Polynomial Time Approximation Algorithms for Multi-Constrained QoS Routing

We study the multi-constrained quality-of-service (QoS) routing problem where one seeks to find a path from a source to a destination in the presence of K ges 2 additive end-to-end QoS constraints. This problem is NP-hard and is commonly modeled using a graph with n vertices and m edges with K addit...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE/ACM transactions on networking Ročník 16; číslo 3; s. 656 - 669
Hlavní autori: Guoliang Xue, Weiyi Zhang, Jian Tang, Thulasiraman, K.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.06.2008
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1063-6692, 1558-2566
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We study the multi-constrained quality-of-service (QoS) routing problem where one seeks to find a path from a source to a destination in the presence of K ges 2 additive end-to-end QoS constraints. This problem is NP-hard and is commonly modeled using a graph with n vertices and m edges with K additive QoS parameters associated with each edge. For the case of K = 2, the problem has been well studied, with several provably good polynomial time-approximation algorithms reported in the literature, which enforce one constraint while approximating the other. We first focus on an optimization version of the problem where we enforce the first constraint and approximate the other K - 1 constraints. We present an O(mn log log log n + mn/epsi) time (1 + epsi)(K - 1)-approximation algorithm and an O(mn log log log n + m(n/epsi) K-1 ) time (1 + epsi)-approximation algorithm, for any epsi > 0. When K is reduced to 2, both algorithms produce an (1 + epsi)-approximation with a time complexity better than that of the best-known algorithm designed for this special case. We then study the decision version of the problem and present an O(m(n/epsi) K-1 ) time algorithm which either finds a feasible solution or confirms that there does not exist a source-destination path whose first weight is bounded by the first constraint and whose every other weight is bounded by (1 - epsi) times the corresponding constraint. If there exists an H-hop source-destination path whose first weight is bounded by the first constraint and whose every other weight is bounded by (1 - epsi) times the corresponding constraint, our algorithm finds a feasible path in O(m(H/epsi) K-1 ) time. This algorithm improves previous best-known algorithms with O((m + n log n)n/epsi) time for K = 2 and 0(mn(n/epsi) K-1 ) time for if ges 2.
AbstractList When K is reduced to 2, both algorithms produce an (1 + epsi)-approximation with a time complexity better than that of the best-known algorithm designed for this special case.
We study the multi-constrained quality-of-service (QoS) routing problem where one seeks to find a path from a source to a destination in the presence of K ges 2 additive end-to-end QoS constraints. This problem is NP-hard and is commonly modeled using a graph with n vertices and m edges with K additive QoS parameters associated with each edge. For the case of K = 2, the problem has been well studied, with several provably good polynomial time-approximation algorithms reported in the literature, which enforce one constraint while approximating the other. We first focus on an optimization version of the problem where we enforce the first constraint and approximate the other K - 1 constraints. We present an O(mn log log log n + mn/epsi) time (1 + epsi)(K - 1)-approximation algorithm and an O(mn log log log n + m(n/epsi)@@uK-1@) time (1 + epsi)- approximation algorithm, for any epsi > 0. When K is reduced to 2, both algorithms produce an (1 + epsi)- approximation with a time complexity better than that of the best-known algorithm designed for this special case. We then study the decision version of the problem and present an O(m(n/epsi)@@uK-1@) time algorithm which either finds a feasible solution or confirms that there does not exist a source-destination path whose first weight is bounded by the first constraint and whose every other weight is bounded by (1 - epsi) times the corresponding constraint. If there exists an H-hop source-destination path whose first weight is bounded by the first constraint and whose every other weight is bounded by (1 - epsi) times the corresponding constraint, our algorithm finds a feasible path in O(m(H/epsi)@@uK-1@) time. This algorithm improves previous best-known algorithms with O((m + n log n)n/epsi) time for K = 2 and 0(mn(n/epsi)@@uK-1@) time for if ges 2.
We study the multi-constrained quality-of-service (QoS) routing problem where one seeks to find a path from a source to a destination in the presence of K ges 2 additive end-to-end QoS constraints. This problem is NP-hard and is commonly modeled using a graph with n vertices and m edges with K additive QoS parameters associated with each edge. For the case of K = 2, the problem has been well studied, with several provably good polynomial time-approximation algorithms reported in the literature, which enforce one constraint while approximating the other. We first focus on an optimization version of the problem where we enforce the first constraint and approximate the other K - 1 constraints. We present an O(mn log log log n + mn/epsi) time (1 + epsi)(K - 1)-approximation algorithm and an O(mn log log log n + m(n/epsi) super(K-1)) time (1 + epsi)-approximation algorithm, for any epsi > 0. When K is reduced to 2, both algorithms produce an (1 + epsi)-approximation with a time complexity better than that of the best-known algorithm designed for this special case. We then study the decision version of the problem and present an O(m(n/epsi) super(K-1)) time algorithm which either finds a feasible solution or confirms that there does not exist a source-destination path whose first weight is bounded by the first constraint and whose every other weight is bounded by (1 - epsi) times the corresponding constraint. If there exists an H-hop source-destination path whose first weight is bounded by the first constraint and whose every other weight is bounded by (1 - epsi) times the corresponding constraint, our algorithm finds a feasible path in O(m(H/epsi) super(K-1)) time. This algorithm improves previous best-known algorithms with O((m + n log n)n/epsi) time for K = 2 and 0(mn(n/epsi) super(K-1)) time for if ges 2.
We study the multi-constrained quality-of-service (QoS) routing problem where one seeks to find a path from a source to a destination in the presence of K ges 2 additive end-to-end QoS constraints. This problem is NP-hard and is commonly modeled using a graph with n vertices and m edges with K additive QoS parameters associated with each edge. For the case of K = 2, the problem has been well studied, with several provably good polynomial time-approximation algorithms reported in the literature, which enforce one constraint while approximating the other. We first focus on an optimization version of the problem where we enforce the first constraint and approximate the other K - 1 constraints. We present an O(mn log log log n + mn/epsi) time (1 + epsi)(K - 1)-approximation algorithm and an O(mn log log log n + m(n/epsi) K-1 ) time (1 + epsi)-approximation algorithm, for any epsi > 0. When K is reduced to 2, both algorithms produce an (1 + epsi)-approximation with a time complexity better than that of the best-known algorithm designed for this special case. We then study the decision version of the problem and present an O(m(n/epsi) K-1 ) time algorithm which either finds a feasible solution or confirms that there does not exist a source-destination path whose first weight is bounded by the first constraint and whose every other weight is bounded by (1 - epsi) times the corresponding constraint. If there exists an H-hop source-destination path whose first weight is bounded by the first constraint and whose every other weight is bounded by (1 - epsi) times the corresponding constraint, our algorithm finds a feasible path in O(m(H/epsi) K-1 ) time. This algorithm improves previous best-known algorithms with O((m + n log n)n/epsi) time for K = 2 and 0(mn(n/epsi) K-1 ) time for if ges 2.
Author Thulasiraman, K.
Jian Tang
Guoliang Xue
Weiyi Zhang
Author_xml – sequence: 1
  surname: Guoliang Xue
  fullname: Guoliang Xue
  organization: Dept. of Comput. Sci. & Eng., Arizona State Univ., Tempe, AZ
– sequence: 2
  surname: Weiyi Zhang
  fullname: Weiyi Zhang
– sequence: 3
  surname: Jian Tang
  fullname: Jian Tang
– sequence: 4
  givenname: K.
  surname: Thulasiraman
  fullname: Thulasiraman, K.
BookMark eNp9kUlPwzAQhS0EEmW5I3GJOMApZbzWOVYVq9gpZ8tJnWKU2MVOJPj3OBRx4IBG8vjwPc_4vR206bwzCB1gGGMMxen87mw-JgCTcZEOTDbQCHMuc8KF2Ex3EDQXoiDbaCfGNwBMgYgRun7wzafzrdVNNretyaarVfAfttWd9S6bNksfbPfaxqz2Ibvtm87mM-9iF7R1ZpE9-ufsyfeddcs9tFXrJpr9n76LXs7P5rPL_Ob-4mo2vckrymmXM01LWhdYgyllSWlNidGpMJBCSsM0KU0ti0rWrNSFZtWCU83khFVQkAUmdBedrN9Ni773JnaqtbEyTaOd8X1UUoLgmANL5PG_JGWccCknCTz6A775Prj0CyUFFYITGCBYQ1XwMQZTq1VIPoVPhUENGaghAzVkoNYZJIn4I6ls9-3s4F_zn_BwLbTGmN85jAngRNIvxvaV1w
CODEN IEANEP
CitedBy_id crossref_primary_10_1109_TCC_2015_2491939
crossref_primary_10_1109_TMC_2012_158
crossref_primary_10_1109_TMM_2012_2232645
crossref_primary_10_1007_s10878_013_9611_2
crossref_primary_10_1016_j_comcom_2010_02_005
crossref_primary_10_1109_JSAC_2017_2760158
crossref_primary_10_1007_s10878_013_9693_x
crossref_primary_10_1007_s11107_021_00951_x
crossref_primary_10_1016_j_comnet_2010_05_017
crossref_primary_10_1109_TR_2010_2103592
crossref_primary_10_1155_2012_394721
crossref_primary_10_1155_2014_694847
crossref_primary_10_1007_s11390_024_2635_5
crossref_primary_10_1016_j_cie_2014_08_003
crossref_primary_10_1109_TNET_2019_2936015
crossref_primary_10_1088_1742_6596_1827_1_012163
crossref_primary_10_1016_j_asoc_2012_03_013
crossref_primary_10_1109_TCAD_2018_2846652
crossref_primary_10_1016_j_adhoc_2021_102633
crossref_primary_10_1177_1550147718805689
crossref_primary_10_1109_TC_2014_2366762
crossref_primary_10_1155_2018_2893494
crossref_primary_10_1109_LCOMM_2013_052413_130811
crossref_primary_10_1109_TC_2011_61
crossref_primary_10_1007_s11107_010_0282_y
crossref_primary_10_1016_j_comnet_2011_09_013
crossref_primary_10_1145_2656864_2656865
crossref_primary_10_1109_COMST_2017_2749760
crossref_primary_10_1109_TMM_2018_2823907
crossref_primary_10_1016_j_asoc_2012_10_018
crossref_primary_10_1016_j_jnca_2011_09_009
crossref_primary_10_1007_s10878_015_9934_2
crossref_primary_10_1109_TNET_2017_2747588
crossref_primary_10_1109_TNSM_2022_3164335
crossref_primary_10_3390_fi8030038
crossref_primary_10_1016_j_jnca_2016_10_005
crossref_primary_10_1080_10798587_2011_10643216
crossref_primary_10_1109_TNET_2011_2161329
crossref_primary_10_1016_j_comnet_2012_03_011
crossref_primary_10_1109_JSAC_2018_2804045
crossref_primary_10_1109_TBC_2012_2198970
crossref_primary_10_1002_sec_364
crossref_primary_10_1109_ACCESS_2023_3316211
crossref_primary_10_1109_TCAD_2012_2190824
crossref_primary_10_1109_TC_2013_54
crossref_primary_10_1016_j_jnca_2013_09_010
crossref_primary_10_1109_TCSII_2009_2022203
Cites_doi 10.1145/321906.321909
10.1007/978-0-387-35170-4_12
10.1109/TNET.2006.890089
10.1287/opre.35.1.70
10.1016/j.comnet.2004.07.016
10.1016/S0020-0190(02)00205-3
10.1002/net.3230140109
10.1109/INFCOM.2001.916277
10.1016/S1389-1286(01)00222-5
10.1016/S0167-6377(01)00069-4
10.1109/INFCOM.2004.1354524
10.1109/49.536364
10.1109/90.993305
10.1287/opre.25.6.920
10.1109/49.12889
10.1109/INFCOM.2004.1354543
10.1287/moor.17.1.36
10.1109/INFCOM.2001.916276
10.1109/TC.2006.109
10.1109/TNET.2003.815299
10.1016/S1389-1286(00)00209-7
10.1109/TNET.2004.836112
10.1109/90.779205
10.1109/TCOMM.2003.811420
10.1109/90.779203
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TNET.2007.900712
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database
Technology Research Database
Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2566
EndPage 669
ExternalDocumentID 2331149421
10_1109_TNET_2007_900712
4460528
Genre orig-research
GroupedDBID -DZ
-~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
85S
8US
97E
9M8
AAJGR
AAKMM
AALFJ
AARMG
AASAJ
AAWTH
AAWTV
ABAZT
ABPPZ
ABQJQ
ABVLG
ACGFS
ACGOD
ACIWK
ACM
ADBCU
ADL
AEBYY
AEFXT
AEJOY
AENSD
AETEA
AETIX
AFWIH
AFWXC
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AIKLT
AKJIK
AKQYR
AKRVB
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BDXCO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CCLIF
CS3
D0L
EBS
EJD
FEDTE
GUFHI
HF~
HGAVV
HZ~
H~9
I07
ICLAB
IEDLZ
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
LHSKQ
M43
MVM
O9-
OCL
P1C
P2P
PQQKQ
RIA
RIE
RNS
ROL
TN5
UPT
UQL
VH1
XOL
YR2
ZCA
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c353t-4a3b3f91a0eb8b33f32eaeae102988e4a2bef89c8f4ba9a4cd53a4874c092d123
IEDL.DBID RIE
ISICitedReferencesCount 97
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000256967100013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-6692
IngestDate Sun Nov 09 13:44:48 EST 2025
Thu Oct 02 05:19:17 EDT 2025
Sun Nov 30 05:12:58 EST 2025
Sat Nov 29 03:05:14 EST 2025
Tue Nov 18 22:31:03 EST 2025
Tue Aug 26 16:47:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c353t-4a3b3f91a0eb8b33f32eaeae102988e4a2bef89c8f4ba9a4cd53a4874c092d123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 863665207
PQPubID 23500
PageCount 14
ParticipantIDs proquest_miscellaneous_880651504
crossref_primary_10_1109_TNET_2007_900712
proquest_miscellaneous_34525887
ieee_primary_4460528
crossref_citationtrail_10_1109_TNET_2007_900712
proquest_journals_863665207
PublicationCentury 2000
PublicationDate 2008-06-01
PublicationDateYYYYMMDD 2008-06-01
PublicationDate_xml – month: 06
  year: 2008
  text: 2008-06-01
  day: 01
PublicationDecade 2000
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE/ACM transactions on networking
PublicationTitleAbbrev TNET
PublicationYear 2008
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References xue (ref30) 2003
ref13
ref12
ref15
ref14
ref31
ref11
ref32
ref10
garey (ref6) 1979
ref1
ref17
ref16
ref19
ref18
chen (ref3) 1998
xue (ref28) 2000
cormen (ref4) 2001
ref24
ref23
xue (ref29) 2003; 51
ref25
ref20
ref22
ref21
ref27
ref8
ref7
(ref2) 0
ref9
ref5
west (ref26) 1996
References_xml – ident: ref10
  doi: 10.1145/321906.321909
– ident: ref16
  doi: 10.1007/978-0-387-35170-4_12
– ident: ref31
  doi: 10.1109/TNET.2006.890089
– year: 0
  ident: ref2
  publication-title: BRITE
– ident: ref24
  doi: 10.1287/opre.35.1.70
– ident: ref14
  doi: 10.1016/j.comnet.2004.07.016
– ident: ref5
  doi: 10.1016/S0020-0190(02)00205-3
– ident: ref11
  doi: 10.1002/net.3230140109
– ident: ref12
  doi: 10.1109/INFCOM.2001.916277
– ident: ref22
  doi: 10.1016/S1389-1286(01)00222-5
– ident: ref15
  doi: 10.1016/S0167-6377(01)00069-4
– ident: ref1
  doi: 10.1109/INFCOM.2004.1354524
– ident: ref23
  doi: 10.1109/49.536364
– ident: ref32
  doi: 10.1109/90.993305
– year: 1979
  ident: ref6
  publication-title: Computers and Intractability A Guide to the Theory of NP-Completeness
– ident: ref20
  doi: 10.1287/opre.25.6.920
– ident: ref25
  doi: 10.1109/49.12889
– ident: ref19
  doi: 10.1109/INFCOM.2004.1354543
– ident: ref9
  doi: 10.1287/moor.17.1.36
– ident: ref7
  doi: 10.1109/INFCOM.2001.916276
– start-page: 223
  year: 2003
  ident: ref30
  article-title: Routing with many additive QoS constraints
  publication-title: Proc IEEE ICC
– ident: ref27
  doi: 10.1109/TC.2006.109
– start-page: 874
  year: 1998
  ident: ref3
  article-title: On finding multi-constrained paths
  publication-title: Proc IEEE ICC
– ident: ref18
  doi: 10.1109/TNET.2003.815299
– year: 1996
  ident: ref26
  publication-title: Introduction to Graph Theory
– start-page: 271
  year: 2000
  ident: ref28
  article-title: primal-dual algorithms for computing weight-constrained shortest paths and weight-constrained minimum spanning trees
  publication-title: Proc IEEE IPCCC
– ident: ref13
  doi: 10.1016/S1389-1286(00)00209-7
– year: 2001
  ident: ref4
  publication-title: Introduction to Algorithms
– ident: ref21
  doi: 10.1109/TNET.2004.836112
– ident: ref17
  doi: 10.1109/90.779205
– volume: 51
  start-page: 817
  year: 2003
  ident: ref29
  article-title: Minimum cost QoS multicast and unicast routing in communication networks
  publication-title: IEEE Trans Commun
  doi: 10.1109/TCOMM.2003.811420
– ident: ref8
  doi: 10.1109/90.779203
SSID ssj0013026
Score 2.2887115
Snippet We study the multi-constrained quality-of-service (QoS) routing problem where one seeks to find a path from a source to a destination in the presence of K ges...
When K is reduced to 2, both algorithms produce an (1 + epsi)-approximation with a time complexity better than that of the best-known algorithm designed for...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 656
SubjectTerms Additives
Algorithm design and analysis
Algorithms
Approximation
Approximation algorithms
Computer networks
Computer science
Constraint optimization
Costs
Delay
Efficient approximation algorithms
Mathematical analysis
Mathematical models
multiple additive constraints
Optimization
Polynomials
Quality of service
quality-of-service (QoS) routing
Routing
Routing (telecommunications)
Studies
Time factors
Title Polynomial Time Approximation Algorithms for Multi-Constrained QoS Routing
URI https://ieeexplore.ieee.org/document/4460528
https://www.proquest.com/docview/863665207
https://www.proquest.com/docview/34525887
https://www.proquest.com/docview/880651504
Volume 16
WOSCitedRecordID wos000256967100013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2566
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013026
  issn: 1063-6692
  databaseCode: RIE
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS-wwEB5UfNCHs16xx1sefBGM223aJnlcRBGRRXEV30qSprqwbmUvh-O_N5N2V8ULSF8KTZqQSTIz-fLNABwURhhj84gyxiyNeZFQqWJJdcqd-lVhkXgW_90l73TE_b28moOjGRfGWusvn9ljfPVYfl6aCR6VNWME8SIxD_Oc84qr9YYYhD61mvNwGE1TGU0hyVA2u53TbhWsUKJGjT6oIJ9T5dNG7LXLWeN3_VqBP7UVSdqV2Fdhzg7WoDHN0EDqBbsGy-_CDa7DxVXZf0EasquK1A_SxoDi_3sVe5G0-w_lsDd-fBoRZ8kST82lmNDTp5GwObkubwjeIHI_24Dbs9PuyTmtcylQwxI2prFimhWypUKrhWasYJFV7mlhCHZhYxVpWwhpRBFr5aRl8oQp58zEJpRR7tTbJiwMyoHdAtLKdcskyEEX2jnXUhdcG1fLNeCMJZsH0JwOb2bqQOPY0X7mHY5QZigQzH_Js0ogARzOajxXQTZ-KLuOApiVq8c-gO2pBLN6FY4ykbI0TaKQB7A_--qWD2IiamDLyShjiOu6jTYA8k0JgdCzM5vjv1-3vA1L1R0SPJnZgYXxcGJ3YdH8G_dGwz0_SV8BCjDllQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED51Y9LYAxvb0EJh8wMvSHhNbCexHyu0abCuGlpBe4tsx4FKpUH9geC_x-ekBQSbNOUlUuzY8tm-O3_-7gBeVVZa60pGOeeOirxKqdJCUZPlXv3quEoDi__TIB8O5e2tuu7AmzUXxjkXLp-5U3wNWH5Z2yUelfUEgnhMbsCjVAiWNGyt35hBHJKreR-H0yxTbAVKxqo3Gp6NmnCFCnUq-0sJhawq_2zFQb-c7z6sZ3vwpLUjSb8R_FPouOk-7K5yNJB2ye7Dzh8BBw_g_XU9-YlEZF8VyR-kjyHFf4wb_iLpTz7Xs_Hiy9c58bYsCeRciik9QyIJV5IP9Q3BO0T-Z4fw8fxs9PaCttkUqOUpX1ChueGVSnTsjDScV5w57Z8Eg7BLJzQzrpLKykoY7eVly5Rr784IGytWegX3DDan9dQdAUlKk9gUWejSePdamSo31tfyDXhzyZUR9FbDW9g21Dh2dFIElyNWBQoEM2DmRSOQCF6va3xrwmzcU_YABbAu1459BN2VBIt2Hc4LmfEsS1mcR3Cy_uoXEKIieurq5bzgiOz6rTYCckcJieCzN5zF8_-3fALbF6OrQTF4N7zswuPmRgme07yAzcVs6V7Clv2-GM9nx2HC_gId9-jc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polynomial+Time+Approximation+Algorithms+for+Multi-Constrained+QoS+Routing&rft.jtitle=IEEE%2FACM+transactions+on+networking&rft.au=Guoliang+Xue&rft.au=Weiyi+Zhang&rft.au=Jian+Tang&rft.au=Thulasiraman%2C+K.&rft.date=2008-06-01&rft.issn=1063-6692&rft.eissn=1558-2566&rft.volume=16&rft.issue=3&rft.spage=656&rft.epage=669&rft_id=info:doi/10.1109%2FTNET.2007.900712&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNET_2007_900712
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6692&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6692&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6692&client=summon