Gradations in protein dynamics captured by experimental NMR are not well represented by AlphaFold2 models and other computational metrics
[Display omitted] •AlphaFold2’s pLDDT can differentiate between ordered or disordered residues.•AlphaFold2’s pLDDT does not reflect gradations on residue dynamics.•Biases in the training sets result in predicted rigidity of flexible regions.•Conformational diversity in NMR ensembles is associated wi...
Uložené v:
| Vydané v: | Journal of molecular biology Ročník 437; číslo 2; s. 168900 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Netherlands
Elsevier Ltd
15.01.2025
|
| Predmet: | |
| ISSN: | 0022-2836, 1089-8638, 1089-8638 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | [Display omitted]
•AlphaFold2’s pLDDT can differentiate between ordered or disordered residues.•AlphaFold2’s pLDDT does not reflect gradations on residue dynamics.•Biases in the training sets result in predicted rigidity of flexible regions.•Conformational diversity in NMR ensembles is associated with lower pLDDT values.
The advent of accurate methods to predict the fold of proteins initiated by AlphaFold2 is rapidly changing our understanding of proteins and helping their design. However, these methods are mainly trained on protein structures determined with X-ray diffraction, where the protein is packed in crystals at often cryogenic temperatures. They can therefore only reliably cover well-folded parts of proteins that experience few, if any, conformational changes. Experimentally, solution nuclear magnetic resonance (NMR) is the experimental method of choice to gain insight into protein dynamics at near physiological conditions. Computationally, methods such as molecular dynamics (MD) simulations and Normal Mode Analysis (NMA) allow the estimation of a protein’s intrinsic flexibility based on a single protein structure. This work addresses, on a large scale, the relationships for proteins between the AlphaFold2 pLDDT metric, the observed dynamics in solution from NMR metrics, interpreted MD simulations, and the computed dynamics with NMA from single AlphaFold2 models and NMR ensembles. We observe that these metrics agree well for rigid residues that adopt a single well-defined conformation, which are clearly distinct from residues that exhibit dynamic behavior and adopt multiple conformations. This direct order/disorder categorisation is reflected in the correlations observed between the parameters, but becomes very limited when considering only the likely dynamic residues. The gradations of dynamics observed by NMR in flexible protein regions are therefore not represented by these computational approaches. Our results are interactively available for each protein from https://bio2byte.be/af_nmr_nma/. |
|---|---|
| AbstractList | The advent of accurate methods to predict the fold of proteins initiated by AlphaFold2 is rapidly changing our understanding of proteins and helping their design. However, these methods are mainly trained on protein structures determined with X-ray diffraction, where the protein is packed in crystals at often cryogenic temperatures. They can therefore only reliably cover well-folded parts of proteins that experience few, if any, conformational changes. Experimentally, solution nuclear magnetic resonance (NMR) is the experimental method of choice to gain insight into protein dynamics at near physiological conditions. Computationally, methods such as molecular dynamics (MD) simulations and Normal Mode Analysis (NMA) allow the estimation of a protein's intrinsic flexibility based on a single protein structure. This work addresses, on a large scale, the relationships for proteins between the AlphaFold2 pLDDT metric, the observed dynamics in solution from NMR metrics, interpreted MD simulations, and the computed dynamics with NMA from single AlphaFold2 models and NMR ensembles. We observe that these metrics agree well for rigid residues that adopt a single well-defined conformation, which are clearly distinct from residues that exhibit dynamic behavior and adopt multiple conformations. This direct order/disorder categorisation is reflected in the correlations observed between the parameters, but becomes very limited when considering only the likely dynamic residues. The gradations of dynamics observed by NMR in flexible protein regions are therefore not represented by these computational approaches. Our results are interactively available for each protein from https://bio2byte.be/af_nmr_nma/.The advent of accurate methods to predict the fold of proteins initiated by AlphaFold2 is rapidly changing our understanding of proteins and helping their design. However, these methods are mainly trained on protein structures determined with X-ray diffraction, where the protein is packed in crystals at often cryogenic temperatures. They can therefore only reliably cover well-folded parts of proteins that experience few, if any, conformational changes. Experimentally, solution nuclear magnetic resonance (NMR) is the experimental method of choice to gain insight into protein dynamics at near physiological conditions. Computationally, methods such as molecular dynamics (MD) simulations and Normal Mode Analysis (NMA) allow the estimation of a protein's intrinsic flexibility based on a single protein structure. This work addresses, on a large scale, the relationships for proteins between the AlphaFold2 pLDDT metric, the observed dynamics in solution from NMR metrics, interpreted MD simulations, and the computed dynamics with NMA from single AlphaFold2 models and NMR ensembles. We observe that these metrics agree well for rigid residues that adopt a single well-defined conformation, which are clearly distinct from residues that exhibit dynamic behavior and adopt multiple conformations. This direct order/disorder categorisation is reflected in the correlations observed between the parameters, but becomes very limited when considering only the likely dynamic residues. The gradations of dynamics observed by NMR in flexible protein regions are therefore not represented by these computational approaches. Our results are interactively available for each protein from https://bio2byte.be/af_nmr_nma/. [Display omitted] •AlphaFold2’s pLDDT can differentiate between ordered or disordered residues.•AlphaFold2’s pLDDT does not reflect gradations on residue dynamics.•Biases in the training sets result in predicted rigidity of flexible regions.•Conformational diversity in NMR ensembles is associated with lower pLDDT values. The advent of accurate methods to predict the fold of proteins initiated by AlphaFold2 is rapidly changing our understanding of proteins and helping their design. However, these methods are mainly trained on protein structures determined with X-ray diffraction, where the protein is packed in crystals at often cryogenic temperatures. They can therefore only reliably cover well-folded parts of proteins that experience few, if any, conformational changes. Experimentally, solution nuclear magnetic resonance (NMR) is the experimental method of choice to gain insight into protein dynamics at near physiological conditions. Computationally, methods such as molecular dynamics (MD) simulations and Normal Mode Analysis (NMA) allow the estimation of a protein’s intrinsic flexibility based on a single protein structure. This work addresses, on a large scale, the relationships for proteins between the AlphaFold2 pLDDT metric, the observed dynamics in solution from NMR metrics, interpreted MD simulations, and the computed dynamics with NMA from single AlphaFold2 models and NMR ensembles. We observe that these metrics agree well for rigid residues that adopt a single well-defined conformation, which are clearly distinct from residues that exhibit dynamic behavior and adopt multiple conformations. This direct order/disorder categorisation is reflected in the correlations observed between the parameters, but becomes very limited when considering only the likely dynamic residues. The gradations of dynamics observed by NMR in flexible protein regions are therefore not represented by these computational approaches. Our results are interactively available for each protein from https://bio2byte.be/af_nmr_nma/. The advent of accurate methods to predict the fold of proteins initiated by AlphaFold2 is rapidly changing our understanding of proteins and helping their design. However, these methods are mainly trained on protein structures determined with X-ray diffraction, where the protein is packed in crystals at often cryogenic temperatures. They can therefore only reliably cover well-folded parts of proteins that experience few, if any, conformational changes. Experimentally, solution nuclear magnetic resonance (NMR) is the experimental method of choice to gain insight into protein dynamics at near physiological conditions. Computationally, methods such as molecular dynamics (MD) simulations and Normal Mode Analysis (NMA) allow the estimation of a protein's intrinsic flexibility based on a single protein structure. This work addresses, on a large scale, the relationships for proteins between the AlphaFold2 pLDDT metric, the observed dynamics in solution from NMR metrics, interpreted MD simulations, and the computed dynamics with NMA from single AlphaFold2 models and NMR ensembles. We observe that these metrics agree well for rigid residues that adopt a single well-defined conformation, which are clearly distinct from residues that exhibit dynamic behavior and adopt multiple conformations. This direct order/disorder categorisation is reflected in the correlations observed between the parameters, but becomes very limited when considering only the likely dynamic residues. The gradations of dynamics observed by NMR in flexible protein regions are therefore not represented by these computational approaches. Our results are interactively available for each protein from https://bio2byte.be/af_nmr_nma/. |
| ArticleNumber | 168900 |
| Author | Vranken, Wim Dixit, Bhawna Díaz, Adrián Ghysels, An Gavalda-Garcia, Jose |
| Author_xml | – sequence: 1 givenname: Jose surname: Gavalda-Garcia fullname: Gavalda-Garcia, Jose organization: Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, Brussels, Belgium – sequence: 2 givenname: Bhawna surname: Dixit fullname: Dixit, Bhawna organization: Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, Brussels, Belgium – sequence: 3 givenname: Adrián surname: Díaz fullname: Díaz, Adrián organization: Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, Brussels, Belgium – sequence: 4 givenname: An surname: Ghysels fullname: Ghysels, An organization: IBiTech - BioMMedA group, Ghent University, Belgium – sequence: 5 givenname: Wim surname: Vranken fullname: Vranken, Wim email: wim.vranken@vub.be organization: Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, Brussels, Belgium |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39647695$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc1O3TAQha2KqlygD9BN5SWbXPyT-CZihRBQJFokBGvLPxPhq8RObQd6H6FvXUNg0wWrWcz5zujMOUB7PnhA6Bsla0qoONmut6NeM8LqNRVtR8gntKKk7apW8HYPrQhhrGItF_voIKUtIaThdfsF7fNO1BvRNSv09yoqq7ILPmHn8RRDhjLtzqvRmYSNmvIcwWK9w_BnguhG8FkN-NfPO6wiYB8yfoZhwBGmCKksF_HZMD2qyzBYhsdgYUhYeYtDfoSITRinOb9eLU4j5FhOHaHPvRoSfH2bh-jh8uL-_Ed1c3t1fX52Uxne8FxxrRVl2nBi-1qYmvU9tURQDQ0oAxvV6QbAaAqKCduSpiaNYVR3PaGKbXp-iI4X35L19wwpy9ElUxIoD2FOktNaNC0THS3S72_SWY9g5VTSq7iT7-8rgs0iMDGkFKGXxi25clRukJTIl6LkVpai5EtRcimqkPQ_8t38I-Z0Yco34clBlMk48Aasi2CytMF9QP8DCciuBg |
| CitedBy_id | crossref_primary_10_1360_SSC_2025_0055 crossref_primary_10_3389_fviro_2025_1501616 |
| Cites_doi | 10.1021/ja00039a052 10.1038/s41467-020-20177-1 10.1021/cr900095e 10.1021/acs.jpcb.8b00229 10.1002/prot.340230412 10.1073/pnas.1800168115 10.3390/biom12101467 10.1093/nar/gkac1050 10.1038/s41592-022-01685-y 10.1002/prot.22756 10.1002/prot.10286 10.1002/(SICI)1097-0134(19991201)37:4<654::AID-PROT15>3.0.CO;2-J 10.1021/jacs.3c10941 10.1002/jcc.23076 10.1038/s41586-023-06415-8 10.1016/S0006-3495(01)76033-X 10.25080/Majora-92bf1922-00a 10.1021/bi3001825 10.1016/j.jmr.2023.107481 10.1038/ncomms3741 10.1016/j.compbiolchem.2017.08.011 10.1038/nmeth.3324 10.1073/pnas.1323440111 10.1093/nargab/lqae082 10.1016/j.str.2022.04.005 10.1021/acs.jpcb.8b12220 10.1109/TCBB.2008.88 10.1016/j.sbi.2019.12.005 10.1007/978-1-0716-0270-6_14 10.1126/science.add2187 10.1016/j.molcel.2007.09.017 10.1021/ja054842f 10.1021/bi00138a005 10.1038/s41586-023-06622-3 10.1002/jcc.1160 10.1093/nar/gkt960 10.1007/s10858-007-9208-0 10.1186/s12859-014-0427-6 10.1186/1471-2105-6-52 10.1109/TCBB.2008.140 10.1021/jacs.0c03217 10.1002/prot.26382 10.1017/S0033583516000019 10.1002/pro.4353 10.1038/s41586-021-03819-2 10.1093/nar/gkaa391 10.1002/cphc.202200746 10.1016/j.pnmrs.2014.08.001 10.1093/bioinformatics/btac202 10.1038/s42003-023-04488-9 10.1093/nar/28.1.235 10.1093/bioinformatics/btt473 10.1371/journal.pcbi.1005242 10.1002/pro.4466 10.1006/jmbi.1999.3025 10.1093/nar/gkab1061 10.1038/s41594-022-00849-w 10.1126/science.270.5238.935 10.1093/nar/gku270 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd Copyright © 2024 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2024 Elsevier Ltd – notice: Copyright © 2024 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.jmb.2024.168900 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry Biology |
| EISSN | 1089-8638 |
| ExternalDocumentID | 39647695 10_1016_j_jmb_2024_168900 S0022283624005308 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -DZ -ET -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5RE 5VS 7-5 71M 85S 8P~ 9JM AAAJQ AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AARKO AAXKI AAXUO ABFNM ABFRF ABGSF ABJNI ABLJU ABMAC ABOCM ABPPZ ABUDA ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADEZE ADUVX ADVLN AEBSH AEFWE AEHWI AEIPS AEKER AENEX AFFNX AFJKZ AFKWA AFTJW AFXIZ AGEKW AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CJTIS CS3 DM4 DU5 EBS EFBJH EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GX1 HMG IH2 IHE J1W KOM LG5 LUGTX LX2 LZ5 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SEW SPCBC SSI SSU SSZ T5K TWZ VQA WH7 XPP YQT ZMT ZU3 ~G- .55 .GJ 186 29L 3O- 53G 9DU AAQXK AATTM AAYWO AAYXX ABDPE ABEFU ABUFD ABWVN ABXDB ACKIV ACLOT ACRPL ACVFH ADCNI ADFGL ADIYS ADMUD ADNMO ADXHL AEUPX AFPUW AGHFR AGQPQ AGRDE AI. AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CAG CITATION COF EFKBS EFLBG EJD FEDTE FGOYB G-2 HLW HVGLF HX~ HZ~ H~9 K-O MVM NEJ R2- SBG SIN UQL VH1 WUQ X7M XOL Y6R YYP ZGI ZKB ~HD ~KM AGCQF AGRNS BNPGV CGR CUY CVF ECM EIF NPM SSH 7X8 |
| ID | FETCH-LOGICAL-c353t-3bba12bc30df46c42ff1d061be5eace7a9b5eecb1ea26d805405c21b9f01a27f3 |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001392849800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0022-2836 1089-8638 |
| IngestDate | Sat Sep 27 18:14:38 EDT 2025 Mon Jul 21 06:04:19 EDT 2025 Sat Nov 29 04:36:13 EST 2025 Tue Nov 18 22:27:33 EST 2025 Sat Jan 18 16:10:16 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | structural biology nuclear magnetic resonance large-scale analysis protein dynamics AlphaFold2 |
| Language | English |
| License | Copyright © 2024 Elsevier Ltd. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c353t-3bba12bc30df46c42ff1d061be5eace7a9b5eecb1ea26d805405c21b9f01a27f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 39647695 |
| PQID | 3146582691 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_3146582691 pubmed_primary_39647695 crossref_citationtrail_10_1016_j_jmb_2024_168900 crossref_primary_10_1016_j_jmb_2024_168900 elsevier_sciencedirect_doi_10_1016_j_jmb_2024_168900 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-15 |
| PublicationDateYYYYMMDD | 2025-01-15 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Journal of molecular biology |
| PublicationTitleAlternate | J Mol Biol |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | R.B. Fenwick, H. van den Bedem, J.S. Fraser, P.E. Wright, Integrated description of protein dynamics from room-temperature X-ray crystallography and NMR. Proc. Natl. Acad. Sci. 111 (2014) E445–E454. URL Li (b0310) 2023; 352 Kovermann, Rogne, Wolf-Watz (b0050) 2016; 49 helix unfolding-folding dynamics, J. Phys. Chem. B 122 (2018) 3790–3800. URL: doi: 10.1021/acs.jpcb.8b00229. P. Robustelli, S. Piana, D.E. Shaw, Mechanism of coupled folding-upon-binding of an intrinsically disordered protein, J. Am. Chem. Soc. 142 (2020) 11092–11101. URL: doi: 10.1021/jacs.0c03217. Haliloglu, Bahar (b0155) 1999; 37 W. Rieping, W.F. Vranken, Validation of archived chemical shifts through atomic coordinates, Prot.: Struct., Funct., Bioinform. 78 (2010) 2482–2489. URL deviation, Prot.: Struct., Funct., Bioinform. 50 (2003) 437–450. URL Vranken (b0215) 2014; 82 Bahar, Lezon, Bakan, Shrivastava (b0130) 2010; 110 Acharyya (b0255) 2019; 123 McKinney (b0160) 2010 Varadi (b0065) 2021; 50 L. Heo, M. Feig, Multi-state modeling of G-protein coupled receptors at experimental accuracy, Prot.: Struct., Funct., Bioinform. 90 (2022) 1873–1885. URL Hoch (b0170) 2023; 51 Abrusán, Marsh (b0270) 2016; 12 Varadi (b0090) 2014; 42 E. Cilia, R. Pancsa, P. Tompa, T. Lenaerts, W.F. Vranken, From protein sequence to dynamics and disorder with DynaMine, Nat. Commun. 4 (2013) 2741. URL Noé, De Fabritiis, Clementi (b0055) 2020; 60 DiNitto (b0290) 2007; 28 D. Chakravarty, L.L. Porter, AlphaFold2 fails to predict protein fold switching, Prot. Sci. 31, e4353 (2022). URL J. Jumper et al., Highly accurate protein structure prediction with AlphaFold, Nature 596 (2021) 583–589. URL Ghysels, Miller, Pickard, Brooks (b0210) 2012; 33 Taylor, Greenfield, Wu, Privalov (b0265) 1999; 291 Bryson (b0250) 1995; 270 Durairaj (b0015) 2023; 622 M.V. Berjanskii, D.S. Wishart, A simple method to predict protein flexibility using secondary chemical shifts. J. Am. Chem. Soc. 127 (2005) 14970–14971. URL: doi: 10.1021/ja054842f. Berman (b0190) 2000; 28 P.R. Romero et al., BioMagResBank (BMRB) as a resource for structural biology, In: Z. Gáspári (ed.) Structural Bioinformatics, vol. 2112, 187–218 (Springer, US, New York, NY, 2020). URL . Series Title: Methods in Molecular Biology. and C Akdel (b0300) 2022; 29 Hollup, Salensminde, Reuter (b0205) 2005; 6 C. Camilloni, A. De Simone, W.F. Vranken, M. Vendruscolo, Determination of secondary structure populations in disordered states of proteins using nuclear magnetic resonance chemical shifts. Biochemistry 51 (2012) 2224–2231. URL: doi: 10.1021/bi3001825. J. Dauparas et al., Robust deep learning–based protein sequence design using ProteinMPNN, Science 378 (2022) 49–56. URL Mariani, Biasini, Barbato, Schwede (b0060) 2013; 29 J.L. Watson et al., De novo design of protein structure and function with RFdiffusion, Nature 620 (2023) 1089–1100. URL H.K. Wayment-Steele et al., Predicting multiple conformations via sequence clustering and AlphaFold2, Nature 1–8 (2023). URL M.J. Fossat, A.E. Posey, R.V. Pappu, Uncovering the contributions of charge regulation to the stability of single alpha helices, ChemPhysChem 24 (2023) e202200746. URL Piovesan, Monzon, Tosatto (b0075) 2022; 31 Fowler, Sljoka, Williamson (b0125) 2020; 11 Bordin (b0010) 2023; 6 D. Frishman, P. Argos, Knowledge-based protein secondary structure assignment, Prot.: Struct., Funct., Bioinform. 23 (1995) 566–579. URL Saldaño (b0295) 2022; 38 Cilia, Pancsa, Tompa, Lenaerts, Vranken (b0225) 2014; 42 van den Bedem, Fraser (b0085) 2015; 12 Brueschweiler (b0145) 1992; 114 Bruley, Mornon, Duprat, Callebaut (b0305) 2022; 12 Doruker, Jernigan, Bahar (b0150) 2002; 23 Gavalda-Garcia (b0180) 2024; 6 L.L. Porter, L.L. Looger, Extant fold-switching proteins are widespread, Proc. Natl. Acad. Sci. 115 (2018) 5968–5973. URL Jeong, Berman, Przytycka (b0240) 2008; 5 M.L. Hekkelman, I. de Vries, R.P. Joosten, A. Perrakis, AlphaFill: enriching AlphaFold models with ligands and cofactors, Nat. Methods 20 (2023) 205–213. URL Barbato, Ikura, Kay, Pastor, Bax (b0095) 1992; 31 Saldaño (b0280) 2022; 38 Berjanskii, Wishart (b0110) 2008; 40 Atilgan (b0140) 2001; 80 C.S.H. Jesus, P.F. Cruz, L.G. Arnaut, R.M.M. Brito, C. Serpa, One peptide reveals the two faces of S.P. Tiwari et al., Webnm@ v2. 0: Web server and services for comparing protein flexibility, BMC Bioinform. 15 (2014) 1–12. AlphaFold Protein Structure Database. URL S.C. Lovell et al., Structure validation by C Orlando, Raimondi, Kagami, Vranken (b0115) 2020; 48 Fowler, Williamson (b0120) 2022; 30 Aydin, Altunbasak, Erdogan (b0245) 2011; 8 K.H. Sumida et al., Improving protein expression, stability, and function with ProteinMPNN, J. Am. Chem. Soc., 146 (2024) 2054–2061. URL: doi: 10.1021/jacs.3c10941. geometry Sabzekar, Naghibzadeh, Eghdami, Aydin (b0235) 2017; 70 pandas development team, T. pandas-dev/pandas: Pandas, (2020). URL Varadi (10.1016/j.jmb.2024.168900_b0065) 2021; 50 Gavalda-Garcia (10.1016/j.jmb.2024.168900_b0180) 2024; 6 McKinney (10.1016/j.jmb.2024.168900_b0160) 2010 Taylor (10.1016/j.jmb.2024.168900_b0265) 1999; 291 Fowler (10.1016/j.jmb.2024.168900_b0125) 2020; 11 Li (10.1016/j.jmb.2024.168900_b0310) 2023; 352 Kovermann (10.1016/j.jmb.2024.168900_b0050) 2016; 49 Berman (10.1016/j.jmb.2024.168900_b0190) 2000; 28 Brueschweiler (10.1016/j.jmb.2024.168900_b0145) 1992; 114 Berjanskii (10.1016/j.jmb.2024.168900_b0110) 2008; 40 10.1016/j.jmb.2024.168900_b0175 Bruley (10.1016/j.jmb.2024.168900_b0305) 2022; 12 Varadi (10.1016/j.jmb.2024.168900_b0090) 2014; 42 10.1016/j.jmb.2024.168900_b0135 Noé (10.1016/j.jmb.2024.168900_b0055) 2020; 60 Hoch (10.1016/j.jmb.2024.168900_b0170) 2023; 51 Jeong (10.1016/j.jmb.2024.168900_b0240) 2008; 5 Cilia (10.1016/j.jmb.2024.168900_b0225) 2014; 42 Fowler (10.1016/j.jmb.2024.168900_b0120) 2022; 30 Ghysels (10.1016/j.jmb.2024.168900_b0210) 2012; 33 10.1016/j.jmb.2024.168900_b0260 10.1016/j.jmb.2024.168900_b0020 10.1016/j.jmb.2024.168900_b0185 van den Bedem (10.1016/j.jmb.2024.168900_b0085) 2015; 12 10.1016/j.jmb.2024.168900_b0100 10.1016/j.jmb.2024.168900_b0220 10.1016/j.jmb.2024.168900_b0025 DiNitto (10.1016/j.jmb.2024.168900_b0290) 2007; 28 10.1016/j.jmb.2024.168900_b0105 Acharyya (10.1016/j.jmb.2024.168900_b0255) 2019; 123 Bahar (10.1016/j.jmb.2024.168900_b0130) 2010; 110 Haliloglu (10.1016/j.jmb.2024.168900_b0155) 1999; 37 Abrusán (10.1016/j.jmb.2024.168900_b0270) 2016; 12 Orlando (10.1016/j.jmb.2024.168900_b0115) 2020; 48 10.1016/j.jmb.2024.168900_b0070 10.1016/j.jmb.2024.168900_b0030 10.1016/j.jmb.2024.168900_b0195 10.1016/j.jmb.2024.168900_b0230 10.1016/j.jmb.2024.168900_b0275 10.1016/j.jmb.2024.168900_b0035 Doruker (10.1016/j.jmb.2024.168900_b0150) 2002; 23 Saldaño (10.1016/j.jmb.2024.168900_b0280) 2022; 38 Hollup (10.1016/j.jmb.2024.168900_b0205) 2005; 6 10.1016/j.jmb.2024.168900_b0315 Bryson (10.1016/j.jmb.2024.168900_b0250) 1995; 270 Saldaño (10.1016/j.jmb.2024.168900_b0295) 2022; 38 Aydin (10.1016/j.jmb.2024.168900_b0245) 2011; 8 Bordin (10.1016/j.jmb.2024.168900_b0010) 2023; 6 Mariani (10.1016/j.jmb.2024.168900_b0060) 2013; 29 Sabzekar (10.1016/j.jmb.2024.168900_b0235) 2017; 70 Akdel (10.1016/j.jmb.2024.168900_b0300) 2022; 29 10.1016/j.jmb.2024.168900_b0080 Vranken (10.1016/j.jmb.2024.168900_b0215) 2014; 82 10.1016/j.jmb.2024.168900_b0040 10.1016/j.jmb.2024.168900_b0285 10.1016/j.jmb.2024.168900_b0045 Piovesan (10.1016/j.jmb.2024.168900_b0075) 2022; 31 10.1016/j.jmb.2024.168900_b0165 Barbato (10.1016/j.jmb.2024.168900_b0095) 1992; 31 Atilgan (10.1016/j.jmb.2024.168900_b0140) 2001; 80 10.1016/j.jmb.2024.168900_b0200 10.1016/j.jmb.2024.168900_b0005 Durairaj (10.1016/j.jmb.2024.168900_b0015) 2023; 622 |
| References_xml | – volume: 114 start-page: 5341 year: 1992 end-page: 5344 ident: b0145 article-title: Normal modes and nmr order parameters in proteins publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 484 year: 2008 end-page: 491 ident: b0240 article-title: Improving strand pairing prediction through exploring folding cooperativity publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform./ IEEE, ACM – volume: 6 start-page: 160 year: 2023 ident: b0010 article-title: AlphaFold2 reveals commonalities and novelties in protein structure space for 21 model organisms publication-title: Commun. Biol. – reference: K.H. Sumida et al., Improving protein expression, stability, and function with ProteinMPNN, J. Am. Chem. Soc., 146 (2024) 2054–2061. URL: doi: 10.1021/jacs.3c10941. – reference: C.S.H. Jesus, P.F. Cruz, L.G. Arnaut, R.M.M. Brito, C. Serpa, One peptide reveals the two faces of – reference: AlphaFold Protein Structure Database. URL: – reference: E. Cilia, R. Pancsa, P. Tompa, T. Lenaerts, W.F. Vranken, From protein sequence to dynamics and disorder with DynaMine, Nat. Commun. 4 (2013) 2741. URL: – reference: -helix unfolding-folding dynamics, J. Phys. Chem. B 122 (2018) 3790–3800. URL: doi: 10.1021/acs.jpcb.8b00229. – volume: 80 start-page: 505 year: 2001 end-page: 515 ident: b0140 article-title: Anisotropy of fluctuation dynamics of proteins with an elastic network model publication-title: Biophys. J. – reference: J.L. Watson et al., De novo design of protein structure and function with RFdiffusion, Nature 620 (2023) 1089–1100. URL: – volume: 33 start-page: 2250 year: 2012 end-page: 2275 ident: b0210 article-title: Comparing normal modes across different models and scales: Hessian reduction versus coarse-graining publication-title: J. Comput. Chem. – volume: 28 start-page: 569 year: 2007 end-page: 583 ident: b0290 article-title: Structural basis and mechanism of autoregulation in 3-phosphoinositide-dependent Grp1 family Arf GTPase exchange factors publication-title: Mol. Cell – volume: 6 start-page: lqae082 year: 2024 ident: b0180 article-title: Data-driven probabilistic definition of the low energy conformational states of protein residues publication-title: NAR Genom. Bioinform. – start-page: 56 year: 2010 end-page: 61 ident: b0160 article-title: Data Structures for Statistical Computing in Python publication-title: Proceedings of the 9th Python in Science Conference – volume: 82 start-page: 27 year: 2014 end-page: 38 ident: b0215 article-title: NMR structure validation in relation to dynamics and structure determination publication-title: Prog. Nucl. Magn. Reson. Spectrosc. – volume: 42 start-page: D326 year: 2014 end-page: D335 ident: b0090 article-title: pE-DB: a database of structural ensembles of intrinsically disordered and of unfolded proteins publication-title: Nucl. Acids Res. – volume: 12 start-page: e1005242 year: 2016 ident: b0270 article-title: Alpha helices are more robust to mutations than beta strands publication-title: PLoS Comput. Biol. – reference: L. Heo, M. Feig, Multi-state modeling of G-protein coupled receptors at experimental accuracy, Prot.: Struct., Funct., Bioinform. 90 (2022) 1873–1885. URL: – reference: deviation, Prot.: Struct., Funct., Bioinform. 50 (2003) 437–450. URL: – volume: 31 start-page: e4466 year: 2022 ident: b0075 article-title: Intrinsic protein disorder and conditional folding in AlphaFoldDB publication-title: Protein Sci. – volume: 622 start-page: 646 year: 2023 end-page: 653 ident: b0015 article-title: Uncovering new families and folds in the natural protein universe publication-title: Nature – volume: 12 start-page: 1467 year: 2022 ident: b0305 article-title: Digging into the 3d structure predictions of alphafold2 with low confidence: disorder and beyond publication-title: Biomolecules – reference: . Series Title: Methods in Molecular Biology. – volume: 31 start-page: 5269 year: 1992 end-page: 5278 ident: b0095 article-title: Backbone dynamics of calmodulin studied by nitrogen-15 relaxation using inverse detected two-dimensional NMR spectroscopy: the central helix is flexible publication-title: Biochemistry – reference: S.C. Lovell et al., Structure validation by C – volume: 42 start-page: W264 year: 2014 end-page: W270 ident: b0225 article-title: The dynamine webserver: predicting protein dynamics from sequence publication-title: Nucl. Acids Res. – reference: P. Robustelli, S. Piana, D.E. Shaw, Mechanism of coupled folding-upon-binding of an intrinsically disordered protein, J. Am. Chem. Soc. 142 (2020) 11092–11101. URL: doi: 10.1021/jacs.0c03217. – volume: 23 start-page: 119 year: 2002 end-page: 127 ident: b0150 article-title: Dynamics of large proteins through hierarchical levels of coarse-grained structures publication-title: J. Comput. Chem. – volume: 60 start-page: 77 year: 2020 end-page: 84 ident: b0055 article-title: Machine learning for protein folding and dynamics publication-title: Curr. Opin. Struct. Biol. – reference: pandas development team, T. pandas-dev/pandas: Pandas, (2020). URL: – volume: 70 start-page: 142 year: 2017 end-page: 155 ident: b0235 article-title: Protein publication-title: Comput. Biol. Chem. – volume: 352 start-page: 107481 year: 2023 ident: b0310 article-title: Blind assessment of monomeric AlphaFold2 protein structure models with experimental NMR data publication-title: J. Magn. Reson. – volume: 28 start-page: 235 year: 2000 end-page: 242 ident: b0190 article-title: The protein data bank publication-title: Nucl. Acids Res. – volume: 270 start-page: 935 year: 1995 end-page: 941 ident: b0250 article-title: Protein design: a hierarchic approach publication-title: Science – reference: L.L. Porter, L.L. Looger, Extant fold-switching proteins are widespread, Proc. Natl. Acad. Sci. 115 (2018) 5968–5973. URL: – reference: M.J. Fossat, A.E. Posey, R.V. Pappu, Uncovering the contributions of charge regulation to the stability of single alpha helices, ChemPhysChem 24 (2023) e202200746. URL: – reference: geometry: – volume: 8 start-page: 395 year: 2011 end-page: 409 ident: b0245 article-title: Bayesian Models and Algorithms for Protein publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf. – volume: 30 start-page: 925 year: 2022 end-page: 933 ident: b0120 article-title: The accuracy of protein structures in solution determined by AlphaFold and nmr publication-title: Structure – reference: J. Dauparas et al., Robust deep learning–based protein sequence design using ProteinMPNN, Science 378 (2022) 49–56. URL: – volume: 49 start-page: e6 year: 2016 ident: b0050 article-title: Protein dynamics and function from solution state nmr spectroscopy publication-title: Q. Rev. Biophys. – volume: 123 start-page: 1797 year: 2019 end-page: 1807 ident: b0255 article-title: Exposing the nucleation site in publication-title: J. Phys. Chem. B – reference: R.B. Fenwick, H. van den Bedem, J.S. Fraser, P.E. Wright, Integrated description of protein dynamics from room-temperature X-ray crystallography and NMR. Proc. Natl. Acad. Sci. 111 (2014) E445–E454. URL: – reference: S.P. Tiwari et al., Webnm@ v2. 0: Web server and services for comparing protein flexibility, BMC Bioinform. 15 (2014) 1–12. – volume: 110 start-page: 1463 year: 2010 end-page: 1497 ident: b0130 article-title: Normal mode analysis of biomolecular structures: functional mechanisms of membrane proteins publication-title: Chem. Rev. – volume: 51 start-page: D368 year: 2023 end-page: D376 ident: b0170 article-title: Biological magnetic resonance data bank publication-title: Nucl. Acids Res. – reference: H.K. Wayment-Steele et al., Predicting multiple conformations via sequence clustering and AlphaFold2, Nature 1–8 (2023). URL: – volume: 38 start-page: 2742 year: 2022 end-page: 2748 ident: b0295 article-title: Impact of protein conformational diversity on AlphaFold predictions publication-title: Bioinformatics – volume: 29 start-page: 1056 year: 2022 end-page: 1067 ident: b0300 article-title: A structural biology community assessment of AlphaFold2 applications publication-title: Nat. Struct. Mol. Biol. – reference: C. Camilloni, A. De Simone, W.F. Vranken, M. Vendruscolo, Determination of secondary structure populations in disordered states of proteins using nuclear magnetic resonance chemical shifts. Biochemistry 51 (2012) 2224–2231. URL: doi: 10.1021/bi3001825. – reference: W. Rieping, W.F. Vranken, Validation of archived chemical shifts through atomic coordinates, Prot.: Struct., Funct., Bioinform. 78 (2010) 2482–2489. URL: – reference: M.L. Hekkelman, I. de Vries, R.P. Joosten, A. Perrakis, AlphaFill: enriching AlphaFold models with ligands and cofactors, Nat. Methods 20 (2023) 205–213. URL: – volume: 37 start-page: 654 year: 1999 end-page: 667 ident: b0155 article-title: Structure-based analysis of protein dynamics: comparison of theoretical results for hen lysozyme with x-ray diffraction and nmr relaxation data publication-title: Proteins: Struct., Funct., Bioinf. – volume: 29 start-page: 2722 year: 2013 end-page: 2728 ident: b0060 article-title: lDDT: a local superposition-free score for comparing protein structures and models using distance difference tests publication-title: Bioinformatics – volume: 12 start-page: 307 year: 2015 end-page: 318 ident: b0085 article-title: Integrative, dynamic structural biology at atomic resolution–it’s about time publication-title: Nat. Methods – reference: M.V. Berjanskii, D.S. Wishart, A simple method to predict protein flexibility using secondary chemical shifts. J. Am. Chem. Soc. 127 (2005) 14970–14971. URL: doi: 10.1021/ja054842f. – volume: 291 start-page: 965 year: 1999 end-page: 976 ident: b0265 article-title: A calorimetric study of the folding-unfolding of an publication-title: J. Mol. Biol. – volume: 48 start-page: W36 year: 2020 end-page: W40 ident: b0115 article-title: ShiftCrypt: a web server to understand and biophysically align proteins through their NMR chemical shift values publication-title: Nucl. Acids Res. – reference: and C – reference: P.R. Romero et al., BioMagResBank (BMRB) as a resource for structural biology, In: Z. Gáspári (ed.) Structural Bioinformatics, vol. 2112, 187–218 (Springer, US, New York, NY, 2020). URL: – reference: . – volume: 40 start-page: 31 year: 2008 end-page: 48 ident: b0110 article-title: Application of the random coil index to studying protein flexibility publication-title: J. Biomol. NMR – reference: D. Chakravarty, L.L. Porter, AlphaFold2 fails to predict protein fold switching, Prot. Sci. 31, e4353 (2022). URL: – reference: J. Jumper et al., Highly accurate protein structure prediction with AlphaFold, Nature 596 (2021) 583–589. URL: – volume: 50 start-page: D439 year: 2021 end-page: D444 ident: b0065 article-title: AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models publication-title: Nucl. Acids Res. – volume: 38 start-page: 2742 year: 2022 end-page: 2748 ident: b0280 article-title: Impact of protein conformational diversity on AlphaFold predictions publication-title: Bioinformatics – volume: 6 start-page: 1 year: 2005 end-page: 8 ident: b0205 article-title: Webnm@: a web application for normal mode analyses of proteins publication-title: BMC Bioinform. – volume: 11 start-page: 6321 year: 2020 ident: b0125 article-title: A method for validating the accuracy of nmr protein structures publication-title: Nat. Commun. – reference: D. Frishman, P. Argos, Knowledge-based protein secondary structure assignment, Prot.: Struct., Funct., Bioinform. 23 (1995) 566–579. URL: – volume: 114 start-page: 5341 year: 1992 ident: 10.1016/j.jmb.2024.168900_b0145 article-title: Normal modes and nmr order parameters in proteins publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00039a052 – volume: 11 start-page: 6321 year: 2020 ident: 10.1016/j.jmb.2024.168900_b0125 article-title: A method for validating the accuracy of nmr protein structures publication-title: Nat. Commun. doi: 10.1038/s41467-020-20177-1 – volume: 110 start-page: 1463 year: 2010 ident: 10.1016/j.jmb.2024.168900_b0130 article-title: Normal mode analysis of biomolecular structures: functional mechanisms of membrane proteins publication-title: Chem. Rev. doi: 10.1021/cr900095e – ident: 10.1016/j.jmb.2024.168900_b0260 doi: 10.1021/acs.jpcb.8b00229 – ident: 10.1016/j.jmb.2024.168900_b0195 doi: 10.1002/prot.340230412 – ident: 10.1016/j.jmb.2024.168900_b0070 – ident: 10.1016/j.jmb.2024.168900_b0045 doi: 10.1073/pnas.1800168115 – volume: 12 start-page: 1467 year: 2022 ident: 10.1016/j.jmb.2024.168900_b0305 article-title: Digging into the 3d structure predictions of alphafold2 with low confidence: disorder and beyond publication-title: Biomolecules doi: 10.3390/biom12101467 – volume: 51 start-page: D368 year: 2023 ident: 10.1016/j.jmb.2024.168900_b0170 article-title: Biological magnetic resonance data bank publication-title: Nucl. Acids Res. doi: 10.1093/nar/gkac1050 – ident: 10.1016/j.jmb.2024.168900_b0285 doi: 10.1038/s41592-022-01685-y – ident: 10.1016/j.jmb.2024.168900_b0185 doi: 10.1002/prot.22756 – ident: 10.1016/j.jmb.2024.168900_b0200 doi: 10.1002/prot.10286 – volume: 37 start-page: 654 year: 1999 ident: 10.1016/j.jmb.2024.168900_b0155 article-title: Structure-based analysis of protein dynamics: comparison of theoretical results for hen lysozyme with x-ray diffraction and nmr relaxation data publication-title: Proteins: Struct., Funct., Bioinf. doi: 10.1002/(SICI)1097-0134(19991201)37:4<654::AID-PROT15>3.0.CO;2-J – ident: 10.1016/j.jmb.2024.168900_b0030 doi: 10.1021/jacs.3c10941 – volume: 33 start-page: 2250 year: 2012 ident: 10.1016/j.jmb.2024.168900_b0210 article-title: Comparing normal modes across different models and scales: Hessian reduction versus coarse-graining publication-title: J. Comput. Chem. doi: 10.1002/jcc.23076 – ident: 10.1016/j.jmb.2024.168900_b0025 doi: 10.1038/s41586-023-06415-8 – volume: 80 start-page: 505 year: 2001 ident: 10.1016/j.jmb.2024.168900_b0140 article-title: Anisotropy of fluctuation dynamics of proteins with an elastic network model publication-title: Biophys. J. doi: 10.1016/S0006-3495(01)76033-X – start-page: 56 year: 2010 ident: 10.1016/j.jmb.2024.168900_b0160 article-title: Data Structures for Statistical Computing in Python doi: 10.25080/Majora-92bf1922-00a – ident: 10.1016/j.jmb.2024.168900_b0230 doi: 10.1021/bi3001825 – volume: 352 start-page: 107481 year: 2023 ident: 10.1016/j.jmb.2024.168900_b0310 article-title: Blind assessment of monomeric AlphaFold2 protein structure models with experimental NMR data publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2023.107481 – ident: 10.1016/j.jmb.2024.168900_b0175 doi: 10.1038/ncomms3741 – volume: 70 start-page: 142 year: 2017 ident: 10.1016/j.jmb.2024.168900_b0235 article-title: Protein β-sheet prediction using an efficient dynamic programming algorithm publication-title: Comput. Biol. Chem. doi: 10.1016/j.compbiolchem.2017.08.011 – volume: 12 start-page: 307 year: 2015 ident: 10.1016/j.jmb.2024.168900_b0085 article-title: Integrative, dynamic structural biology at atomic resolution–it’s about time publication-title: Nat. Methods doi: 10.1038/nmeth.3324 – ident: 10.1016/j.jmb.2024.168900_b0080 doi: 10.1073/pnas.1323440111 – ident: 10.1016/j.jmb.2024.168900_b0035 – volume: 6 start-page: lqae082 year: 2024 ident: 10.1016/j.jmb.2024.168900_b0180 article-title: Data-driven probabilistic definition of the low energy conformational states of protein residues publication-title: NAR Genom. Bioinform. doi: 10.1093/nargab/lqae082 – volume: 30 start-page: 925 year: 2022 ident: 10.1016/j.jmb.2024.168900_b0120 article-title: The accuracy of protein structures in solution determined by AlphaFold and nmr publication-title: Structure doi: 10.1016/j.str.2022.04.005 – ident: 10.1016/j.jmb.2024.168900_b0165 – volume: 123 start-page: 1797 year: 2019 ident: 10.1016/j.jmb.2024.168900_b0255 article-title: Exposing the nucleation site in α-helix folding: a joint experimental and simulation study publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.8b12220 – volume: 5 start-page: 484 year: 2008 ident: 10.1016/j.jmb.2024.168900_b0240 article-title: Improving strand pairing prediction through exploring folding cooperativity publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform./ IEEE, ACM doi: 10.1109/TCBB.2008.88 – volume: 60 start-page: 77 year: 2020 ident: 10.1016/j.jmb.2024.168900_b0055 article-title: Machine learning for protein folding and dynamics publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2019.12.005 – ident: 10.1016/j.jmb.2024.168900_b0100 doi: 10.1007/978-1-0716-0270-6_14 – ident: 10.1016/j.jmb.2024.168900_b0020 doi: 10.1126/science.add2187 – volume: 28 start-page: 569 year: 2007 ident: 10.1016/j.jmb.2024.168900_b0290 article-title: Structural basis and mechanism of autoregulation in 3-phosphoinositide-dependent Grp1 family Arf GTPase exchange factors publication-title: Mol. Cell doi: 10.1016/j.molcel.2007.09.017 – ident: 10.1016/j.jmb.2024.168900_b0105 doi: 10.1021/ja054842f – volume: 31 start-page: 5269 year: 1992 ident: 10.1016/j.jmb.2024.168900_b0095 article-title: Backbone dynamics of calmodulin studied by nitrogen-15 relaxation using inverse detected two-dimensional NMR spectroscopy: the central helix is flexible publication-title: Biochemistry doi: 10.1021/bi00138a005 – volume: 622 start-page: 646 year: 2023 ident: 10.1016/j.jmb.2024.168900_b0015 article-title: Uncovering new families and folds in the natural protein universe publication-title: Nature doi: 10.1038/s41586-023-06622-3 – volume: 23 start-page: 119 year: 2002 ident: 10.1016/j.jmb.2024.168900_b0150 article-title: Dynamics of large proteins through hierarchical levels of coarse-grained structures publication-title: J. Comput. Chem. doi: 10.1002/jcc.1160 – volume: 42 start-page: D326 year: 2014 ident: 10.1016/j.jmb.2024.168900_b0090 article-title: pE-DB: a database of structural ensembles of intrinsically disordered and of unfolded proteins publication-title: Nucl. Acids Res. doi: 10.1093/nar/gkt960 – volume: 40 start-page: 31 year: 2008 ident: 10.1016/j.jmb.2024.168900_b0110 article-title: Application of the random coil index to studying protein flexibility publication-title: J. Biomol. NMR doi: 10.1007/s10858-007-9208-0 – ident: 10.1016/j.jmb.2024.168900_b0135 doi: 10.1186/s12859-014-0427-6 – volume: 6 start-page: 1 year: 2005 ident: 10.1016/j.jmb.2024.168900_b0205 article-title: Webnm@: a web application for normal mode analyses of proteins publication-title: BMC Bioinform. doi: 10.1186/1471-2105-6-52 – volume: 8 start-page: 395 year: 2011 ident: 10.1016/j.jmb.2024.168900_b0245 article-title: Bayesian Models and Algorithms for Protein β-Sheet Prediction publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf. doi: 10.1109/TCBB.2008.140 – ident: 10.1016/j.jmb.2024.168900_b0275 doi: 10.1021/jacs.0c03217 – ident: 10.1016/j.jmb.2024.168900_b0040 doi: 10.1002/prot.26382 – volume: 49 start-page: e6 year: 2016 ident: 10.1016/j.jmb.2024.168900_b0050 article-title: Protein dynamics and function from solution state nmr spectroscopy publication-title: Q. Rev. Biophys. doi: 10.1017/S0033583516000019 – ident: 10.1016/j.jmb.2024.168900_b0315 doi: 10.1002/pro.4353 – ident: 10.1016/j.jmb.2024.168900_b0005 doi: 10.1038/s41586-021-03819-2 – volume: 48 start-page: W36 year: 2020 ident: 10.1016/j.jmb.2024.168900_b0115 article-title: ShiftCrypt: a web server to understand and biophysically align proteins through their NMR chemical shift values publication-title: Nucl. Acids Res. doi: 10.1093/nar/gkaa391 – ident: 10.1016/j.jmb.2024.168900_b0220 doi: 10.1002/cphc.202200746 – volume: 82 start-page: 27 year: 2014 ident: 10.1016/j.jmb.2024.168900_b0215 article-title: NMR structure validation in relation to dynamics and structure determination publication-title: Prog. Nucl. Magn. Reson. Spectrosc. doi: 10.1016/j.pnmrs.2014.08.001 – volume: 38 start-page: 2742 year: 2022 ident: 10.1016/j.jmb.2024.168900_b0295 article-title: Impact of protein conformational diversity on AlphaFold predictions publication-title: Bioinformatics doi: 10.1093/bioinformatics/btac202 – volume: 6 start-page: 160 year: 2023 ident: 10.1016/j.jmb.2024.168900_b0010 article-title: AlphaFold2 reveals commonalities and novelties in protein structure space for 21 model organisms publication-title: Commun. Biol. doi: 10.1038/s42003-023-04488-9 – volume: 28 start-page: 235 year: 2000 ident: 10.1016/j.jmb.2024.168900_b0190 article-title: The protein data bank publication-title: Nucl. Acids Res. doi: 10.1093/nar/28.1.235 – volume: 29 start-page: 2722 year: 2013 ident: 10.1016/j.jmb.2024.168900_b0060 article-title: lDDT: a local superposition-free score for comparing protein structures and models using distance difference tests publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt473 – volume: 12 start-page: e1005242 year: 2016 ident: 10.1016/j.jmb.2024.168900_b0270 article-title: Alpha helices are more robust to mutations than beta strands publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1005242 – volume: 31 start-page: e4466 year: 2022 ident: 10.1016/j.jmb.2024.168900_b0075 article-title: Intrinsic protein disorder and conditional folding in AlphaFoldDB publication-title: Protein Sci. doi: 10.1002/pro.4466 – volume: 38 start-page: 2742 year: 2022 ident: 10.1016/j.jmb.2024.168900_b0280 article-title: Impact of protein conformational diversity on AlphaFold predictions publication-title: Bioinformatics doi: 10.1093/bioinformatics/btac202 – volume: 291 start-page: 965 year: 1999 ident: 10.1016/j.jmb.2024.168900_b0265 article-title: A calorimetric study of the folding-unfolding of an α-helix with covalently closed N and C-terminal loops 1 publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1999.3025 – volume: 50 start-page: D439 year: 2021 ident: 10.1016/j.jmb.2024.168900_b0065 article-title: AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models publication-title: Nucl. Acids Res. doi: 10.1093/nar/gkab1061 – volume: 29 start-page: 1056 year: 2022 ident: 10.1016/j.jmb.2024.168900_b0300 article-title: A structural biology community assessment of AlphaFold2 applications publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-022-00849-w – volume: 270 start-page: 935 year: 1995 ident: 10.1016/j.jmb.2024.168900_b0250 article-title: Protein design: a hierarchic approach publication-title: Science doi: 10.1126/science.270.5238.935 – volume: 42 start-page: W264 year: 2014 ident: 10.1016/j.jmb.2024.168900_b0225 article-title: The dynamine webserver: predicting protein dynamics from sequence publication-title: Nucl. Acids Res. doi: 10.1093/nar/gku270 |
| SSID | ssj0005348 |
| Score | 2.5009308 |
| Snippet | [Display omitted]
•AlphaFold2’s pLDDT can differentiate between ordered or disordered residues.•AlphaFold2’s pLDDT does not reflect gradations on residue... The advent of accurate methods to predict the fold of proteins initiated by AlphaFold2 is rapidly changing our understanding of proteins and helping their... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 168900 |
| SubjectTerms | AlphaFold2 Computational Biology - methods large-scale analysis Magnetic Resonance Spectroscopy - methods Molecular Dynamics Simulation nuclear magnetic resonance Nuclear Magnetic Resonance, Biomolecular - methods Protein Conformation protein dynamics Protein Folding Proteins - chemistry structural biology |
| Title | Gradations in protein dynamics captured by experimental NMR are not well represented by AlphaFold2 models and other computational metrics |
| URI | https://dx.doi.org/10.1016/j.jmb.2024.168900 https://www.ncbi.nlm.nih.gov/pubmed/39647695 https://www.proquest.com/docview/3146582691 |
| Volume | 437 |
| WOSCitedRecordID | wos001392849800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1089-8638 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005348 issn: 0022-2836 databaseCode: AIEXJ dateStart: 20210903 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1089-8638 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005348 issn: 0022-2836 databaseCode: AIEXJ dateStart: 20210806 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1089-8638 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005348 issn: 0022-2836 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKB2IvCMZl5TIZiSeqVLEdN8lj2aWAoEIwpL5FduKIVG1ade3ofgJ_hN_JsR0nHbAJkHiJ2siuI39f4-Pj75yD0AuWhxkPBGxLYs69gKV9L-I596gMaUZyqnxlqpa8C0ejaDyOP7Ra310szPk0LMtos4kX_xVquAdg69DZv4C7_lG4AZ8BdLgC7HD9I-CHS5FtKcR1HgateLWV53Uq6oU-NDB256X0_qP3H7taBlbOV13j0TP5LnVskm080FG5J_NpRm35HJvc2QRwGWH6euX8ijNdpasS0f9q985cQd5ulQCqlgAJmIZMeENd3ki444na0i42hVkwXn0RX8t6MTkyJ_1HwvjBB9myMN9JTfkh8BCe1Wo3t10cVKsJPRvkaf1uLvamETq5OAQwjvrb7_LAZpCpSEt_u0ZYd8WkN5nJHowW9Eg_in2_WRBrmeInEyoMQ2ihLWc6pnyHhjyO2mhn8OZ4_LYRE7EgcnnpdQd3fm6UhD8NdJUFdNUOx1g6p3fRnQoqPLDUuodaqtxDt2zR0os9dPvQ1Qi8j741ZMNFiSuyYUc27MiG5QXeJhsGsmEgGwayYU02vEU23bghG7Zkw0A2bMiGL5ENV2R7gD6fHJ8evvaq4h5eyjhbeUxKQahMmZ_lQT8NaJ6TDIxLqTjYAioUseRKpZIoQftZZHYWKSUyzn0iaJizh6hdzku1jzChPqMSFp9YpkGodA7JHKbaF4wqkim_g3w34UlaZb7XBVimiZM4ThLAKNEYJRajDnpZd1nYtC_XNQ4cikllt1p7NAHKXdftuUM8Adj0QZ0o1Xx9ljAwXzjs-2PSQY8sFeqnYDp0HF6sj_9t0Cdot_mHPUXt1XKtnqGb6fmqOFseoBvhODqoyP0DNvzU7A |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gradations+in+protein+dynamics+captured+by+experimental+NMR+are+not+well+represented+by+AlphaFold2+models+and+other+computational+metrics&rft.jtitle=Journal+of+molecular+biology&rft.au=Gavalda-Garcia%2C+Jose&rft.au=Dixit%2C+Bhawna&rft.au=D%C3%ADaz%2C+Adri%C3%A1n&rft.au=Ghysels%2C+An&rft.date=2025-01-15&rft.pub=Elsevier+Ltd&rft.issn=0022-2836&rft.volume=437&rft.issue=2&rft_id=info:doi/10.1016%2Fj.jmb.2024.168900&rft.externalDocID=S0022283624005308 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2836&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2836&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2836&client=summon |