster of leria.: Slurm/debian cluster of 27 nodes(700 logical CPU, 2 nvidia GPU tesla k20m, 1 nvidia P100 GPU), 120TB of beegfs scratch storage (2018)
– reference: ClarkeFFunctional Analysis. Calculus of Variations and Optimal Control. Graduate Texts in Mathematics.2013LondonSpringer10.1007/978-1-4471-4820-3
– reference: FalconeMNumerical solution of dynamic programming equations: optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman equations1997BaselBirkhäuser
– reference: Evans, L.: An Introduction to Mathematical Optimal Control Theory, version 0.2. http://math.berkeley.edu/~evans/
– reference: WangSGaoFTeoKAn upwind finite-difference method for the approximation of viscosity solutions to Hamilton–Jacobi–Bellman equationsIMA J. Math. Control Inf.2000172167178176927410.1093/imamci/17.2.167
– reference: BellmanROn the theory of dynamic programmingProc. Natl. Acad. Sci.19523887167195085610.1073/pnas.38.8.716
– reference: Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I (2nd Revised. Ed.): Nonstiff Problems. Springer, New York (1993)
– reference: GaitsgoryVRossomakhineSLinear programming approach to deterministic long run average problems of optimal controlSIAM J. Control Optim.200644620062037224817310.1137/0406168021109.93017
– reference: JungeOOsingaHMA set oriented approach to global optimal controlESAIM: Control Optim. Calc. Var.200410225927020834871072.49014
– reference: Hairer, E., Nørsett, S., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Lecture Notes in Economic and Mathematical Systems. Springer, Berlin (1993)
– reference: JaulinLKiefferMDidritOWalterEApplied Interval Analysis: With Examples in Parameter and State Estimation. Robust Control and Robotics.2012LondonSpringer1023.65037
– reference: Betts, J.: Practical methods for optimal control and estimation using nonlinear programming, 2nd edn. Society for Industrial and Applied Mathematics (2010). https://doi.org/10.1137/1.9780898718577
– reference: Henrion, D., Lasserre, J.B., Savorgnan, C.: Nonlinear optimal control synthesis via occupation measures. In: 47th IEEE Conference on Decision and Control, pp. 4749–4754 (2008). https://doi.org/10.1109/CDC.2008.4739136
– reference: Hernández-HernándezDHernández-LermaOTaksarMThe linear programming approach to deterministic optimal control problemsAppl. Math.1996241173314049810871.49005
– reference: Hernández-LermaOLasserreJBApproximation schemes for infinite linear programsSIAM J. Optim.199884973988164128210.1137/S10526234973157680912.90219
– reference: BalderEControl and optimisation: the linear treatment of nonlinear problems (J. E. Rubio)SIAM Rev.198830466366310.1137/1030153
– reference: Falcone, M., Ferretti, R.: Semi-Lagrangian Approximation Schemes for Linear and Hamilton–Jacobi Equations. SIAM (2014). https://hal.inria.fr/hal-00916055
– reference: CrandallMGEvansLCLionsPLSome properties of viscosity solutions of Hamilton–Jacobi equationsTrans. Am. Math. Soc.1984282248750273210210.1090/S0002-9947-1984-0732102-X
– reference: LasserreJMoments. Positive Polynomials and Their Applications: Imperial College Press Optimization Series2010LondonImperial College Press
– reference: CrandallMGLionsPLViscosity solutions of Hamilton–Jacobi equationsTrans. Am. Math. Soc.1983277114269003910.1090/S0002-9947-1983-0690039-8
– reference: Filib++ interval library. http://www2.math.uni-wuppertal.de/~xsc/software/filib.html
– volume-title: Interval Analysis. Prentice-Hall Series in Automatic Computation
  year: 1966
  ident: 198_CR30
– volume: 44
  start-page: 2006
  issue: 6
  year: 2006
  ident: 198_CR16
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/040616802
– volume: 30
  start-page: 663
  issue: 4
  year: 1988
  ident: 198_CR3
  publication-title: SIAM Rev.
  doi: 10.1137/1030153
– ident: 198_CR12
– volume: 17
  start-page: 167
  issue: 2
  year: 2000
  ident: 198_CR36
  publication-title: IMA J. Math. Control Inf.
  doi: 10.1093/imamci/17.2.167
– ident: 198_CR18
– ident: 198_CR20
– volume: 38
  start-page: 716
  issue: 8
  year: 1952
  ident: 198_CR4
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.38.8.716
– volume-title: Numerical solution of dynamic programming equations: optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman equations
  year: 1997
  ident: 198_CR13
– volume-title: Real and Complex Analysis
  year: 1987
  ident: 198_CR33
– volume: 277
  start-page: 1
  issue: 1
  year: 1983
  ident: 198_CR9
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-1983-0690039-8
– volume: 40
  start-page: 279
  issue: 1–8
  year: 2000
  ident: 198_CR25
  publication-title: Nonlinear Anal. Theory Methods Appl.
  doi: 10.1016/S0362-546X(00)85016-6
– volume-title: Moments. Positive Polynomials and Their Applications: Imperial College Press Optimization Series
  year: 2010
  ident: 198_CR28
– ident: 198_CR14
  doi: 10.1137/1.9781611973051
– volume: 10
  start-page: 259
  issue: 2
  year: 2004
  ident: 198_CR27
  publication-title: ESAIM: Control Optim. Calc. Var.
– volume-title: Interval Methods for Systems of Equations
  year: 1990
  ident: 198_CR31
– volume-title: Topics in Optimal Transportation: Graduate Studies in Mathematics
  year: 2003
  ident: 198_CR34
  doi: 10.1090/gsm/058
– ident: 198_CR22
  doi: 10.1109/CDC.2008.4739136
– volume: 43
  start-page: 1
  issue: 167
  year: 1984
  ident: 198_CR10
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-1984-0744921-8
– volume: 1
  start-page: 1
  year: 2015
  ident: 198_CR11
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-015-9794-9
– ident: 198_CR5
  doi: 10.1137/1.9780898718577
– volume-title: Control and Optimization: The Linear Treatment of Nonlinear Problems
  year: 1986
  ident: 198_CR32
– ident: 198_CR15
– volume: 8
  start-page: 973
  issue: 4
  year: 1998
  ident: 198_CR24
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623497315768
– volume: 71
  start-page: 195
  issue: 2
  year: 2015
  ident: 198_CR17
  publication-title: Appl. Math. Optim.
  doi: 10.1007/s00245-014-9257-1
– ident: 198_CR19
– ident: 198_CR21
– volume: 47
  start-page: 1643
  issue: 4
  year: 2008
  ident: 198_CR29
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/070685051
– ident: 198_CR1
– volume: 31
  start-page: 518
  issue: 2
  year: 1993
  ident: 198_CR35
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/0331024
– volume: 24
  start-page: 17
  issue: 1
  year: 1996
  ident: 198_CR23
  publication-title: Appl. Math.
– volume-title: Functional Analysis. Calculus of Variations and Optimal Control. Graduate Texts in Mathematics.
  year: 2013
  ident: 198_CR6
  doi: 10.1007/978-1-4471-4820-3
– volume: 282
  start-page: 487
  issue: 2
  year: 1984
  ident: 198_CR7
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-1984-0732102-X
– volume: 27
  start-page: 1
  issue: 1
  year: 1992
  ident: 198_CR8
  publication-title: Bull. Am. Math. Soc. New Ser.
  doi: 10.1090/S0273-0979-1992-00266-5
– volume-title: Applied Interval Analysis: With Examples in Parameter and State Estimation. Robust Control and Robotics.
  year: 2012
  ident: 198_CR26
– volume: 47
  start-page: 817
  issue: 2
  year: 2008
  ident: 198_CR2
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/060655286
SSID ssj0009732
Score 2.2669191
Snippet This paper presents an approximation scheme for optimal control problems using finite-dimensional linear programs and interval analysis. This is done in two...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 307
SubjectTerms Convex and Discrete Geometry
Fineness
Interval arithmetic
Linear programming
Lower bounds
Management Science
Mathematical programming
Mathematics
Mathematics and Statistics
Nonlinear control
Operations Research
Operations Research/Decision Theory
Optimal control
Optimization
Optimization and Control
Statistics
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbY4DAOvBGDgSLEDSo1SdOk3CbExAEmxEvcSpamAol1aGP7_Th9bAMBEqintklbxW78ObE_Axz1pPaTKBEet27phnLrKYMCkZF1GkOlFmlebEJ2u-rxMbouk8JGVbR7tSWZz9RzyW7ChfcwlwmNrrKnarCI5k65gg03tw8zql2ZlyXzIxZ6aM55mSrz_TM-maPaswuGnEOaXzZHc5vTWf3f167BSokxSbtQinVYsNkGLM8xD-LZ1ZSudbQBDQc5C8bmTXjqFuwZekgGOJ_08UllPPsp0SQbF1s8rwTdYtu3xJnBhAwyMpjyFZN-sfA4IjpLyEseVYkddMl_sgX3nfO7swuvrMPgGS74uxdaaWkiEMukBhFMmAjLImECpZXuGRZRriPHAsRkit5LktKE4WF1qE0aBdrn21DPBpndAYLoQzufU4RKBVyqnvR7wqSMaqotC0wTaCWO2JQk5a5Wxms8o1d2AxvjwMb5wMaqCcfTPm8FRcevrQ9RytOGjl37on0Zu2sItULOfD6hTWhVShCX__QodsgT_T0Z-E04qYQ-u_3zK3f_1nwPGizXGxfI1oL6-3Bs92HJTFARhge5rn8ANMz2AA
  priority: 102
  providerName: Springer Nature
Title Nonlinear optimal control: a numerical scheme based on occupation measures and interval analysis
URI https://link.springer.com/article/10.1007/s10589-020-00198-8
https://www.proquest.com/docview/2423960740
https://univ-angers.hal.science/hal-02863203
Volume 77
WOSCitedRecordID wos000539379700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-2894
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009732
  issn: 0926-6003
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED9R2MN42Pe0blBZ0962aLEdx85eJoZASBtVBftge8lc29GQaAJt4e_fXeK2MAlepkgnJXE-lLv4fmeffwfwZqxt6guvEhlo6IbLkBiHCtFFIIvh2qqqLTahh0NzclKM4oDbLKZVLvrEtqP2jaMx8vfk9xFt6yz9eH6RUNUoml2NJTR6sIHIhlNK16EYrUh3dVugLC1EnqBjl3HRTFw6pyhZSNC6agy8E3PDMfX-UFrkNcz5zzRp6332H_7vez-CBxF3sp3OUB7DWqifwOY1NsKn8HvY0WbYKWuwI5lg85jI_oFZVl92cztnDOPhMAmM_J9nTc2aJVExm3QjjjNma89O23RKvMBG4pNn8G1_7-vuQRILMCROKjlP8qAD9wpBTOUQuuReBVEolxlr7NiJgktbEP2P0BWGLb7iXuAWbG5dVWQ2lc9hvW7q8AIYwg5LwabKjcmkNmOdjpWrBLfcBpG5PvDF1y9dZCenIhln5YpXmTRWosbKVmOl6cPb5TXnHTfHna1fo1KXDYlW-2DnS0nHEGPlUqTyivdha6HFMv7Ms3Klwj68W9jB6vTtj3x5991ewX3RGiBlrG3B-nx6Gbbhnruan86mA-jpHz8HsPFpbzg6wr3POkF5mO4OWiMnqY9RjtQvlEfH3_8Cl1z-bQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61BQk48EYsFLAQnCBqbMexg4RQBVRbdVn1UKTeXK_tiErdpOxui_hT_EZm8tgtSPTWA8otsR0l_jwPe-YbgFcT7dJQBJXISFs3XMbEeJwQXURCDNdOlU2xCT0em8PDYn8NfvW5MBRW2cvERlCH2tMe-RbpfbS2dZZ-OP2eUNUoOl3tS2i0sNiLP3-gyzZ_v_sJ5_e1EDufDz4Ok66qQOKlkoskjzryoFAzlx71cR5UFIXymXHGTbwouHQFcdoIXaItHkoeBF7R5c6XReZSieOuw7WMmMUoVFDsr0h-dVMQLS1EnqAhIbsknS5VT1FwkqA8bnT0E_OHIlz_RmGYF2zcv45lG223c-d_-0934XZnV7PtdiHcg7VY3YdbF9gWH8DRuKUFcTNWo6CcYvMuUP8dc6w6a8-uThj6-3EaGen3wOqK1UsiZjZtd1TnzFWBHTfhotjBdcQuD-HrlXziI9io6io-BoZmlSNnWuXGZFKbiU4nypeCO-6iyPwAeD_b1nfs61QE5MSueKMJIRYRYhuEWDOAN8s-py33yKWtXyKIlg2JNny4PbJ0D23IXIpUnvMBbPaosZ2wmtsVZAbwtsfd6vG_X_nk8tFewI3hwZeRHe2O957CTdGAn6LzNmFjMTuLz-C6P18cz2fPm2XE4Oiq8fgbB0NUZg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61BSE4lLdYWsBCcIKoiR3HDhJCFWXVqtVqDyBVXFKv7YhK3aRstkX8tf66ziTObkGitx5QbontKPHnedgz3wC8mSgTu9zJSHjaukmEj7TFCVG5J8QkysiyLTahRiN9eJiPV-Ciz4WhsMpeJraC2tWW9si3SO-jta3SeKsMYRHjneGn058RVZCik9a-nEYHkX3_-xe6b83HvR2c67ecD798_bwbhQoDkRVSzKPMK584iVq6tKibMyc9z6VNtdFmYnmeCJMTvw1XJdrlrkwcx8ubzNgyT00scNxVuKXQx6RwwrH8viT8VW1xtDjnWYRGhQgJOyFtT1KgEqecbnT6I_2HUlz9QSGZV-zdv45oW803vP8__7MHsB7sbbbdLZCHsOKrR3DvCgvjYzgadXQhZsZqFKBTbB4C-D8ww6qz7kzrhDWI76lnpPcdqytWLwia2bTbaW2YqRw7bsNIsYMJhC9P4NuNfOJTWKvqyj8DhuaWISdbZlqnQumJiifSljwxifE8tQNI-pkvbGBlp-IgJ8WST5rQUiBaihYthR7Au0Wf046T5NrWrxFQi4ZEJ767fVDQPbQtM8FjcZ4MYLNHUBGEWFMs4TOA9z0Gl4___crn14_2Cu4gDIuDvdH-Btzl7TqgoL1NWJvPzvwLuG3P58fN7GW7ohgc3TQcLwEUOl1S
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+optimal+control%3A+a+numerical+scheme+based+on+occupation+measures+and+interval+analysis&rft.jtitle=Computational+optimization+and+applications&rft.au=Delanoue%2C+Nicolas&rft.au=Lhommeau%2C+Mehdi&rft.au=Lagrange%2C+S%C3%A9bastien&rft.date=2020-09-01&rft.issn=0926-6003&rft.eissn=1573-2894&rft.volume=77&rft.issue=1&rft.spage=307&rft.epage=334&rft_id=info:doi/10.1007%2Fs10589-020-00198-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10589_020_00198_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-6003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-6003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-6003&client=summon