Rapid visual screening of soft-story buildings from street view images using deep learning classification

Rapid and accurate identification of potential structural deficiencies is a crucial task in evaluating seismic vulnerability of large building inventories in a region. In the case of multi-story structures, abrupt vertical variations of story stiffness are known to significantly increase the likelih...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Earthquake Engineering and Engineering Vibration Ročník 19; číslo 4; s. 827 - 838
Hlavní autori: Yu, Qian, Wang, Chaofeng, McKenna, Frank, Yu, Stella X., Taciroglu, Ertugrul, Cetiner, Barbaros, Law, Kincho H.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Harbin Institute of Engineering Mechanics, China Earthquake Administration 01.10.2020
Springer Nature B.V
International Computer Science Institute, University of California, Berkeley, CA, USA %Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA %Civil and Environmental Engineering, University of California, Los Angeles, CA, USA %Civil and Environmental Engineering, Stanford University, CA, USA
Predmet:
ISSN:1671-3664, 1993-503X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Rapid and accurate identification of potential structural deficiencies is a crucial task in evaluating seismic vulnerability of large building inventories in a region. In the case of multi-story structures, abrupt vertical variations of story stiffness are known to significantly increase the likelihood of collapse during moderate or severe earthquakes. Identifying and retrofitting buildings with such irregularities—generally termed as soft-story buildings—is, therefore, vital in earthquake preparedness and loss mitigation efforts. Soft-story building identification through conventional means is a labor-intensive and time-consuming process. In this study, an automated procedure was devised based on deep learning techniques for identifying soft-story buildings from street-view images at a regional scale. A database containing a large number of building images and a semi-automated image labeling approach that effectively annotates new database entries was developed for developing the deep learning model. Extensive computational experiments were carried out to examine the effectiveness of the proposed procedure, and to gain insights into automated soft-story building identification.
AbstractList Rapid and accurate identification of potential structural deficiencies is a crucial task in evaluating seismic vulnerability of large building inventories in a region. In the case of multi-story structures, abrupt vertical variations of story stiffness are known to significantly increase the likelihood of collapse during moderate or severe earthquakes. Identifying and retrofitting buildings with such irregularities—generally termed as soft-story buildings—is, therefore, vital in earthquake preparedness and loss mitigation efforts. Soft-story building identification through conventional means is a labor-intensive and time-consuming process. In this study, an automated procedure was devised based on deep learning techniques for identifying soft-story buildings from street-view images at a regional scale. A database containing a large number of building images and a semi-automated image labeling approach that effectively annotates new database entries was developed for developing the deep learning model. Extensive computational experiments were carried out to examine the effectiveness of the proposed procedure, and to gain insights into automated soft-story building identification.
Author McKenna, Frank
Yu, Qian
Wang, Chaofeng
Law, Kincho H.
Yu, Stella X.
Taciroglu, Ertugrul
Cetiner, Barbaros
AuthorAffiliation International Computer Science Institute, University of California, Berkeley, CA, USA %Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA %Civil and Environmental Engineering, University of California, Los Angeles, CA, USA %Civil and Environmental Engineering, Stanford University, CA, USA
AuthorAffiliation_xml – name: International Computer Science Institute, University of California, Berkeley, CA, USA %Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA %Civil and Environmental Engineering, University of California, Los Angeles, CA, USA %Civil and Environmental Engineering, Stanford University, CA, USA
Author_xml – sequence: 1
  givenname: Qian
  surname: Yu
  fullname: Yu, Qian
  organization: International Computer Science Institute, University of California
– sequence: 2
  givenname: Chaofeng
  surname: Wang
  fullname: Wang, Chaofeng
  email: c_w@berkeley.edu
  organization: Department of Civil and Environmental Engineering, University of California
– sequence: 3
  givenname: Frank
  surname: McKenna
  fullname: McKenna, Frank
  organization: Department of Civil and Environmental Engineering, University of California
– sequence: 4
  givenname: Stella X.
  surname: Yu
  fullname: Yu, Stella X.
  organization: International Computer Science Institute, University of California
– sequence: 5
  givenname: Ertugrul
  surname: Taciroglu
  fullname: Taciroglu, Ertugrul
  organization: Civil and Environmental Engineering, University of California
– sequence: 6
  givenname: Barbaros
  surname: Cetiner
  fullname: Cetiner, Barbaros
  organization: Civil and Environmental Engineering, University of California
– sequence: 7
  givenname: Kincho H.
  surname: Law
  fullname: Law, Kincho H.
  organization: Civil and Environmental Engineering, Stanford University
BookMark eNp9kVtrHSEURqWk0CTtD-ib0Neabi9z8bGEXgKBQEmgb2IcHQwTPXU7DSe_vp5MIVBonhRZ61P3d0KOUk6ekPcczjjA8Ak5H0EyEMCg0yMTr8gx11qyDuTPo7bvB85k36s35ATxDqBXQvbHJP6wuzjR3xFXu1B0xfsU00xzoJhDZVhz2dPbNS5TO0YaSr6nWBtWm-QfaLy3s0e64sGavN_RxdvylOEWixhDdLbGnN6S18Eu6N_9XU_Jzdcv1-ff2eXVt4vzz5fMyU5W1nNw4-iD0FJZ57yUVoOQTslwKyHo3g6DGAYAb5XzfFJKCy6nTk9DH0CDPCUft9wHm4JNs7nLa0ntRjM9zm4_u8fJeNEGBQpANvzDhu9K_rV6rM-8UJ3gMIpRNWrYKFcyYvHBuFifvlWLjYvhYA41mK0G09LNoQYjmsn_MXelzazsX3TE5mBj0-zL85v-L_0B4TCcuw
CitedBy_id crossref_primary_10_1016_j_isprsjprs_2023_09_001
crossref_primary_10_1080_23311916_2022_2065900
crossref_primary_10_1061__ASCE_ST_1943_541X_0003392
crossref_primary_10_1016_j_istruc_2025_108332
crossref_primary_10_1061_JPCFEV_CFENG_4930
crossref_primary_10_3390_app11167540
crossref_primary_10_1007_s11803_022_2074_7
crossref_primary_10_1007_s11803_022_2079_2
crossref_primary_10_1177_01655515231202761
crossref_primary_10_1016_j_strusafe_2022_102260
crossref_primary_10_1007_s11803_023_2167_y
crossref_primary_10_3390_su142316063
crossref_primary_10_1016_j_buildenv_2023_110215
crossref_primary_10_1016_j_ress_2023_109104
crossref_primary_10_1111_mice_12747
crossref_primary_10_3390_buildings12081167
crossref_primary_10_1007_s42452_024_06070_2
crossref_primary_10_1061__ASCE_CP_1943_5487_0001025
crossref_primary_10_3390_s23229118
crossref_primary_10_1061__ASCE_CP_1943_5487_0001034
crossref_primary_10_1002_eqe_3805
crossref_primary_10_3390_buildings14082348
crossref_primary_10_1016_j_landurbplan_2021_104217
crossref_primary_10_1061_NHREFO_NHENG_1649
crossref_primary_10_1007_s10518_024_01927_8
crossref_primary_10_1016_j_istruc_2025_109951
crossref_primary_10_1177_23998083241247870
crossref_primary_10_1016_j_cities_2022_103787
crossref_primary_10_1016_j_autcon_2020_103474
crossref_primary_10_3390_buildings14010014
crossref_primary_10_1007_s11069_022_05553_y
crossref_primary_10_1177_01655515221074336
crossref_primary_10_3390_app14125350
crossref_primary_10_3390_app14166992
crossref_primary_10_1061_JCCEE5_CPENG_6030
crossref_primary_10_3390_ijgi12070264
crossref_primary_10_1061__ASCE_CP_1943_5487_0000968
crossref_primary_10_1016_j_autcon_2021_103968
crossref_primary_10_1016_j_resconrec_2023_107140
Cites_doi 10.1109/WACV.2017.42
10.1109/ICCV.2015.169
10.1016/j.istruc.2015.03.002
10.1139/cjce-2012-0055
10.1061/(ASCE)NH.1527-6996.0000246
10.1016/j.soildyn.2017.02.001
10.1109/CVPRW.2014.121
10.1609/aaai.v31i1.11231
10.1109/CVPR.2016.308
10.1016/j.ijdrr.2018.01.033
10.1061/(ASCE)1084-0680(2008)13:4(189)
10.1109/CVPR.2016.319
10.1109/CVPR.2016.90
10.5281/zenodo.3463676
10.1109/CVPR.2009.5206848
10.1145/3123266.3123271
10.1016/j.isprsjprs.2018.02.006
10.1073/pnas.1700035114
10.1061/(ASCE)CP.1943-5487.0000472
ContentType Journal Article
Copyright Institute of Engineering Mechanics, China Earthquake Administration 2020
Institute of Engineering Mechanics, China Earthquake Administration 2020.
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Institute of Engineering Mechanics, China Earthquake Administration 2020
– notice: Institute of Engineering Mechanics, China Earthquake Administration 2020.
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
7ST
7TG
7TN
8FD
C1K
F1W
FR3
H96
KL.
KR7
L.G
SOI
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1007/s11803-020-0598-2
DatabaseName CrossRef
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Environmental Sciences and Pollution Management
DatabaseTitleList
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1993-503X
EndPage 838
ExternalDocumentID dzgcygczd_e202004003
10_1007_s11803_020_0598_2
GrantInformation_xml – fundername: This study is based upon work supported by the US National Science Foundation under Grant No. 1612843. NHERI DesignSafe (Rathje et al,, 2017) and Texas Advanced Computing Center
  funderid: (TACC)
GroupedDBID -5B
-5G
-BR
-EM
-SA
-S~
-Y2
-~C
.86
.VR
06D
0R~
0VY
29G
2B.
2C.
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
40D
40E
5GY
5VR
5VS
6NX
7XC
88I
8FE
8FG
8FH
8TC
8UJ
92E
92I
92Q
93N
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAYIU
AAYQN
AAYTO
AAYZH
ABDZT
ABECU
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
CAG
CAJEA
CCEZO
CCPQU
CCVFK
CHBEP
COF
CS3
CSCUP
CW9
D1K
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
H13
HCIFZ
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
I-F
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
JBSCW
JZLTJ
K6-
KOV
L6V
LK5
LLZTM
M2P
M4Y
M7R
M7S
MA-
NPVJJ
NQJWS
NU0
O9-
O9J
P2P
P9P
PATMY
PCBAR
PF0
PQQKQ
PROAC
PT4
PTHSS
PYCSY
Q--
Q2X
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCL
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TCJ
TGP
TSG
TUC
TUS
U1G
U2A
U5K
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z7Z
ZMTXR
ZY4
~A9
AACDK
AAYXX
ABAKF
ABDBE
ABFSG
ABRTQ
ACAOD
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7ST
7TG
7TN
8FD
C1K
F1W
FR3
H96
KL.
KR7
L.G
SOI
4A8
PMFND
PSX
ID FETCH-LOGICAL-c353t-610c88ef2934acce33a9023c43fb30f96a7727700ea4ce1d449213d59d76f0903
IEDL.DBID RSV
ISICitedReferencesCount 44
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000581065100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1671-3664
IngestDate Thu May 29 04:11:17 EDT 2025
Thu Sep 18 00:04:17 EDT 2025
Tue Nov 18 20:31:54 EST 2025
Sat Nov 29 06:07:15 EST 2025
Fri Feb 21 02:47:54 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords deep learning
soft-story building
CNN
rapid visual screening
street view image
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c353t-610c88ef2934acce33a9023c43fb30f96a7727700ea4ce1d449213d59d76f0903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2452108284
PQPubID 54346
PageCount 12
ParticipantIDs wanfang_journals_dzgcygczd_e202004003
proquest_journals_2452108284
crossref_citationtrail_10_1007_s11803_020_0598_2
crossref_primary_10_1007_s11803_020_0598_2
springer_journals_10_1007_s11803_020_0598_2
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Harbin
PublicationPlace_xml – name: Harbin
– name: Dordrecht
PublicationTitle Earthquake Engineering and Engineering Vibration
PublicationTitleAbbrev Earthq. Eng. Eng. Vib
PublicationTitle_FL Earthquake Engineering and Engineering Vibration
PublicationYear 2020
Publisher Institute of Engineering Mechanics, China Earthquake Administration
Springer Nature B.V
International Computer Science Institute, University of California, Berkeley, CA, USA %Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA %Civil and Environmental Engineering, University of California, Los Angeles, CA, USA %Civil and Environmental Engineering, Stanford University, CA, USA
Publisher_xml – name: Institute of Engineering Mechanics, China Earthquake Administration
– name: Springer Nature B.V
– name: International Computer Science Institute, University of California, Berkeley, CA, USA %Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA %Civil and Environmental Engineering, University of California, Los Angeles, CA, USA %Civil and Environmental Engineering, Stanford University, CA, USA
References Zhou B, Khosla A, Lapedriza A, Oliva A and Torralba A (2016), “Learning Deep Features for Discriminative Localization,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
He K, Zhang X, Ren S and Sun J (2016), “Deep Residual Learning for Image Recognition,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
WangCChenQA Hybrid Geotechnical and Geological Data-Based Framework for Multiscale Regional Liquefaction Hazard MappingGéotechnique2018687614625
Bency AJ, Rallapalli S, Ganti RK, Srivatsa M and Manjunath B (2017), “Beyond Spatial Auto-Regressive Models: Predicting Housing Prices with Satellite Imagery,” Proceedings of the IEEE Winter Conference on Applications of Computer Vision.
Law S, Paige B and Russell C (2018), “Take a Look Around: Using Street View and Satellite Images to Estimate House Prices,” arXiv Preprint arXv.1807.07155.
GebruTKrauseJWangYChenDDengJAidenELFeiFeiLUsing Deep Learning and Google Street View to Estimate the Demographic Makeup of Neighborhoods Across the United StatesProceedings of the National Academy of Sciences201711450131081311310.1073/pnas.1700035114
Girshick R (2015), “Fast r-cnn,” Proceedings of the IEEE International Conference on Computer Vision.
Perrone D, Aiello MA, Pecce M and Rossi F (2015), “Rapid Visual Screening for Seismic evaluation of RC Hospital Buildings,” Structures, Vol. 3, Elsevier, 57–70.
WallaceNMMillerTHSeismic Screening of Public Facilities in Oregon’s Western CountiesPractice Periodical on Structural Design and Construction200813418919710.1061/(ASCE)1084-0680(2008)13:4(189)
Szegedy C, Vanhoucke V, Ioffe S, Shlens J and Wojna Z (2016), “Rethinking the Inception Architecture for Computer Vision,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
RathjeEMDawsonCPadgettJEPinelliJPStanzioneDAdairAArduinoPBrandenbergS JCockerillTDeyCDesignsafe: New Cyberinfrastructure for Natural Hazards EngineeringNatural Hazards Review20171830601700110.1061/(ASCE)NH.1527-6996.0000246
Wang C (2019). “NHERI-SimCenter/SURF: v0.2.0,” <https://doi.org/10.5281/zenodo.3463676> (September).
ATC (2002), “Rapid Visual Screening of Buildings for Potential Seismic Hazards: A Handbook, FEMA 154, second edition,” Applied Technology Council, National Earthquakes Hazards Reduction Program, USA.
Liu X, Chen Q, Zhu L, Xu Y and Lin L (2017). “Place-Centric Visual Urban Perception with Deep Multi-Instance Regression,” Proceedings of the 25th ACM International Conference on Multimedia.
Szegedy C, Ioffe S, Vanhoucke V and Alemi AA (2017), “Inception-V4, Inception-Resnet and the Impact of Residual Connections on Learning,” Proceedings of the 31st AAAI Conference on Artificial Intelligence.
ATC (1988), “Rapid Visual Screening of Buildings for Potential Seismic Hazards: A Handbook, FEMA 154,” Federal Emergency Management Agency, Washington, DC, USA.
WangCChenQShenMJuangCHOn the Spatial Variability of Cpt-Based Geotechnical Parameters for Regional Liquefaction EvaluationSoil Dynamics and Earthquake Engineering20179515316610.1016/j.soildyn.2017.02.001
SaatciogluMShooshtariMFooSSeismic Screening of Buildings Based on the 2010 National Building Code of CanadaCanadian Journal of Civil Engineering201340548349810.1139/cjce-2012-0055
NingthoujamMNandaRPRapid Visual Screening Procedure of Existing Building Based on Statistical AnalysisInternational Journal of Disaster Risk Reduction20182872073010.1016/j.ijdrr.2018.01.033
KangJKörnerMWangYTaubenböckHZhuXXBuilding Instance Classification Using Street View ImagesISPRS Journal of Photogrammetry and Remote Sensing2018145445910.1016/j.isprsjprs.2018.02.006
Karbassi A and Nollet M (2007), “The Adaptation of the FEMA 154 Methodology for the Rapid Visual Screening of Existing Buildings in Accordance with Nbcc-2005,” Proceedings of the 9th Canadian Conference on Earthquake Engineering, Ottawa, Ont, 27–29.
PloegerSSawadaMElsabbaghASaatciogluMNastevMRosettiEUrban Rat: New Tool for Virtual and Site-Specific Mobile Rapid Data Collection for Seismic Risk AssessmentJournal of Computing in Civil Engineering20163020401500610.1061/(ASCE)CP.1943-5487.0000472
Ren S, He K, Girshick R and Sun J (2015), “Faster R-Cnn: Towards Real-Time Object Detection with Region Proposal Networks,” Advances in Neural Information Processing Systems.
SrikanthTKumarRPSinghAPRastogiBKKumarSEarthquake Vulnerability Assessment of Existing Buildings in Gandhidham and Adipur Cities Kachchh, Gujarat (India)European Journal of Scientific Research2010413336353
Sun Y, Chen Y, Wang X and Tang X (2014), “Deep Learning Face Representation by Joint Identification-Verification,” Advances in Neural Information Processing Systems.
Deng J, Dong W, Socher R, Li LJ, Li K and FeiFei L (2009), “ImageNet: A Large-Scale Hierarchical Image Database,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
ATC (2015), “Rapid Visual Screening of Buildings for Potential Seismic Hazards: A Handbook, FEMA 154, third edition,” Federal Emergency Management Agency, Washington DC, USA.
Naik N, Philipoom J, Raskar R and Hidalgo C (2014), “Streetscore-Predicting the Perceived Safety of One Million Streetscapes,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops.
C Wang (598_CR27) 2017; 95
C Wang (598_CR26) 2018; 68
J Kang (598_CR9) 2018; 145
598_CR28
M Ningthoujam (598_CR14) 2018; 28
598_CR12
598_CR8
598_CR11
598_CR7
598_CR10
598_CR5
598_CR4
598_CR15
598_CR3
598_CR2
598_CR13
S Ploeger (598_CR16) 2016; 30
598_CR1
EM Rathje (598_CR17) 2017; 18
T Srikanth (598_CR20) 2010; 41
598_CR18
598_CR23
T Gebru (598_CR6) 2017; 114
598_CR22
598_CR21
598_CR25
M Saatcioglu (598_CR19) 2013; 40
NM Wallace (598_CR24) 2008; 13
References_xml – reference: WangCChenQShenMJuangCHOn the Spatial Variability of Cpt-Based Geotechnical Parameters for Regional Liquefaction EvaluationSoil Dynamics and Earthquake Engineering20179515316610.1016/j.soildyn.2017.02.001
– reference: He K, Zhang X, Ren S and Sun J (2016), “Deep Residual Learning for Image Recognition,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
– reference: Wang C (2019). “NHERI-SimCenter/SURF: v0.2.0,” <https://doi.org/10.5281/zenodo.3463676> (September).
– reference: ATC (1988), “Rapid Visual Screening of Buildings for Potential Seismic Hazards: A Handbook, FEMA 154,” Federal Emergency Management Agency, Washington, DC, USA.
– reference: Ren S, He K, Girshick R and Sun J (2015), “Faster R-Cnn: Towards Real-Time Object Detection with Region Proposal Networks,” Advances in Neural Information Processing Systems.
– reference: Zhou B, Khosla A, Lapedriza A, Oliva A and Torralba A (2016), “Learning Deep Features for Discriminative Localization,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
– reference: ATC (2002), “Rapid Visual Screening of Buildings for Potential Seismic Hazards: A Handbook, FEMA 154, second edition,” Applied Technology Council, National Earthquakes Hazards Reduction Program, USA.
– reference: Karbassi A and Nollet M (2007), “The Adaptation of the FEMA 154 Methodology for the Rapid Visual Screening of Existing Buildings in Accordance with Nbcc-2005,” Proceedings of the 9th Canadian Conference on Earthquake Engineering, Ottawa, Ont, 27–29.
– reference: GebruTKrauseJWangYChenDDengJAidenELFeiFeiLUsing Deep Learning and Google Street View to Estimate the Demographic Makeup of Neighborhoods Across the United StatesProceedings of the National Academy of Sciences201711450131081311310.1073/pnas.1700035114
– reference: ATC (2015), “Rapid Visual Screening of Buildings for Potential Seismic Hazards: A Handbook, FEMA 154, third edition,” Federal Emergency Management Agency, Washington DC, USA.
– reference: SaatciogluMShooshtariMFooSSeismic Screening of Buildings Based on the 2010 National Building Code of CanadaCanadian Journal of Civil Engineering201340548349810.1139/cjce-2012-0055
– reference: Sun Y, Chen Y, Wang X and Tang X (2014), “Deep Learning Face Representation by Joint Identification-Verification,” Advances in Neural Information Processing Systems.
– reference: KangJKörnerMWangYTaubenböckHZhuXXBuilding Instance Classification Using Street View ImagesISPRS Journal of Photogrammetry and Remote Sensing2018145445910.1016/j.isprsjprs.2018.02.006
– reference: NingthoujamMNandaRPRapid Visual Screening Procedure of Existing Building Based on Statistical AnalysisInternational Journal of Disaster Risk Reduction20182872073010.1016/j.ijdrr.2018.01.033
– reference: RathjeEMDawsonCPadgettJEPinelliJPStanzioneDAdairAArduinoPBrandenbergS JCockerillTDeyCDesignsafe: New Cyberinfrastructure for Natural Hazards EngineeringNatural Hazards Review20171830601700110.1061/(ASCE)NH.1527-6996.0000246
– reference: Liu X, Chen Q, Zhu L, Xu Y and Lin L (2017). “Place-Centric Visual Urban Perception with Deep Multi-Instance Regression,” Proceedings of the 25th ACM International Conference on Multimedia.
– reference: Naik N, Philipoom J, Raskar R and Hidalgo C (2014), “Streetscore-Predicting the Perceived Safety of One Million Streetscapes,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops.
– reference: Szegedy C, Ioffe S, Vanhoucke V and Alemi AA (2017), “Inception-V4, Inception-Resnet and the Impact of Residual Connections on Learning,” Proceedings of the 31st AAAI Conference on Artificial Intelligence.
– reference: Bency AJ, Rallapalli S, Ganti RK, Srivatsa M and Manjunath B (2017), “Beyond Spatial Auto-Regressive Models: Predicting Housing Prices with Satellite Imagery,” Proceedings of the IEEE Winter Conference on Applications of Computer Vision.
– reference: Deng J, Dong W, Socher R, Li LJ, Li K and FeiFei L (2009), “ImageNet: A Large-Scale Hierarchical Image Database,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
– reference: Szegedy C, Vanhoucke V, Ioffe S, Shlens J and Wojna Z (2016), “Rethinking the Inception Architecture for Computer Vision,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
– reference: Law S, Paige B and Russell C (2018), “Take a Look Around: Using Street View and Satellite Images to Estimate House Prices,” arXiv Preprint arXv.1807.07155.
– reference: WangCChenQA Hybrid Geotechnical and Geological Data-Based Framework for Multiscale Regional Liquefaction Hazard MappingGéotechnique2018687614625
– reference: Girshick R (2015), “Fast r-cnn,” Proceedings of the IEEE International Conference on Computer Vision.
– reference: Perrone D, Aiello MA, Pecce M and Rossi F (2015), “Rapid Visual Screening for Seismic evaluation of RC Hospital Buildings,” Structures, Vol. 3, Elsevier, 57–70.
– reference: PloegerSSawadaMElsabbaghASaatciogluMNastevMRosettiEUrban Rat: New Tool for Virtual and Site-Specific Mobile Rapid Data Collection for Seismic Risk AssessmentJournal of Computing in Civil Engineering20163020401500610.1061/(ASCE)CP.1943-5487.0000472
– reference: SrikanthTKumarRPSinghAPRastogiBKKumarSEarthquake Vulnerability Assessment of Existing Buildings in Gandhidham and Adipur Cities Kachchh, Gujarat (India)European Journal of Scientific Research2010413336353
– reference: WallaceNMMillerTHSeismic Screening of Public Facilities in Oregon’s Western CountiesPractice Periodical on Structural Design and Construction200813418919710.1061/(ASCE)1084-0680(2008)13:4(189)
– ident: 598_CR4
  doi: 10.1109/WACV.2017.42
– ident: 598_CR7
  doi: 10.1109/ICCV.2015.169
– volume: 41
  start-page: 336
  issue: 3
  year: 2010
  ident: 598_CR20
  publication-title: European Journal of Scientific Research
– volume: 68
  start-page: 614
  issue: 7
  year: 2018
  ident: 598_CR26
  publication-title: Géotechnique
– ident: 598_CR10
– ident: 598_CR2
– ident: 598_CR15
  doi: 10.1016/j.istruc.2015.03.002
– volume: 40
  start-page: 483
  issue: 5
  year: 2013
  ident: 598_CR19
  publication-title: Canadian Journal of Civil Engineering
  doi: 10.1139/cjce-2012-0055
– volume: 18
  start-page: 06017001
  issue: 3
  year: 2017
  ident: 598_CR17
  publication-title: Natural Hazards Review
  doi: 10.1061/(ASCE)NH.1527-6996.0000246
– volume: 95
  start-page: 153
  year: 2017
  ident: 598_CR27
  publication-title: Soil Dynamics and Earthquake Engineering
  doi: 10.1016/j.soildyn.2017.02.001
– ident: 598_CR13
  doi: 10.1109/CVPRW.2014.121
– ident: 598_CR22
  doi: 10.1609/aaai.v31i1.11231
– ident: 598_CR23
  doi: 10.1109/CVPR.2016.308
– volume: 28
  start-page: 720
  year: 2018
  ident: 598_CR14
  publication-title: International Journal of Disaster Risk Reduction
  doi: 10.1016/j.ijdrr.2018.01.033
– volume: 13
  start-page: 189
  issue: 4
  year: 2008
  ident: 598_CR24
  publication-title: Practice Periodical on Structural Design and Construction
  doi: 10.1061/(ASCE)1084-0680(2008)13:4(189)
– ident: 598_CR28
  doi: 10.1109/CVPR.2016.319
– ident: 598_CR21
– ident: 598_CR8
  doi: 10.1109/CVPR.2016.90
– ident: 598_CR3
– ident: 598_CR25
  doi: 10.5281/zenodo.3463676
– ident: 598_CR1
– ident: 598_CR18
– ident: 598_CR5
  doi: 10.1109/CVPR.2009.5206848
– ident: 598_CR11
– ident: 598_CR12
  doi: 10.1145/3123266.3123271
– volume: 145
  start-page: 44
  year: 2018
  ident: 598_CR9
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
  doi: 10.1016/j.isprsjprs.2018.02.006
– volume: 114
  start-page: 13108
  issue: 50
  year: 2017
  ident: 598_CR6
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1700035114
– volume: 30
  start-page: 04015006
  issue: 2
  year: 2016
  ident: 598_CR16
  publication-title: Journal of Computing in Civil Engineering
  doi: 10.1061/(ASCE)CP.1943-5487.0000472
SSID ssj0064236
Score 2.406611
Snippet Rapid and accurate identification of potential structural deficiencies is a crucial task in evaluating seismic vulnerability of large building inventories in a...
SourceID wanfang
proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 827
SubjectTerms Automation
Buildings
Civil Engineering
Computer applications
Control
Deep learning
Disaster management
Dynamical Systems
Earth Sciences
Earthquakes
Emergency preparedness
Geotechnical Engineering & Applied Earth Sciences
Identification
Image classification
Labour
Machine learning
Mitigation
Multistory buildings
Procedures
Recent progress in evaluation and improvement on seismic resilience of engineering structures
Retrofitting
Seismic activity
Seismic hazard
Seismic surveys
Special Section: Recent Progress in Evaluation and Improvement on Seismic Resilience of Engineering Structures
Stiffness
Vibration
Vulnerability
Title Rapid visual screening of soft-story buildings from street view images using deep learning classification
URI https://link.springer.com/article/10.1007/s11803-020-0598-2
https://www.proquest.com/docview/2452108284
https://d.wanfangdata.com.cn/periodical/dzgcygczd-e202004003
Volume 19
WOSCitedRecordID wos000581065100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1993-503X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064236
  issn: 1671-3664
  databaseCode: RSV
  dateStart: 20020601
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA86PejBb3E6JQe9KIW0SdPkKKJ4GjI_2K00X6Wg3Vi3wfbXm3TtOkEGes5LKO-9vPfS3_sA4BpTwRPfMI9SjTxCg8jjSCiPGmEMkQyTQJbDJqJul_X7_KWq4y7qbPcakiwtdVPs5jOX-xM48JZb8W6CLevtmLuNvdeP2vzaeLqcC-jTyPcwpaSGMn874qczaiLMJShalvLkJsnTFa_ztP-v7z0Ae1WQCe8XWnEINnR-BHZXWg8eg6yXDDMFp1kxsZTWdtj3rF2AAwMLa5k9lzQ5g6Iaml1AV4YCixLChg5NgNmXtUQFdHnzKVRaD2E1gCKF0kXkLgWplPoJeH96fHt49qqxC57EIR7bxySSjGljAwGSSKkxTrj17JJgIzAynCY2Io8ihHRCpPYVITzwsQq5iqhxv31OQSsf5PoMwDBMhBBYI2qpWKS4EZxhpuw7xaea4TZANf9jWfUkd6MxPuOmm7LjYmy5GDsuxkEb3C63DBcNOdYRd2qhxtXdLGKHNfuucx9pg7tadM3ymsNuKl1oiNU8lbNUzlWsAxSUFhGf_-nUC7Djdi7yAzugNR5N9CXYltNxVoyuStX-BpEM8qU
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB_sWbB9sFYrPWvtPrQvlcBudm-z-yhFUbweYm3xbcl-hUCNhzkP9K_vbi65KIhgn3cyhJnJzGx-8wHwlXItc-JFwrnDCeNplkisbcK99p4ZQVlqmmUT2WQiLi_lWdvHXXfV7h0k2XjqvtmNiFj7k0bwVgb1voJVFgJWrOM7__Wnc78hn272AhKekYRyzjoo8ykWj4NRn2EuQdGmlafyeVU8iDpH7_7rfTdgvU0y0cHCKt7Diqs24e2D0YNbUJ7n09KieVnfBsrgO8J9Nhyga4_q4JmTWDR5h3S7NLtGsQ0F1Q2EjSKagMqr4IlqFOvmC2Sdm6J2AUWBTMzIYwlSo_UP8Pvo8OLHcdKuXUgMHdFZuExiI4TzIRFguTGO0lyGyG4Y9ZpiL3keMvIsw9jlzDhiGZMpoXYkbcZ9_O2zDYPqunIfAY1GudaaOswDlcis9FoKKmy4pxDuBB0C7uSvTDuTPK7G-Kv6acpRiipIUUUpqnQI35ePTBcDOZ4j3u2Uqtpvs1YRayZxch8bwn6nuv74GWbfWlvoie19Ye4Kc2-VS3HaeES68yKuX2Dt-OLnWI1PJqef4E3ksqgV3IXB7ObWfYbXZj4r65u9xsz_Afh49Yk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB_sKaU-aLUtnla7D_qihG6ye5vdR9EeiuUo9YO-LdmvEGjTo7krtH-9O7mkqSCF0uedDGFnMh-Zjx_AeyaMKtIgEyE8TbjI8kRR4xIRTAjcSsYz24JN5LOZPDlRRx3OadN3u_clydVMA25pqhf7cxf2h8G3VGIfUIaFXBVFvQaPOWIGYbr-809vimNs3WIEpiJPEyYE78ua_2Pxr2Maos2bAmk71lOHoi5veaDp8we_-yY864JP8nmlLS_gka9fwtNbKwm3oDou5pUjl1WzjJTRpsQ8Nx6Q80CaaLETbKa8IqYD024IjqeQpi1tE6wykOosWqiGYD99SZz3c9IBU5TEYqSOrUmtNmzD7-nBry_fkg6OIbFswhYxyaRWSh9igMALaz1jhYoe33IWDKNBiSJG6nlOqS-49anjXGUpcxPlchHwd9AOjOrz2r8CMpkUxhjmqYhUMncqGCWZdDF_SYWXbAy0l4W23a5yhMw41cOWZbxFHW9R4y3qbAwfbx6ZrxZ13EW82wtYd99so7EGneJGPz6GT70Yh-M7mH3o9GIgdtelvSrttdM-o1lrKdnre3Hdg_Wjr1N9-H324w1sIJNVC-EujBYXS_8WntjLRdVcvGs1_i-Ol_5t
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rapid+visual+screening+of+soft-story+buildings+from+street+view+images+using+deep+learning+classification&rft.jtitle=Earthquake+Engineering+and+Engineering+Vibration&rft.au=Yu%2C+Qian&rft.au=Wang%2C+Chaofeng&rft.au=McKenna%2C+Frank&rft.au=Yu%2C+Stella+X.&rft.date=2020-10-01&rft.pub=Institute+of+Engineering+Mechanics%2C+China+Earthquake+Administration&rft.issn=1671-3664&rft.eissn=1993-503X&rft.volume=19&rft.issue=4&rft.spage=827&rft.epage=838&rft_id=info:doi/10.1007%2Fs11803-020-0598-2&rft.externalDocID=10_1007_s11803_020_0598_2
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdzgcygczd-e%2Fdzgcygczd-e.jpg