FPGA implementation of HOOFR bucketing extractor-based real-time embedded SLAM applications
Feature extraction is an important vision task in many applications like simultaneous localization and mapping (SLAM). In the recent computing systems, FPGA-based acceleration have presented a strong competition to GPU-based acceleration due to its high computation capabilities and lower energy cons...
Uložené v:
| Vydané v: | Journal of real-time image processing Ročník 18; číslo 3; s. 525 - 538 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2021
Springer Nature B.V Springer Verlag |
| Predmet: | |
| ISSN: | 1861-8200, 1861-8219 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Feature extraction is an important vision task in many applications like simultaneous localization and mapping (SLAM). In the recent computing systems, FPGA-based acceleration have presented a strong competition to GPU-based acceleration due to its high computation capabilities and lower energy consumption. In this paper, we present a high-level synthesis implementation on a SoC-FPGA of a feature extraction algorithm dedicated for SLAM applications. We choose HOOFR extraction algorithm which provides a robust performance but requires a significant computation on embedded CPU. Our system is dedicated for SLAM applications so that we also integrated bucketing detection method in order to have a homogeneous distribution of keypoints in the image. Moreover, instead of optimizing performance by simplifying the original algorithm as in many other researches, we respected the complexity of HOOFR extractor and have parallelized the processing operations. The design has been validated on an Intel Arria 10 SoC-FPGA with a throughput of 54 fps at
1226
×
370
pixels (handling 1750 features) or 14 fps at
1920
×
1080
pixels (handling 6929 features). |
|---|---|
| AbstractList | Feature extraction is an important vision task in many applications like simultaneous localization and mapping (SLAM). In the recent computing systems, FPGA-based acceleration have presented a strong competition to GPU-based acceleration due to its high computation capabilities and lower energy consumption. In this paper, we present a high-level synthesis implementation on a SoC-FPGA of a feature extraction algorithm dedicated for SLAM applications. We choose HOOFR extraction algorithm which provides a robust performance but requires a significant computation on embedded CPU. Our system is dedicated for SLAM applications so that we also integrated bucketing detection method in order to have a homogeneous distribution of keypoints in the image. Moreover, instead of optimizing performance by simplifying the original algorithm as in many other researches, we respected the complexity of HOOFR extractor and have parallelized the processing operations. The design has been validated on an Intel Arria 10 SoC-FPGA with a throughput of 54 fps at 1226×370 pixels (handling 1750 features) or 14 fps at 1920×1080 pixels (handling 6929 features). Feature extraction is an important vision task in many applications like simultaneous localization and mapping (SLAM). In the recent computing systems, FPGA-based acceleration have presented a strong competition to GPU-based acceleration due to its high computation capabilities and lower energy consumption. In this paper, we present a high-level synthesis implementation on a SoC-FPGA of a feature extraction algorithm dedicated for SLAM applications. We choose HOOFR extraction algorithm which provides a robust performance but requires a significant computation on embedded CPU. Our system is dedicated for SLAM applications so that we also integrated bucketing detection method in order to have a homogeneous distribution of keypoints in the image. Moreover, instead of optimizing performance by simplifying the original algorithm as in many other researches, we respected the complexity of HOOFR extractor and have parallelized the processing operations. The design has been validated on an Intel Arria 10 SoC-FPGA with a throughput of 54 fps at 1226 × 370 pixels (handling 1750 features) or 14 fps at 1920 × 1080 pixels (handling 6929 features). |
| Author | Bouaziz, Samir El Ouardi, Abdelhafid Rodriguez, Sergio Nguyen, Dai Duong |
| Author_xml | – sequence: 1 givenname: Dai Duong surname: Nguyen fullname: Nguyen, Dai Duong organization: School of Electrical Engineering, Hanoi University of Science and Technology – sequence: 2 givenname: Abdelhafid orcidid: 0000-0003-3665-2185 surname: El Ouardi fullname: El Ouardi, Abdelhafid email: abdelhafid.elouardi@universite-paris-saclay.fr organization: Systèmes et Applications des Technologies de l’Information et de l’Energie, CNRS, ENS Paris-Saclay, Université Paris-Saclay – sequence: 3 givenname: Sergio surname: Rodriguez fullname: Rodriguez, Sergio organization: Systèmes et Applications des Technologies de l’Information et de l’Energie, CNRS, ENS Paris-Saclay, Université Paris-Saclay – sequence: 4 givenname: Samir surname: Bouaziz fullname: Bouaziz, Samir organization: Systèmes et Applications des Technologies de l’Information et de l’Energie, CNRS, ENS Paris-Saclay, Université Paris-Saclay |
| BackLink | https://hal.science/hal-02885576$$DView record in HAL |
| BookMark | eNp9kEtLAzEUhYMo-PwDrgZcuYjeTCaZZFnEtkKl4mPlImQyaU2dl8lU9N-bOj7AhauEy3cOh28fbTdtYxE6JnBGAPLzQAhjGYYUMIAUHMsttEcEJ1ikRG7__AF20X4IKwCec8r20OP4ZjJKXN1VtrZNr3vXNkm7SKbz-fg2Kdbm2fauWSb2rffa9K3HhQ62TLzVFe5dbRNbF7Ys4-luNrpOdNdVznzWhEO0s9BVsEdf7wF6GF_eX0zxbD65uhjNsKGM9phZTWVZQMbzrEyZJjQVqaSFYJrnxvBCLgooMzAZp7zcgJmgXJSCC0asNPQAnQ69T7pSnXe19u-q1U5NRzO1uUEqBGM5fyWRPRnYzrcvaxt6tWrXvonzVCqjpJzlkkVKDJTxbQjeLpRxg5towVWKgNpoV4P22A_qU7uSMZr-iX4v-jdEh1CIcLO0_nfVP6kPwNWVCA |
| CitedBy_id | crossref_primary_10_3390_su142315539 crossref_primary_10_1007_s10462_022_10310_5 crossref_primary_10_1007_s11554_025_01650_w crossref_primary_10_1155_2022_6532852 crossref_primary_10_1007_s11390_021_1523_5 |
| Cites_doi | 10.1109/IROS40897.2019.8967814 10.7873/DATE.2014.221 10.1023/B:VISI.0000029664.99615.94 10.1145/3243394.3243709 10.1109/ReConFig.2011.83 10.1007/s00521-020-04731-y 10.1155/2018/1785892 10.1109/ICARCV.2016.7838652 10.1109/FPT.2017.8280137 10.1371/journal.pone.0222984 10.1109/FCCM.2015.7 10.1109/TPDS.2010.125 10.5244/C.23.54 10.23919/FPL.2017.8056856 10.1109/IROS.2015.7353546 10.1007/s11265-019-01454-9 10.1109/TIP.2013.2259841 10.1109/TRO.2008.2004832 10.1109/FCCM.2010.11 10.1007/11744023_32 10.1109/ACCESS.2017.2671881 10.1109/CVPR.2012.6247715 10.5772/61434 10.1007/11744023_34 10.1109/FPT.2009.5377651 10.1109/TRO.2017.2705103 10.1109/ICCV.2011.6126544 10.1007/s11554-017-0705-4 10.1109/TC.2011.120 10.14257/ijca.2014.7.3.20 10.1109/TPAMI.2009.77 10.1016/j.patcog.2007.04.023 10.1109/ReConFig.2011.11 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2020 Springer-Verlag GmbH Germany, part of Springer Nature 2020. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020 – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI 1XC |
| DOI | 10.1007/s11554-020-00986-9 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1861-8219 |
| EndPage | 538 |
| ExternalDocumentID | oai:HAL:hal-02885576v1 10_1007_s11554_020_00986_9 |
| GroupedDBID | -59 -5G -BR -EM -Y2 -~C .VR 06D 0R~ 0VY 1N0 203 29L 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV LLZTM M4Y MA- N2Q N9A NPVJJ NQJWS NU0 O9- O93 O9J OAM P9O PF0 PT4 QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI 1XC |
| ID | FETCH-LOGICAL-c353t-5ea39db04674d25a1328293b85a67cc6b9fb0d40c4636ddb0448368d86851e9c3 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000551414600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1861-8200 |
| IngestDate | Tue Oct 14 20:44:05 EDT 2025 Wed Nov 05 02:22:28 EST 2025 Tue Nov 18 22:32:21 EST 2025 Sat Nov 29 03:23:16 EST 2025 Fri Feb 21 02:48:12 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | FPGA implementation Embedded systems Features extraction Parallel image processing |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c353t-5ea39db04674d25a1328293b85a67cc6b9fb0d40c4636ddb0448368d86851e9c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3665-2185 0000-0003-3029-7020 0000-0002-6768-1723 |
| PQID | 2918675795 |
| PQPubID | 2044148 |
| PageCount | 14 |
| ParticipantIDs | hal_primary_oai_HAL_hal_02885576v1 proquest_journals_2918675795 crossref_citationtrail_10_1007_s11554_020_00986_9 crossref_primary_10_1007_s11554_020_00986_9 springer_journals_10_1007_s11554_020_00986_9 |
| PublicationCentury | 2000 |
| PublicationDate | 20210600 2021-06-00 20210601 2021-06 |
| PublicationDateYYYYMMDD | 2021-06-01 |
| PublicationDate_xml | – month: 6 year: 2021 text: 20210600 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Journal of real-time image processing |
| PublicationTitleAbbrev | J Real-Time Image Proc |
| PublicationYear | 2021 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V Springer Verlag |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: Springer Verlag |
| References | MamiSLahbibYMamiAA new HLS allocation algorithm for efficient DSP utilization in FPGAsJ. Signal Process. Syst.20199215317110.1007/s11265-019-01454-9 Mur-Artal, R., Tardós, J.D.: ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras (2016). arXiv preprint arXiv:1610.06475 TolaELepetitVFuaPDaisy: an efficient dense descriptor applied to wide-baseline stereoIEEE Trans. Pattern Anal. Mach. Intell.201032581583010.1109/TPAMI.2009.77 Aldegheri, S., Bombieri, N., Bloisi, D.D., Farinelli, A.: Data flow orb-slam for real-time performance on embedded gpu boards. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5370–5375 (2019) Yao, L., Feng, H., Zhu, Y., Jiang, Z., Zhao, D., Feng, W.: An architecture of optimised sift feature detection for an FPGA implementation of an image matcher. In: International Conference on Field-Programmable Technology, 2009. FPT 2009. IEEE, pp. 30–37 (2009) FularzMKraftMSchmidtAKasinskiAA high-performance fpga-based image feature detector and matcher based on the fast and brief algorithmsInt. J. Adv. Robot. Syst.2015121014110.5772/61434 Nguyen, D.-D., El Ouardi, A., Aldea, E., Bouaziz, S.: Hoofr: an enhanced bio-inspired feature extractor. In 2016 23rd International Conference on Pattern Recognition (ICPR). IEEE, pp. 2977–2982 (2016) LeeKA design of an optimized orb accelerator for real-time feature detectionInt. J. Control Autom.20147321321810.14257/ijca.2014.7.3.20 Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to sift or surf. In 2011 IEEE International Conference on Computer Vision (ICCV). IEEE, pp. 2564–2571 (2011) Pire, T., Fischer, T., Civera, J., De Cristóforis, P., Berlles, J.J.: Stereo parallel tracking and mapping for robot localization. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) IEEE, pp. 1373–1378 (2015) BianconiFFernándezAEvaluation of the effects of gabor filter parameters on texture classificationPattern Recognit.200740123325333510.1016/j.patcog.2007.04.023 Pereira, K., Athanas, P., Lin, H., Feng, W.: Spectral method characterization on FPGA and GPU accelerators. In: 2011 International Conference on Reconfigurable Computing and FPGAs (ReConFig). IEEE, pp. 487–492 (2011) JelodariPTKordasiabiMPSheikhaeiSForouzandehBFpga implementation of an adaptive window size image impulse noise suppression systemJ. Real-Time Image Process.2017162015202610.1007/s11554-017-0705-4 Alahi, A., Ortiz, R., Vandergheynst, P.: Freak: fast retina keypoint. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2012, pp. 510–517 (2012) Morales, V.M., Horrein, P.-H., Baghdadi, A., Hochapfel, E., Vaton, S.: Energy-efficient fpga implementation for binomial option pricing using openCL. In: Design, Automation and Test in Europe Conference and Exhibition (DATE), 2014. IEEE, pp. 1–6 (2014) Intel FPGA SDK for OpenCL Standard Edition: Programming Guide. INTEL (2014) HelaliAAmeurHGórrizJRamírezJMaarefHHardware implementation of real-time pedestrian detection systemNeural Comput. Appl.202010.1007/s00521-020-04731-y ZhangSWuYMenCHeHLiangKResearch on opencl optimization for fpga deep learning applicationPloS ONE201910.1371/journal.pone.0222984 LoweDGDistinctive image features from scale-invariant keypointsInt. J. Comput. Vis.20046029111010.1023/B:VISI.0000029664.99615.94 PauwelsKTomasiMAlonsoJDRosEVan HulleMMA comparison of fpga and gpu for real-time phase-based optical flow, stereo, and local image featuresIEEE Trans. Comput20126179991012292887510.1109/TC.2011.120 Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005, vol. 1, pp. 886–893. IEEE (2005) LuoLWuYQiaoFYangYWeiQZhouXFanYXuSLiuXYangHDesign of FPGA-based accelerator for convolutional neural network under heterogeneous computing framework with openCLInt. J. Reconfig. Comput.201810.1155/2018/1785892 Sun, R., Liu, P., Wang, J., Accetti, C., Naqvi, A.A.: A 42fps full-hd ORB feature extraction accelerator with reduced memory overhead. In: 2017 International Conference on Field Programmable Technology (ICFPT). IEEE, 2017, pp. 183–190 (2017) Bay, H., Tuytelaars, T., Van Gool, L., Surf: Speeded up robust features. In: Computer Vision–ECCV 2006. Springer, Berlin, pp. 404–417 (2006) De Schryver, C., Shcherbakov, I., Kienle, F., Wehn, N., Marxen, H., Kostiuk, A., Korn, R.: An energy efficient fpga accelerator for monte carlo option pricing with the Beston model. In: 2011 International Conference on Reconfigurable Computing and FPGAs (ReConFig). IEEE, pp. 468–474 (2011) Bouris, D., Nikitakis, A., Papaefstathiou, I.: Fast and efficient FPGA-based feature detection employing the surf algorithm. In: 2010 18th IEEE Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM). IEEE, pp. 3–10 (2010) Weberruss, J., Kleeman, L., Boland, D., Drummond, T.: FPGA acceleration of multilevel orb feature extraction for computer vision. In: 2017 27th International Conference on Field Programmable Logic and Applications (FPL). IEEE, pp 1–8 (2017) Pu, Y., Peng, J., Huang, L., Chen, J.: An efficient knn algorithm implemented on FPGA based heterogeneous computing system using opencl. In: 2015 IEEE 23rd Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM). IEEE, pp. 167–170 (2015) Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: Computer Vision—ECCV 2006. Springer, Berlin, pp. 430–443 (2006) Mei, C., Sibley, G., Cummins, M., Newman, P.M., Reid, I.D.: A constant-time efficient stereo slam system. In: BMVC 2009, pp. 1–11 (2009) KonoligeKAgrawalMFrameslam: from bundle adjustment to real-time visual mappingIEEE Trans. Robot.20082451066107710.1109/TRO.2008.2004832 WeberRGothandaramanAHindeRJPetersonGDComparing hardware accelerators in scientific applications: a case studyIEEE Trans. Parallel Distrib. Syst.2011221586810.1109/TPDS.2010.125 ChiuL-CChangT-SChenJ-YChangNY-CFast sift design for real-time visual feature extractionIEEE Trans. Image Process.20132283158316710.1109/TIP.2013.2259841 MuslimFBMaLRoozmehMLavagnoLEfficient fpga implementation of opencl high-performance computing applications via high-level synthesisIEEE Access201752747276210.1109/ACCESS.2017.2671881 Marin, Y., Mitéran, J., Dubois, J., Heyrman, B., Ginhac, D.: An FPGA-based design for real-time super resolution reconstruction. In: Proceedings of the 12th International Conference on Distributed Smart Cameras, pp. 1–2 (2018) DG Lowe (986_CR3) 2004; 60 K Pauwels (986_CR11) 2012; 61 L-C Chiu (986_CR20) 2013; 22 K Lee (986_CR21) 2014; 7 S Mami (986_CR14) 2019; 92 986_CR30 986_CR31 986_CR8 986_CR10 E Tola (986_CR32) 2010; 32 986_CR7 986_CR33 986_CR12 986_CR15 986_CR17 986_CR18 F Bianconi (986_CR34) 2007; 40 986_CR19 R Weber (986_CR9) 2011; 22 L Luo (986_CR26) 2018 FB Muslim (986_CR25) 2017; 5 986_CR6 986_CR5 986_CR4 986_CR2 A Helali (986_CR13) 2020 986_CR1 K Konolige (986_CR29) 2008; 24 M Fularz (986_CR35) 2015; 12 PT Jelodari (986_CR16) 2017; 16 S Zhang (986_CR27) 2019 986_CR22 986_CR23 986_CR24 986_CR28 |
| References_xml | – reference: BianconiFFernándezAEvaluation of the effects of gabor filter parameters on texture classificationPattern Recognit.200740123325333510.1016/j.patcog.2007.04.023 – reference: Nguyen, D.-D., El Ouardi, A., Aldea, E., Bouaziz, S.: Hoofr: an enhanced bio-inspired feature extractor. In 2016 23rd International Conference on Pattern Recognition (ICPR). IEEE, pp. 2977–2982 (2016) – reference: Pereira, K., Athanas, P., Lin, H., Feng, W.: Spectral method characterization on FPGA and GPU accelerators. In: 2011 International Conference on Reconfigurable Computing and FPGAs (ReConFig). IEEE, pp. 487–492 (2011) – reference: Pu, Y., Peng, J., Huang, L., Chen, J.: An efficient knn algorithm implemented on FPGA based heterogeneous computing system using opencl. In: 2015 IEEE 23rd Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM). IEEE, pp. 167–170 (2015) – reference: ZhangSWuYMenCHeHLiangKResearch on opencl optimization for fpga deep learning applicationPloS ONE201910.1371/journal.pone.0222984 – reference: Pire, T., Fischer, T., Civera, J., De Cristóforis, P., Berlles, J.J.: Stereo parallel tracking and mapping for robot localization. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) IEEE, pp. 1373–1378 (2015) – reference: JelodariPTKordasiabiMPSheikhaeiSForouzandehBFpga implementation of an adaptive window size image impulse noise suppression systemJ. Real-Time Image Process.2017162015202610.1007/s11554-017-0705-4 – reference: Bay, H., Tuytelaars, T., Van Gool, L., Surf: Speeded up robust features. In: Computer Vision–ECCV 2006. Springer, Berlin, pp. 404–417 (2006) – reference: Marin, Y., Mitéran, J., Dubois, J., Heyrman, B., Ginhac, D.: An FPGA-based design for real-time super resolution reconstruction. In: Proceedings of the 12th International Conference on Distributed Smart Cameras, pp. 1–2 (2018) – reference: De Schryver, C., Shcherbakov, I., Kienle, F., Wehn, N., Marxen, H., Kostiuk, A., Korn, R.: An energy efficient fpga accelerator for monte carlo option pricing with the Beston model. In: 2011 International Conference on Reconfigurable Computing and FPGAs (ReConFig). IEEE, pp. 468–474 (2011) – reference: Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to sift or surf. In 2011 IEEE International Conference on Computer Vision (ICCV). IEEE, pp. 2564–2571 (2011) – reference: LeeKA design of an optimized orb accelerator for real-time feature detectionInt. J. Control Autom.20147321321810.14257/ijca.2014.7.3.20 – reference: KonoligeKAgrawalMFrameslam: from bundle adjustment to real-time visual mappingIEEE Trans. Robot.20082451066107710.1109/TRO.2008.2004832 – reference: PauwelsKTomasiMAlonsoJDRosEVan HulleMMA comparison of fpga and gpu for real-time phase-based optical flow, stereo, and local image featuresIEEE Trans. Comput20126179991012292887510.1109/TC.2011.120 – reference: FularzMKraftMSchmidtAKasinskiAA high-performance fpga-based image feature detector and matcher based on the fast and brief algorithmsInt. J. Adv. Robot. Syst.2015121014110.5772/61434 – reference: Mei, C., Sibley, G., Cummins, M., Newman, P.M., Reid, I.D.: A constant-time efficient stereo slam system. In: BMVC 2009, pp. 1–11 (2009) – reference: Weberruss, J., Kleeman, L., Boland, D., Drummond, T.: FPGA acceleration of multilevel orb feature extraction for computer vision. In: 2017 27th International Conference on Field Programmable Logic and Applications (FPL). IEEE, pp 1–8 (2017) – reference: ChiuL-CChangT-SChenJ-YChangNY-CFast sift design for real-time visual feature extractionIEEE Trans. Image Process.20132283158316710.1109/TIP.2013.2259841 – reference: HelaliAAmeurHGórrizJRamírezJMaarefHHardware implementation of real-time pedestrian detection systemNeural Comput. Appl.202010.1007/s00521-020-04731-y – reference: MuslimFBMaLRoozmehMLavagnoLEfficient fpga implementation of opencl high-performance computing applications via high-level synthesisIEEE Access201752747276210.1109/ACCESS.2017.2671881 – reference: TolaELepetitVFuaPDaisy: an efficient dense descriptor applied to wide-baseline stereoIEEE Trans. Pattern Anal. Mach. Intell.201032581583010.1109/TPAMI.2009.77 – reference: Aldegheri, S., Bombieri, N., Bloisi, D.D., Farinelli, A.: Data flow orb-slam for real-time performance on embedded gpu boards. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5370–5375 (2019) – reference: WeberRGothandaramanAHindeRJPetersonGDComparing hardware accelerators in scientific applications: a case studyIEEE Trans. Parallel Distrib. Syst.2011221586810.1109/TPDS.2010.125 – reference: MamiSLahbibYMamiAA new HLS allocation algorithm for efficient DSP utilization in FPGAsJ. Signal Process. Syst.20199215317110.1007/s11265-019-01454-9 – reference: Intel FPGA SDK for OpenCL Standard Edition: Programming Guide. INTEL (2014) – reference: Yao, L., Feng, H., Zhu, Y., Jiang, Z., Zhao, D., Feng, W.: An architecture of optimised sift feature detection for an FPGA implementation of an image matcher. In: International Conference on Field-Programmable Technology, 2009. FPT 2009. IEEE, pp. 30–37 (2009) – reference: Sun, R., Liu, P., Wang, J., Accetti, C., Naqvi, A.A.: A 42fps full-hd ORB feature extraction accelerator with reduced memory overhead. In: 2017 International Conference on Field Programmable Technology (ICFPT). IEEE, 2017, pp. 183–190 (2017) – reference: Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005, vol. 1, pp. 886–893. IEEE (2005) – reference: LuoLWuYQiaoFYangYWeiQZhouXFanYXuSLiuXYangHDesign of FPGA-based accelerator for convolutional neural network under heterogeneous computing framework with openCLInt. J. Reconfig. Comput.201810.1155/2018/1785892 – reference: Bouris, D., Nikitakis, A., Papaefstathiou, I.: Fast and efficient FPGA-based feature detection employing the surf algorithm. In: 2010 18th IEEE Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM). IEEE, pp. 3–10 (2010) – reference: Alahi, A., Ortiz, R., Vandergheynst, P.: Freak: fast retina keypoint. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2012, pp. 510–517 (2012) – reference: Mur-Artal, R., Tardós, J.D.: ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras (2016). arXiv preprint arXiv:1610.06475 – reference: LoweDGDistinctive image features from scale-invariant keypointsInt. J. Comput. Vis.20046029111010.1023/B:VISI.0000029664.99615.94 – reference: Morales, V.M., Horrein, P.-H., Baghdadi, A., Hochapfel, E., Vaton, S.: Energy-efficient fpga implementation for binomial option pricing using openCL. In: Design, Automation and Test in Europe Conference and Exhibition (DATE), 2014. IEEE, pp. 1–6 (2014) – reference: Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: Computer Vision—ECCV 2006. Springer, Berlin, pp. 430–443 (2006) – ident: 986_CR6 doi: 10.1109/IROS40897.2019.8967814 – ident: 986_CR12 doi: 10.7873/DATE.2014.221 – volume: 60 start-page: 91 issue: 2 year: 2004 ident: 986_CR3 publication-title: Int. J. Comput. Vis. doi: 10.1023/B:VISI.0000029664.99615.94 – ident: 986_CR17 doi: 10.1145/3243394.3243709 – ident: 986_CR8 doi: 10.1109/ReConFig.2011.83 – year: 2020 ident: 986_CR13 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-04731-y – year: 2018 ident: 986_CR26 publication-title: Int. J. Reconfig. Comput. doi: 10.1155/2018/1785892 – ident: 986_CR7 doi: 10.1109/ICARCV.2016.7838652 – ident: 986_CR23 doi: 10.1109/FPT.2017.8280137 – year: 2019 ident: 986_CR27 publication-title: PloS ONE doi: 10.1371/journal.pone.0222984 – ident: 986_CR24 doi: 10.1109/FCCM.2015.7 – volume: 22 start-page: 58 issue: 1 year: 2011 ident: 986_CR9 publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2010.125 – ident: 986_CR2 doi: 10.5244/C.23.54 – ident: 986_CR22 doi: 10.23919/FPL.2017.8056856 – ident: 986_CR28 doi: 10.1109/IROS.2015.7353546 – volume: 92 start-page: 153 year: 2019 ident: 986_CR14 publication-title: J. Signal Process. Syst. doi: 10.1007/s11265-019-01454-9 – volume: 22 start-page: 3158 issue: 8 year: 2013 ident: 986_CR20 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2013.2259841 – volume: 24 start-page: 1066 issue: 5 year: 2008 ident: 986_CR29 publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2008.2004832 – ident: 986_CR19 doi: 10.1109/FCCM.2010.11 – ident: 986_CR4 doi: 10.1007/11744023_32 – volume: 5 start-page: 2747 year: 2017 ident: 986_CR25 publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2671881 – ident: 986_CR33 – ident: 986_CR31 doi: 10.1109/CVPR.2012.6247715 – volume: 12 start-page: 141 issue: 10 year: 2015 ident: 986_CR35 publication-title: Int. J. Adv. Robot. Syst. doi: 10.5772/61434 – ident: 986_CR30 doi: 10.1007/11744023_34 – ident: 986_CR18 doi: 10.1109/FPT.2009.5377651 – ident: 986_CR15 – ident: 986_CR1 doi: 10.1109/TRO.2017.2705103 – ident: 986_CR5 doi: 10.1109/ICCV.2011.6126544 – volume: 16 start-page: 2015 year: 2017 ident: 986_CR16 publication-title: J. Real-Time Image Process. doi: 10.1007/s11554-017-0705-4 – volume: 61 start-page: 999 issue: 7 year: 2012 ident: 986_CR11 publication-title: IEEE Trans. Comput doi: 10.1109/TC.2011.120 – volume: 7 start-page: 213 issue: 3 year: 2014 ident: 986_CR21 publication-title: Int. J. Control Autom. doi: 10.14257/ijca.2014.7.3.20 – volume: 32 start-page: 815 issue: 5 year: 2010 ident: 986_CR32 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2009.77 – volume: 40 start-page: 3325 issue: 12 year: 2007 ident: 986_CR34 publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2007.04.023 – ident: 986_CR10 doi: 10.1109/ReConFig.2011.11 |
| SSID | ssj0067635 |
| Score | 2.2437217 |
| Snippet | Feature extraction is an important vision task in many applications like simultaneous localization and mapping (SLAM). In the recent computing systems,... |
| SourceID | hal proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 525 |
| SubjectTerms | Algorithms Computation Computer Graphics Computer Science Design Designers Eigenvalues Energy consumption Feature extraction Field programmable gate arrays High level synthesis Image Processing and Computer Vision Memory Multimedia Information Systems Neural networks Original Research Paper Pattern Recognition Pixels Robotics Signal,Image and Speech Processing Simultaneous localization and mapping System on chip |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZSwMxEB60-uCL9cR6EcQ3DeyVNHksYu1DteKF4MOyOYqFtkpb_f3OrLutigr6ujt7MJPMkXz5BuAwq1vrXaC5DSMsUIyQ3CRW8kxHsutsgvMvp8xv1y8u1P29viwOhY1LtHu5JZl76tlhNwp9nModIsGUXM_DAoa7OgH5rq7vSv8riWKNyiwlQ47xLSiOynz_jk_haP6RwJAfMs0vm6N5zGlW__e3K7Bc5Jis8T4oVmHOD9egWvZvYMV0XoeH5uVZg_UGJYScbMSeuqzV6TSvmCHEBYGiGfrvUd6Wh1PMcwzzzD6npvTMD4xHz-XYdbtxzj5uhm_AbfP05qTFi2YL3MYinnDhs1g7E1D3EReJDKtUhamAUSKTaE9pdNcELgksMYw5EkxULJVTEnM2r228CZXh09BvAQsji-7cBqHF6jMUKgtEN_Fh4lWG3iIzNQhLnae2YCKnhhj9dMahTNpLUXtprr1U1-Bo-szzOw_Hr9IHaMqpIFFotxrtlK5hPqUEFlmvYQ12S0unxcQdp5Emhj9R16IGx6VlZ7d__uT238R3YCkidEy-nrMLlcnoxe_Bon2d9Maj_XxAvwEkz-w- priority: 102 providerName: Springer Nature |
| Title | FPGA implementation of HOOFR bucketing extractor-based real-time embedded SLAM applications |
| URI | https://link.springer.com/article/10.1007/s11554-020-00986-9 https://www.proquest.com/docview/2918675795 https://hal.science/hal-02885576 |
| Volume | 18 |
| WOSCitedRecordID | wos000551414600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1861-8219 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0067635 issn: 1861-8200 databaseCode: P5Z dateStart: 20060301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1861-8219 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0067635 issn: 1861-8200 databaseCode: K7- dateStart: 20060301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Database Suite (ProQuest) customDbUrl: eissn: 1861-8219 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0067635 issn: 1861-8200 databaseCode: BENPR dateStart: 20060301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1861-8219 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0067635 issn: 1861-8200 databaseCode: RSV dateStart: 20060301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NTxsxEB0V6KGX0tJWBCiyEDdqsd5dO_YJpRVpDiFEgSJED6v1R9RIkEAS-P3MbLyEIpVLL3vY9X5on_1mxh6_Adgvm84FnxjuRIoBipWK29wpXppUDb3LcfxVkvndZq-nLy9NP064zWJaZc2JFVH7iaM58sPUkPSabBp5dHvHqWoUra7GEhorsCZSJGFalG3ymokVia1RwKWV4GjpkrhpZrF1jgwpp-CJJDUVN38ZppU_lBb5zOd8sUxaWZ_2-v9-9wd4H_1O1lp0lI_wJow3YL2u6cDiEP8Ev9v9ny02uqnTygk3Nhmyzulpe8AsZWFQojRDTp9WpXo42UHP0Pe85lSonoUbG5DNPDvrtk7Y8wXyz_CrfXz-o8NjAQbuMpnNuQxlZrxNqCKJT2WJkatG98BqWSrEWFkztInPE0eqY54a5jpT2muFflwwLvsCq-PJOGwCE6lDineJcBiRCqnLRA7zIPKgS2SQ0jZA1H-_cFGdnIpkXBdLXWVCrEDEigqxwjTg4Ome24U2x6ut9xDUp4Ykq91pdQs6hz6Wlhh4PYgG7NQoFnEwz4olhA34VveD5eV_v3Lr9adtw7uUMmSqOZ0dWJ1P78NXeOse5qPZdBfWvh_3-oPdqkvjsS-v8Dg4u3gEvDr5yQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB61KRJcaHmJQCkWghNY7MuOfUAoLQ2puk2jUqRKPZhd2xGRmqQkoYg_xW9kZrNuChK99cB11-t9fZ5vxh5_A_CyaFnrXaS5jRMMUEoheZlZyQudyIGzGY6_SjI_b_V66uRE91fgV9gLQ2mVwSZWhtpNLM2Rv000Sa-Jlhbvz79xqhpFq6uhhMYCFvv-5w8M2Wbv9j7g_32VJJ3d450ur6sKcJuKdM6FL1LtyojKbLhEFBiOKeS8UolC4oPLUg_KyGWRJSktRw0zlUrllETnxGubYr-rsJal2EED1rZ3e_2jYPslybtRiKdkzJFbo3qbzmKzHlE3p3CNRDwl139Q4epXSsS84uX-tTBb8V1n_X_7Uhtwt_asWXsxFO7Bih_fh_VQtYLVRuwBnHb6H9tsOAqJ84RMNhmw7uFh54iVlGdCqeAMWWtaFSPixPSOoXd9xufDkWd-VHq01459ytsH7GoKwEP4fCOv-Aga48nYPwYWJxZJzEaxxZg7FqqIxCDzceZVgTayKJsQh79tbK2_TmVAzsxSOZoQYhAhpkKI0U14fXnN-UJ95NrWLxBElw1JOLzbzg0dQy9SCQwtL-ImbAbUmNpczcwSMk14E3C3PP3vWz65vrfncLt7fJCbfK-3_xTuJJQPVM1gbUJjPv3un8EtezEfzqZb9UBi8OWmEfkbbhBSzQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9NAEB71QIgXegAiUMqq6hus6ms3u48R4AY1TSIKqBIPK-9hUSlNojTk9zPj2ElAgFTxao8PzXhn5vPOfANwWrSdCz7S3MUJAhQrJLeZk7zQiSy9y3D9VZT5vXa_r66v9XCji7-qdm-2JJc9DcTSNJ6fTX15tm58ozDICfoQIabkeht2MyqXI7x-9bXxxZLo1ghyKRlzjHVR3Tbz53v8Epq2v1Nh5EbW-dtGaRV_8r3_f_N9eFznnqyz_FgOYCuMD2GvmevA6mX-BL7lw_MOu7ltSsvJdmxSsu5gkH9ilioxqFiaoV-fVeN6OMVCzzD_HHEaVs_CrQ3o0Ty76nUu2eYm-VP4kn_4_K7L6yEM3KUinXMRilR7G9FUEp-IAtGrwhTBKlFItLO0urSRzyJHzGOeBDOVSuWVxFwuaJc-g53xZByeA4sTh27eRbFDVBoLVUSizEKcBVWgFylsC-JG_8bVDOU0KGNk1tzKpD2D2jOV9oxuwZvVNdMlP8c_pU_QrCtBotbudnqGjmGepQSCr0XcgqPG6qZe0Hcm0cT8J9patOBtY-X16b8_8sX9xF_Dw-H73PQ-9i9ewqOECmiqXz5HsDOf_Qiv4IFbzG_uZsfVd_4Ta-b3_Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FPGA+implementation+of+HOOFR+bucketing+extractor-based+real-time+embedded+SLAM+applications&rft.jtitle=Journal+of+real-time+image+processing&rft.au=Nguyen%2C+Dai+Duong&rft.au=El+Ouardi%2C+Abdelhafid&rft.au=Rodriguez%2C+Sergio&rft.au=Bouaziz%2C+Samir&rft.date=2021-06-01&rft.issn=1861-8200&rft.eissn=1861-8219&rft.volume=18&rft.issue=3&rft.spage=525&rft.epage=538&rft_id=info:doi/10.1007%2Fs11554-020-00986-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11554_020_00986_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-8200&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-8200&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-8200&client=summon |