FPGA implementation of HOOFR bucketing extractor-based real-time embedded SLAM applications

Feature extraction is an important vision task in many applications like simultaneous localization and mapping (SLAM). In the recent computing systems, FPGA-based acceleration have presented a strong competition to GPU-based acceleration due to its high computation capabilities and lower energy cons...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of real-time image processing Ročník 18; číslo 3; s. 525 - 538
Hlavní autori: Nguyen, Dai Duong, El Ouardi, Abdelhafid, Rodriguez, Sergio, Bouaziz, Samir
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2021
Springer Nature B.V
Springer Verlag
Predmet:
ISSN:1861-8200, 1861-8219
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Feature extraction is an important vision task in many applications like simultaneous localization and mapping (SLAM). In the recent computing systems, FPGA-based acceleration have presented a strong competition to GPU-based acceleration due to its high computation capabilities and lower energy consumption. In this paper, we present a high-level synthesis implementation on a SoC-FPGA of a feature extraction algorithm dedicated for SLAM applications. We choose HOOFR extraction algorithm which provides a robust performance but requires a significant computation on embedded CPU. Our system is dedicated for SLAM applications so that we also integrated bucketing detection method in order to have a homogeneous distribution of keypoints in the image. Moreover, instead of optimizing performance by simplifying the original algorithm as in many other researches, we respected the complexity of HOOFR extractor and have parallelized the processing operations. The design has been validated on an Intel Arria 10 SoC-FPGA with a throughput of 54 fps at 1226 × 370 pixels (handling 1750 features) or 14 fps at 1920 × 1080 pixels (handling 6929 features).
AbstractList Feature extraction is an important vision task in many applications like simultaneous localization and mapping (SLAM). In the recent computing systems, FPGA-based acceleration have presented a strong competition to GPU-based acceleration due to its high computation capabilities and lower energy consumption. In this paper, we present a high-level synthesis implementation on a SoC-FPGA of a feature extraction algorithm dedicated for SLAM applications. We choose HOOFR extraction algorithm which provides a robust performance but requires a significant computation on embedded CPU. Our system is dedicated for SLAM applications so that we also integrated bucketing detection method in order to have a homogeneous distribution of keypoints in the image. Moreover, instead of optimizing performance by simplifying the original algorithm as in many other researches, we respected the complexity of HOOFR extractor and have parallelized the processing operations. The design has been validated on an Intel Arria 10 SoC-FPGA with a throughput of 54 fps at 1226×370 pixels (handling 1750 features) or 14 fps at 1920×1080 pixels (handling 6929 features).
Feature extraction is an important vision task in many applications like simultaneous localization and mapping (SLAM). In the recent computing systems, FPGA-based acceleration have presented a strong competition to GPU-based acceleration due to its high computation capabilities and lower energy consumption. In this paper, we present a high-level synthesis implementation on a SoC-FPGA of a feature extraction algorithm dedicated for SLAM applications. We choose HOOFR extraction algorithm which provides a robust performance but requires a significant computation on embedded CPU. Our system is dedicated for SLAM applications so that we also integrated bucketing detection method in order to have a homogeneous distribution of keypoints in the image. Moreover, instead of optimizing performance by simplifying the original algorithm as in many other researches, we respected the complexity of HOOFR extractor and have parallelized the processing operations. The design has been validated on an Intel Arria 10 SoC-FPGA with a throughput of 54 fps at 1226 × 370 pixels (handling 1750 features) or 14 fps at 1920 × 1080 pixels (handling 6929 features).
Author Bouaziz, Samir
El Ouardi, Abdelhafid
Rodriguez, Sergio
Nguyen, Dai Duong
Author_xml – sequence: 1
  givenname: Dai Duong
  surname: Nguyen
  fullname: Nguyen, Dai Duong
  organization: School of Electrical Engineering, Hanoi University of Science and Technology
– sequence: 2
  givenname: Abdelhafid
  orcidid: 0000-0003-3665-2185
  surname: El Ouardi
  fullname: El Ouardi, Abdelhafid
  email: abdelhafid.elouardi@universite-paris-saclay.fr
  organization: Systèmes et Applications des Technologies de l’Information et de l’Energie, CNRS, ENS Paris-Saclay, Université Paris-Saclay
– sequence: 3
  givenname: Sergio
  surname: Rodriguez
  fullname: Rodriguez, Sergio
  organization: Systèmes et Applications des Technologies de l’Information et de l’Energie, CNRS, ENS Paris-Saclay, Université Paris-Saclay
– sequence: 4
  givenname: Samir
  surname: Bouaziz
  fullname: Bouaziz, Samir
  organization: Systèmes et Applications des Technologies de l’Information et de l’Energie, CNRS, ENS Paris-Saclay, Université Paris-Saclay
BackLink https://hal.science/hal-02885576$$DView record in HAL
BookMark eNp9kEtLAzEUhYMo-PwDrgZcuYjeTCaZZFnEtkKl4mPlImQyaU2dl8lU9N-bOj7AhauEy3cOh28fbTdtYxE6JnBGAPLzQAhjGYYUMIAUHMsttEcEJ1ikRG7__AF20X4IKwCec8r20OP4ZjJKXN1VtrZNr3vXNkm7SKbz-fg2Kdbm2fauWSb2rffa9K3HhQ62TLzVFe5dbRNbF7Ys4-luNrpOdNdVznzWhEO0s9BVsEdf7wF6GF_eX0zxbD65uhjNsKGM9phZTWVZQMbzrEyZJjQVqaSFYJrnxvBCLgooMzAZp7zcgJmgXJSCC0asNPQAnQ69T7pSnXe19u-q1U5NRzO1uUEqBGM5fyWRPRnYzrcvaxt6tWrXvonzVCqjpJzlkkVKDJTxbQjeLpRxg5towVWKgNpoV4P22A_qU7uSMZr-iX4v-jdEh1CIcLO0_nfVP6kPwNWVCA
CitedBy_id crossref_primary_10_3390_su142315539
crossref_primary_10_1007_s10462_022_10310_5
crossref_primary_10_1007_s11554_025_01650_w
crossref_primary_10_1155_2022_6532852
crossref_primary_10_1007_s11390_021_1523_5
Cites_doi 10.1109/IROS40897.2019.8967814
10.7873/DATE.2014.221
10.1023/B:VISI.0000029664.99615.94
10.1145/3243394.3243709
10.1109/ReConFig.2011.83
10.1007/s00521-020-04731-y
10.1155/2018/1785892
10.1109/ICARCV.2016.7838652
10.1109/FPT.2017.8280137
10.1371/journal.pone.0222984
10.1109/FCCM.2015.7
10.1109/TPDS.2010.125
10.5244/C.23.54
10.23919/FPL.2017.8056856
10.1109/IROS.2015.7353546
10.1007/s11265-019-01454-9
10.1109/TIP.2013.2259841
10.1109/TRO.2008.2004832
10.1109/FCCM.2010.11
10.1007/11744023_32
10.1109/ACCESS.2017.2671881
10.1109/CVPR.2012.6247715
10.5772/61434
10.1007/11744023_34
10.1109/FPT.2009.5377651
10.1109/TRO.2017.2705103
10.1109/ICCV.2011.6126544
10.1007/s11554-017-0705-4
10.1109/TC.2011.120
10.14257/ijca.2014.7.3.20
10.1109/TPAMI.2009.77
10.1016/j.patcog.2007.04.023
10.1109/ReConFig.2011.11
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2020
Springer-Verlag GmbH Germany, part of Springer Nature 2020.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020
– notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
1XC
DOI 10.1007/s11554-020-00986-9
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database ProQuest
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1861-8219
EndPage 538
ExternalDocumentID oai:HAL:hal-02885576v1
10_1007_s11554_020_00986_9
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
1N0
203
29L
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LLZTM
M4Y
MA-
N2Q
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P9O
PF0
PT4
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
1XC
ID FETCH-LOGICAL-c353t-5ea39db04674d25a1328293b85a67cc6b9fb0d40c4636ddb0448368d86851e9c3
IEDL.DBID K7-
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000551414600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1861-8200
IngestDate Tue Oct 14 20:44:05 EDT 2025
Wed Nov 05 02:22:28 EST 2025
Tue Nov 18 22:32:21 EST 2025
Sat Nov 29 03:23:16 EST 2025
Fri Feb 21 02:48:12 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords FPGA implementation
Embedded systems
Features extraction
Parallel image processing
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c353t-5ea39db04674d25a1328293b85a67cc6b9fb0d40c4636ddb0448368d86851e9c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3665-2185
0000-0003-3029-7020
0000-0002-6768-1723
PQID 2918675795
PQPubID 2044148
PageCount 14
ParticipantIDs hal_primary_oai_HAL_hal_02885576v1
proquest_journals_2918675795
crossref_citationtrail_10_1007_s11554_020_00986_9
crossref_primary_10_1007_s11554_020_00986_9
springer_journals_10_1007_s11554_020_00986_9
PublicationCentury 2000
PublicationDate 20210600
2021-06-00
20210601
2021-06
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 6
  year: 2021
  text: 20210600
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Journal of real-time image processing
PublicationTitleAbbrev J Real-Time Image Proc
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: Springer Verlag
References MamiSLahbibYMamiAA new HLS allocation algorithm for efficient DSP utilization in FPGAsJ. Signal Process. Syst.20199215317110.1007/s11265-019-01454-9
Mur-Artal, R., Tardós, J.D.: ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras (2016). arXiv preprint arXiv:1610.06475
TolaELepetitVFuaPDaisy: an efficient dense descriptor applied to wide-baseline stereoIEEE Trans. Pattern Anal. Mach. Intell.201032581583010.1109/TPAMI.2009.77
Aldegheri, S., Bombieri, N., Bloisi, D.D., Farinelli, A.: Data flow orb-slam for real-time performance on embedded gpu boards. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5370–5375 (2019)
Yao, L., Feng, H., Zhu, Y., Jiang, Z., Zhao, D., Feng, W.: An architecture of optimised sift feature detection for an FPGA implementation of an image matcher. In: International Conference on Field-Programmable Technology, 2009. FPT 2009. IEEE, pp. 30–37 (2009)
FularzMKraftMSchmidtAKasinskiAA high-performance fpga-based image feature detector and matcher based on the fast and brief algorithmsInt. J. Adv. Robot. Syst.2015121014110.5772/61434
Nguyen, D.-D., El Ouardi, A., Aldea, E., Bouaziz, S.: Hoofr: an enhanced bio-inspired feature extractor. In 2016 23rd International Conference on Pattern Recognition (ICPR). IEEE, pp. 2977–2982 (2016)
LeeKA design of an optimized orb accelerator for real-time feature detectionInt. J. Control Autom.20147321321810.14257/ijca.2014.7.3.20
Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to sift or surf. In 2011 IEEE International Conference on Computer Vision (ICCV). IEEE, pp. 2564–2571 (2011)
Pire, T., Fischer, T., Civera, J., De Cristóforis, P., Berlles, J.J.: Stereo parallel tracking and mapping for robot localization. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) IEEE, pp. 1373–1378 (2015)
BianconiFFernándezAEvaluation of the effects of gabor filter parameters on texture classificationPattern Recognit.200740123325333510.1016/j.patcog.2007.04.023
Pereira, K., Athanas, P., Lin, H., Feng, W.: Spectral method characterization on FPGA and GPU accelerators. In: 2011 International Conference on Reconfigurable Computing and FPGAs (ReConFig). IEEE, pp. 487–492 (2011)
JelodariPTKordasiabiMPSheikhaeiSForouzandehBFpga implementation of an adaptive window size image impulse noise suppression systemJ. Real-Time Image Process.2017162015202610.1007/s11554-017-0705-4
Alahi, A., Ortiz, R., Vandergheynst, P.: Freak: fast retina keypoint. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2012, pp. 510–517 (2012)
Morales, V.M., Horrein, P.-H., Baghdadi, A., Hochapfel, E., Vaton, S.: Energy-efficient fpga implementation for binomial option pricing using openCL. In: Design, Automation and Test in Europe Conference and Exhibition (DATE), 2014. IEEE, pp. 1–6 (2014)
Intel FPGA SDK for OpenCL Standard Edition: Programming Guide. INTEL (2014)
HelaliAAmeurHGórrizJRamírezJMaarefHHardware implementation of real-time pedestrian detection systemNeural Comput. Appl.202010.1007/s00521-020-04731-y
ZhangSWuYMenCHeHLiangKResearch on opencl optimization for fpga deep learning applicationPloS ONE201910.1371/journal.pone.0222984
LoweDGDistinctive image features from scale-invariant keypointsInt. J. Comput. Vis.20046029111010.1023/B:VISI.0000029664.99615.94
PauwelsKTomasiMAlonsoJDRosEVan HulleMMA comparison of fpga and gpu for real-time phase-based optical flow, stereo, and local image featuresIEEE Trans. Comput20126179991012292887510.1109/TC.2011.120
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005, vol. 1, pp. 886–893. IEEE (2005)
LuoLWuYQiaoFYangYWeiQZhouXFanYXuSLiuXYangHDesign of FPGA-based accelerator for convolutional neural network under heterogeneous computing framework with openCLInt. J. Reconfig. Comput.201810.1155/2018/1785892
Sun, R., Liu, P., Wang, J., Accetti, C., Naqvi, A.A.: A 42fps full-hd ORB feature extraction accelerator with reduced memory overhead. In: 2017 International Conference on Field Programmable Technology (ICFPT). IEEE, 2017, pp. 183–190 (2017)
Bay, H., Tuytelaars, T., Van Gool, L., Surf: Speeded up robust features. In: Computer Vision–ECCV 2006. Springer, Berlin, pp. 404–417 (2006)
De Schryver, C., Shcherbakov, I., Kienle, F., Wehn, N., Marxen, H., Kostiuk, A., Korn, R.: An energy efficient fpga accelerator for monte carlo option pricing with the Beston model. In: 2011 International Conference on Reconfigurable Computing and FPGAs (ReConFig). IEEE, pp. 468–474 (2011)
Bouris, D., Nikitakis, A., Papaefstathiou, I.: Fast and efficient FPGA-based feature detection employing the surf algorithm. In: 2010 18th IEEE Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM). IEEE, pp. 3–10 (2010)
Weberruss, J., Kleeman, L., Boland, D., Drummond, T.: FPGA acceleration of multilevel orb feature extraction for computer vision. In: 2017 27th International Conference on Field Programmable Logic and Applications (FPL). IEEE, pp 1–8 (2017)
Pu, Y., Peng, J., Huang, L., Chen, J.: An efficient knn algorithm implemented on FPGA based heterogeneous computing system using opencl. In: 2015 IEEE 23rd Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM). IEEE, pp. 167–170 (2015)
Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: Computer Vision—ECCV 2006. Springer, Berlin, pp. 430–443 (2006)
Mei, C., Sibley, G., Cummins, M., Newman, P.M., Reid, I.D.: A constant-time efficient stereo slam system. In: BMVC 2009, pp. 1–11 (2009)
KonoligeKAgrawalMFrameslam: from bundle adjustment to real-time visual mappingIEEE Trans. Robot.20082451066107710.1109/TRO.2008.2004832
WeberRGothandaramanAHindeRJPetersonGDComparing hardware accelerators in scientific applications: a case studyIEEE Trans. Parallel Distrib. Syst.2011221586810.1109/TPDS.2010.125
ChiuL-CChangT-SChenJ-YChangNY-CFast sift design for real-time visual feature extractionIEEE Trans. Image Process.20132283158316710.1109/TIP.2013.2259841
MuslimFBMaLRoozmehMLavagnoLEfficient fpga implementation of opencl high-performance computing applications via high-level synthesisIEEE Access201752747276210.1109/ACCESS.2017.2671881
Marin, Y., Mitéran, J., Dubois, J., Heyrman, B., Ginhac, D.: An FPGA-based design for real-time super resolution reconstruction. In: Proceedings of the 12th International Conference on Distributed Smart Cameras, pp. 1–2 (2018)
DG Lowe (986_CR3) 2004; 60
K Pauwels (986_CR11) 2012; 61
L-C Chiu (986_CR20) 2013; 22
K Lee (986_CR21) 2014; 7
S Mami (986_CR14) 2019; 92
986_CR30
986_CR31
986_CR8
986_CR10
E Tola (986_CR32) 2010; 32
986_CR7
986_CR33
986_CR12
986_CR15
986_CR17
986_CR18
F Bianconi (986_CR34) 2007; 40
986_CR19
R Weber (986_CR9) 2011; 22
L Luo (986_CR26) 2018
FB Muslim (986_CR25) 2017; 5
986_CR6
986_CR5
986_CR4
986_CR2
A Helali (986_CR13) 2020
986_CR1
K Konolige (986_CR29) 2008; 24
M Fularz (986_CR35) 2015; 12
PT Jelodari (986_CR16) 2017; 16
S Zhang (986_CR27) 2019
986_CR22
986_CR23
986_CR24
986_CR28
References_xml – reference: BianconiFFernándezAEvaluation of the effects of gabor filter parameters on texture classificationPattern Recognit.200740123325333510.1016/j.patcog.2007.04.023
– reference: Nguyen, D.-D., El Ouardi, A., Aldea, E., Bouaziz, S.: Hoofr: an enhanced bio-inspired feature extractor. In 2016 23rd International Conference on Pattern Recognition (ICPR). IEEE, pp. 2977–2982 (2016)
– reference: Pereira, K., Athanas, P., Lin, H., Feng, W.: Spectral method characterization on FPGA and GPU accelerators. In: 2011 International Conference on Reconfigurable Computing and FPGAs (ReConFig). IEEE, pp. 487–492 (2011)
– reference: Pu, Y., Peng, J., Huang, L., Chen, J.: An efficient knn algorithm implemented on FPGA based heterogeneous computing system using opencl. In: 2015 IEEE 23rd Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM). IEEE, pp. 167–170 (2015)
– reference: ZhangSWuYMenCHeHLiangKResearch on opencl optimization for fpga deep learning applicationPloS ONE201910.1371/journal.pone.0222984
– reference: Pire, T., Fischer, T., Civera, J., De Cristóforis, P., Berlles, J.J.: Stereo parallel tracking and mapping for robot localization. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) IEEE, pp. 1373–1378 (2015)
– reference: JelodariPTKordasiabiMPSheikhaeiSForouzandehBFpga implementation of an adaptive window size image impulse noise suppression systemJ. Real-Time Image Process.2017162015202610.1007/s11554-017-0705-4
– reference: Bay, H., Tuytelaars, T., Van Gool, L., Surf: Speeded up robust features. In: Computer Vision–ECCV 2006. Springer, Berlin, pp. 404–417 (2006)
– reference: Marin, Y., Mitéran, J., Dubois, J., Heyrman, B., Ginhac, D.: An FPGA-based design for real-time super resolution reconstruction. In: Proceedings of the 12th International Conference on Distributed Smart Cameras, pp. 1–2 (2018)
– reference: De Schryver, C., Shcherbakov, I., Kienle, F., Wehn, N., Marxen, H., Kostiuk, A., Korn, R.: An energy efficient fpga accelerator for monte carlo option pricing with the Beston model. In: 2011 International Conference on Reconfigurable Computing and FPGAs (ReConFig). IEEE, pp. 468–474 (2011)
– reference: Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to sift or surf. In 2011 IEEE International Conference on Computer Vision (ICCV). IEEE, pp. 2564–2571 (2011)
– reference: LeeKA design of an optimized orb accelerator for real-time feature detectionInt. J. Control Autom.20147321321810.14257/ijca.2014.7.3.20
– reference: KonoligeKAgrawalMFrameslam: from bundle adjustment to real-time visual mappingIEEE Trans. Robot.20082451066107710.1109/TRO.2008.2004832
– reference: PauwelsKTomasiMAlonsoJDRosEVan HulleMMA comparison of fpga and gpu for real-time phase-based optical flow, stereo, and local image featuresIEEE Trans. Comput20126179991012292887510.1109/TC.2011.120
– reference: FularzMKraftMSchmidtAKasinskiAA high-performance fpga-based image feature detector and matcher based on the fast and brief algorithmsInt. J. Adv. Robot. Syst.2015121014110.5772/61434
– reference: Mei, C., Sibley, G., Cummins, M., Newman, P.M., Reid, I.D.: A constant-time efficient stereo slam system. In: BMVC 2009, pp. 1–11 (2009)
– reference: Weberruss, J., Kleeman, L., Boland, D., Drummond, T.: FPGA acceleration of multilevel orb feature extraction for computer vision. In: 2017 27th International Conference on Field Programmable Logic and Applications (FPL). IEEE, pp 1–8 (2017)
– reference: ChiuL-CChangT-SChenJ-YChangNY-CFast sift design for real-time visual feature extractionIEEE Trans. Image Process.20132283158316710.1109/TIP.2013.2259841
– reference: HelaliAAmeurHGórrizJRamírezJMaarefHHardware implementation of real-time pedestrian detection systemNeural Comput. Appl.202010.1007/s00521-020-04731-y
– reference: MuslimFBMaLRoozmehMLavagnoLEfficient fpga implementation of opencl high-performance computing applications via high-level synthesisIEEE Access201752747276210.1109/ACCESS.2017.2671881
– reference: TolaELepetitVFuaPDaisy: an efficient dense descriptor applied to wide-baseline stereoIEEE Trans. Pattern Anal. Mach. Intell.201032581583010.1109/TPAMI.2009.77
– reference: Aldegheri, S., Bombieri, N., Bloisi, D.D., Farinelli, A.: Data flow orb-slam for real-time performance on embedded gpu boards. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5370–5375 (2019)
– reference: WeberRGothandaramanAHindeRJPetersonGDComparing hardware accelerators in scientific applications: a case studyIEEE Trans. Parallel Distrib. Syst.2011221586810.1109/TPDS.2010.125
– reference: MamiSLahbibYMamiAA new HLS allocation algorithm for efficient DSP utilization in FPGAsJ. Signal Process. Syst.20199215317110.1007/s11265-019-01454-9
– reference: Intel FPGA SDK for OpenCL Standard Edition: Programming Guide. INTEL (2014)
– reference: Yao, L., Feng, H., Zhu, Y., Jiang, Z., Zhao, D., Feng, W.: An architecture of optimised sift feature detection for an FPGA implementation of an image matcher. In: International Conference on Field-Programmable Technology, 2009. FPT 2009. IEEE, pp. 30–37 (2009)
– reference: Sun, R., Liu, P., Wang, J., Accetti, C., Naqvi, A.A.: A 42fps full-hd ORB feature extraction accelerator with reduced memory overhead. In: 2017 International Conference on Field Programmable Technology (ICFPT). IEEE, 2017, pp. 183–190 (2017)
– reference: Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005, vol. 1, pp. 886–893. IEEE (2005)
– reference: LuoLWuYQiaoFYangYWeiQZhouXFanYXuSLiuXYangHDesign of FPGA-based accelerator for convolutional neural network under heterogeneous computing framework with openCLInt. J. Reconfig. Comput.201810.1155/2018/1785892
– reference: Bouris, D., Nikitakis, A., Papaefstathiou, I.: Fast and efficient FPGA-based feature detection employing the surf algorithm. In: 2010 18th IEEE Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM). IEEE, pp. 3–10 (2010)
– reference: Alahi, A., Ortiz, R., Vandergheynst, P.: Freak: fast retina keypoint. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2012, pp. 510–517 (2012)
– reference: Mur-Artal, R., Tardós, J.D.: ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras (2016). arXiv preprint arXiv:1610.06475
– reference: LoweDGDistinctive image features from scale-invariant keypointsInt. J. Comput. Vis.20046029111010.1023/B:VISI.0000029664.99615.94
– reference: Morales, V.M., Horrein, P.-H., Baghdadi, A., Hochapfel, E., Vaton, S.: Energy-efficient fpga implementation for binomial option pricing using openCL. In: Design, Automation and Test in Europe Conference and Exhibition (DATE), 2014. IEEE, pp. 1–6 (2014)
– reference: Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: Computer Vision—ECCV 2006. Springer, Berlin, pp. 430–443 (2006)
– ident: 986_CR6
  doi: 10.1109/IROS40897.2019.8967814
– ident: 986_CR12
  doi: 10.7873/DATE.2014.221
– volume: 60
  start-page: 91
  issue: 2
  year: 2004
  ident: 986_CR3
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/B:VISI.0000029664.99615.94
– ident: 986_CR17
  doi: 10.1145/3243394.3243709
– ident: 986_CR8
  doi: 10.1109/ReConFig.2011.83
– year: 2020
  ident: 986_CR13
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-04731-y
– year: 2018
  ident: 986_CR26
  publication-title: Int. J. Reconfig. Comput.
  doi: 10.1155/2018/1785892
– ident: 986_CR7
  doi: 10.1109/ICARCV.2016.7838652
– ident: 986_CR23
  doi: 10.1109/FPT.2017.8280137
– year: 2019
  ident: 986_CR27
  publication-title: PloS ONE
  doi: 10.1371/journal.pone.0222984
– ident: 986_CR24
  doi: 10.1109/FCCM.2015.7
– volume: 22
  start-page: 58
  issue: 1
  year: 2011
  ident: 986_CR9
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2010.125
– ident: 986_CR2
  doi: 10.5244/C.23.54
– ident: 986_CR22
  doi: 10.23919/FPL.2017.8056856
– ident: 986_CR28
  doi: 10.1109/IROS.2015.7353546
– volume: 92
  start-page: 153
  year: 2019
  ident: 986_CR14
  publication-title: J. Signal Process. Syst.
  doi: 10.1007/s11265-019-01454-9
– volume: 22
  start-page: 3158
  issue: 8
  year: 2013
  ident: 986_CR20
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2013.2259841
– volume: 24
  start-page: 1066
  issue: 5
  year: 2008
  ident: 986_CR29
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2008.2004832
– ident: 986_CR19
  doi: 10.1109/FCCM.2010.11
– ident: 986_CR4
  doi: 10.1007/11744023_32
– volume: 5
  start-page: 2747
  year: 2017
  ident: 986_CR25
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2671881
– ident: 986_CR33
– ident: 986_CR31
  doi: 10.1109/CVPR.2012.6247715
– volume: 12
  start-page: 141
  issue: 10
  year: 2015
  ident: 986_CR35
  publication-title: Int. J. Adv. Robot. Syst.
  doi: 10.5772/61434
– ident: 986_CR30
  doi: 10.1007/11744023_34
– ident: 986_CR18
  doi: 10.1109/FPT.2009.5377651
– ident: 986_CR15
– ident: 986_CR1
  doi: 10.1109/TRO.2017.2705103
– ident: 986_CR5
  doi: 10.1109/ICCV.2011.6126544
– volume: 16
  start-page: 2015
  year: 2017
  ident: 986_CR16
  publication-title: J. Real-Time Image Process.
  doi: 10.1007/s11554-017-0705-4
– volume: 61
  start-page: 999
  issue: 7
  year: 2012
  ident: 986_CR11
  publication-title: IEEE Trans. Comput
  doi: 10.1109/TC.2011.120
– volume: 7
  start-page: 213
  issue: 3
  year: 2014
  ident: 986_CR21
  publication-title: Int. J. Control Autom.
  doi: 10.14257/ijca.2014.7.3.20
– volume: 32
  start-page: 815
  issue: 5
  year: 2010
  ident: 986_CR32
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2009.77
– volume: 40
  start-page: 3325
  issue: 12
  year: 2007
  ident: 986_CR34
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2007.04.023
– ident: 986_CR10
  doi: 10.1109/ReConFig.2011.11
SSID ssj0067635
Score 2.2437217
Snippet Feature extraction is an important vision task in many applications like simultaneous localization and mapping (SLAM). In the recent computing systems,...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 525
SubjectTerms Algorithms
Computation
Computer Graphics
Computer Science
Design
Designers
Eigenvalues
Energy consumption
Feature extraction
Field programmable gate arrays
High level synthesis
Image Processing and Computer Vision
Memory
Multimedia Information Systems
Neural networks
Original Research Paper
Pattern Recognition
Pixels
Robotics
Signal,Image and Speech Processing
Simultaneous localization and mapping
System on chip
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZSwMxEB60-uCL9cR6EcQ3DeyVNHksYu1DteKF4MOyOYqFtkpb_f3OrLutigr6ujt7MJPMkXz5BuAwq1vrXaC5DSMsUIyQ3CRW8kxHsutsgvMvp8xv1y8u1P29viwOhY1LtHu5JZl76tlhNwp9nModIsGUXM_DAoa7OgH5rq7vSv8riWKNyiwlQ47xLSiOynz_jk_haP6RwJAfMs0vm6N5zGlW__e3K7Bc5Jis8T4oVmHOD9egWvZvYMV0XoeH5uVZg_UGJYScbMSeuqzV6TSvmCHEBYGiGfrvUd6Wh1PMcwzzzD6npvTMD4xHz-XYdbtxzj5uhm_AbfP05qTFi2YL3MYinnDhs1g7E1D3EReJDKtUhamAUSKTaE9pdNcELgksMYw5EkxULJVTEnM2r228CZXh09BvAQsji-7cBqHF6jMUKgtEN_Fh4lWG3iIzNQhLnae2YCKnhhj9dMahTNpLUXtprr1U1-Bo-szzOw_Hr9IHaMqpIFFotxrtlK5hPqUEFlmvYQ12S0unxcQdp5Emhj9R16IGx6VlZ7d__uT238R3YCkidEy-nrMLlcnoxe_Bon2d9Maj_XxAvwEkz-w-
  priority: 102
  providerName: Springer Nature
Title FPGA implementation of HOOFR bucketing extractor-based real-time embedded SLAM applications
URI https://link.springer.com/article/10.1007/s11554-020-00986-9
https://www.proquest.com/docview/2918675795
https://hal.science/hal-02885576
Volume 18
WOSCitedRecordID wos000551414600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1861-8219
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0067635
  issn: 1861-8200
  databaseCode: P5Z
  dateStart: 20060301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1861-8219
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0067635
  issn: 1861-8200
  databaseCode: K7-
  dateStart: 20060301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Database Suite (ProQuest)
  customDbUrl:
  eissn: 1861-8219
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0067635
  issn: 1861-8200
  databaseCode: BENPR
  dateStart: 20060301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1861-8219
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0067635
  issn: 1861-8200
  databaseCode: RSV
  dateStart: 20060301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NTxsxEB0V6KGX0tJWBCiyEDdqsd5dO_YJpRVpDiFEgSJED6v1R9RIkEAS-P3MbLyEIpVLL3vY9X5on_1mxh6_Adgvm84FnxjuRIoBipWK29wpXppUDb3LcfxVkvndZq-nLy9NP064zWJaZc2JFVH7iaM58sPUkPSabBp5dHvHqWoUra7GEhorsCZSJGFalG3ymokVia1RwKWV4GjpkrhpZrF1jgwpp-CJJDUVN38ZppU_lBb5zOd8sUxaWZ_2-v9-9wd4H_1O1lp0lI_wJow3YL2u6cDiEP8Ev9v9ny02uqnTygk3Nhmyzulpe8AsZWFQojRDTp9WpXo42UHP0Pe85lSonoUbG5DNPDvrtk7Y8wXyz_CrfXz-o8NjAQbuMpnNuQxlZrxNqCKJT2WJkatG98BqWSrEWFkztInPE0eqY54a5jpT2muFflwwLvsCq-PJOGwCE6lDineJcBiRCqnLRA7zIPKgS2SQ0jZA1H-_cFGdnIpkXBdLXWVCrEDEigqxwjTg4Ome24U2x6ut9xDUp4Ykq91pdQs6hz6Wlhh4PYgG7NQoFnEwz4olhA34VveD5eV_v3Lr9adtw7uUMmSqOZ0dWJ1P78NXeOse5qPZdBfWvh_3-oPdqkvjsS-v8Dg4u3gEvDr5yQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB61KRJcaHmJQCkWghNY7MuOfUAoLQ2puk2jUqRKPZhd2xGRmqQkoYg_xW9kZrNuChK99cB11-t9fZ5vxh5_A_CyaFnrXaS5jRMMUEoheZlZyQudyIGzGY6_SjI_b_V66uRE91fgV9gLQ2mVwSZWhtpNLM2Rv000Sa-Jlhbvz79xqhpFq6uhhMYCFvv-5w8M2Wbv9j7g_32VJJ3d450ur6sKcJuKdM6FL1LtyojKbLhEFBiOKeS8UolC4oPLUg_KyGWRJSktRw0zlUrllETnxGubYr-rsJal2EED1rZ3e_2jYPslybtRiKdkzJFbo3qbzmKzHlE3p3CNRDwl139Q4epXSsS84uX-tTBb8V1n_X_7Uhtwt_asWXsxFO7Bih_fh_VQtYLVRuwBnHb6H9tsOAqJ84RMNhmw7uFh54iVlGdCqeAMWWtaFSPixPSOoXd9xufDkWd-VHq01459ytsH7GoKwEP4fCOv-Aga48nYPwYWJxZJzEaxxZg7FqqIxCDzceZVgTayKJsQh79tbK2_TmVAzsxSOZoQYhAhpkKI0U14fXnN-UJ95NrWLxBElw1JOLzbzg0dQy9SCQwtL-ImbAbUmNpczcwSMk14E3C3PP3vWz65vrfncLt7fJCbfK-3_xTuJJQPVM1gbUJjPv3un8EtezEfzqZb9UBi8OWmEfkbbhBSzQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9NAEB71QIgXegAiUMqq6hus6ms3u48R4AY1TSIKqBIPK-9hUSlNojTk9zPj2ElAgFTxao8PzXhn5vPOfANwWrSdCz7S3MUJAhQrJLeZk7zQiSy9y3D9VZT5vXa_r66v9XCji7-qdm-2JJc9DcTSNJ6fTX15tm58ozDICfoQIabkeht2MyqXI7x-9bXxxZLo1ghyKRlzjHVR3Tbz53v8Epq2v1Nh5EbW-dtGaRV_8r3_f_N9eFznnqyz_FgOYCuMD2GvmevA6mX-BL7lw_MOu7ltSsvJdmxSsu5gkH9ilioxqFiaoV-fVeN6OMVCzzD_HHEaVs_CrQ3o0Ty76nUu2eYm-VP4kn_4_K7L6yEM3KUinXMRilR7G9FUEp-IAtGrwhTBKlFItLO0urSRzyJHzGOeBDOVSuWVxFwuaJc-g53xZByeA4sTh27eRbFDVBoLVUSizEKcBVWgFylsC-JG_8bVDOU0KGNk1tzKpD2D2jOV9oxuwZvVNdMlP8c_pU_QrCtBotbudnqGjmGepQSCr0XcgqPG6qZe0Hcm0cT8J9patOBtY-X16b8_8sX9xF_Dw-H73PQ-9i9ewqOECmiqXz5HsDOf_Qiv4IFbzG_uZsfVd_4Ta-b3_Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FPGA+implementation+of+HOOFR+bucketing+extractor-based+real-time+embedded+SLAM+applications&rft.jtitle=Journal+of+real-time+image+processing&rft.au=Nguyen%2C+Dai+Duong&rft.au=El+Ouardi%2C+Abdelhafid&rft.au=Rodriguez%2C+Sergio&rft.au=Bouaziz%2C+Samir&rft.date=2021-06-01&rft.issn=1861-8200&rft.eissn=1861-8219&rft.volume=18&rft.issue=3&rft.spage=525&rft.epage=538&rft_id=info:doi/10.1007%2Fs11554-020-00986-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11554_020_00986_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-8200&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-8200&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-8200&client=summon