Gradations in protein dynamics captured by experimental NMR are not well represented by AlphaFold2 models and other computational metrics

[Display omitted] •AlphaFold2’s pLDDT can differentiate between ordered or disordered residues.•AlphaFold2’s pLDDT does not reflect gradations on residue dynamics.•Biases in the training sets result in predicted rigidity of flexible regions.•Conformational diversity in NMR ensembles is associated wi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of molecular biology Ročník 437; číslo 2; s. 168900
Hlavní autori: Gavalda-Garcia, Jose, Dixit, Bhawna, Díaz, Adrián, Ghysels, An, Vranken, Wim
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Netherlands Elsevier Ltd 15.01.2025
Predmet:
ISSN:0022-2836, 1089-8638, 1089-8638
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract [Display omitted] •AlphaFold2’s pLDDT can differentiate between ordered or disordered residues.•AlphaFold2’s pLDDT does not reflect gradations on residue dynamics.•Biases in the training sets result in predicted rigidity of flexible regions.•Conformational diversity in NMR ensembles is associated with lower pLDDT values. The advent of accurate methods to predict the fold of proteins initiated by AlphaFold2 is rapidly changing our understanding of proteins and helping their design. However, these methods are mainly trained on protein structures determined with X-ray diffraction, where the protein is packed in crystals at often cryogenic temperatures. They can therefore only reliably cover well-folded parts of proteins that experience few, if any, conformational changes. Experimentally, solution nuclear magnetic resonance (NMR) is the experimental method of choice to gain insight into protein dynamics at near physiological conditions. Computationally, methods such as molecular dynamics (MD) simulations and Normal Mode Analysis (NMA) allow the estimation of a protein’s intrinsic flexibility based on a single protein structure. This work addresses, on a large scale, the relationships for proteins between the AlphaFold2 pLDDT metric, the observed dynamics in solution from NMR metrics, interpreted MD simulations, and the computed dynamics with NMA from single AlphaFold2 models and NMR ensembles. We observe that these metrics agree well for rigid residues that adopt a single well-defined conformation, which are clearly distinct from residues that exhibit dynamic behavior and adopt multiple conformations. This direct order/disorder categorisation is reflected in the correlations observed between the parameters, but becomes very limited when considering only the likely dynamic residues. The gradations of dynamics observed by NMR in flexible protein regions are therefore not represented by these computational approaches. Our results are interactively available for each protein from https://bio2byte.be/af_nmr_nma/.
AbstractList The advent of accurate methods to predict the fold of proteins initiated by AlphaFold2 is rapidly changing our understanding of proteins and helping their design. However, these methods are mainly trained on protein structures determined with X-ray diffraction, where the protein is packed in crystals at often cryogenic temperatures. They can therefore only reliably cover well-folded parts of proteins that experience few, if any, conformational changes. Experimentally, solution nuclear magnetic resonance (NMR) is the experimental method of choice to gain insight into protein dynamics at near physiological conditions. Computationally, methods such as molecular dynamics (MD) simulations and Normal Mode Analysis (NMA) allow the estimation of a protein's intrinsic flexibility based on a single protein structure. This work addresses, on a large scale, the relationships for proteins between the AlphaFold2 pLDDT metric, the observed dynamics in solution from NMR metrics, interpreted MD simulations, and the computed dynamics with NMA from single AlphaFold2 models and NMR ensembles. We observe that these metrics agree well for rigid residues that adopt a single well-defined conformation, which are clearly distinct from residues that exhibit dynamic behavior and adopt multiple conformations. This direct order/disorder categorisation is reflected in the correlations observed between the parameters, but becomes very limited when considering only the likely dynamic residues. The gradations of dynamics observed by NMR in flexible protein regions are therefore not represented by these computational approaches. Our results are interactively available for each protein from https://bio2byte.be/af_nmr_nma/.The advent of accurate methods to predict the fold of proteins initiated by AlphaFold2 is rapidly changing our understanding of proteins and helping their design. However, these methods are mainly trained on protein structures determined with X-ray diffraction, where the protein is packed in crystals at often cryogenic temperatures. They can therefore only reliably cover well-folded parts of proteins that experience few, if any, conformational changes. Experimentally, solution nuclear magnetic resonance (NMR) is the experimental method of choice to gain insight into protein dynamics at near physiological conditions. Computationally, methods such as molecular dynamics (MD) simulations and Normal Mode Analysis (NMA) allow the estimation of a protein's intrinsic flexibility based on a single protein structure. This work addresses, on a large scale, the relationships for proteins between the AlphaFold2 pLDDT metric, the observed dynamics in solution from NMR metrics, interpreted MD simulations, and the computed dynamics with NMA from single AlphaFold2 models and NMR ensembles. We observe that these metrics agree well for rigid residues that adopt a single well-defined conformation, which are clearly distinct from residues that exhibit dynamic behavior and adopt multiple conformations. This direct order/disorder categorisation is reflected in the correlations observed between the parameters, but becomes very limited when considering only the likely dynamic residues. The gradations of dynamics observed by NMR in flexible protein regions are therefore not represented by these computational approaches. Our results are interactively available for each protein from https://bio2byte.be/af_nmr_nma/.
[Display omitted] •AlphaFold2’s pLDDT can differentiate between ordered or disordered residues.•AlphaFold2’s pLDDT does not reflect gradations on residue dynamics.•Biases in the training sets result in predicted rigidity of flexible regions.•Conformational diversity in NMR ensembles is associated with lower pLDDT values. The advent of accurate methods to predict the fold of proteins initiated by AlphaFold2 is rapidly changing our understanding of proteins and helping their design. However, these methods are mainly trained on protein structures determined with X-ray diffraction, where the protein is packed in crystals at often cryogenic temperatures. They can therefore only reliably cover well-folded parts of proteins that experience few, if any, conformational changes. Experimentally, solution nuclear magnetic resonance (NMR) is the experimental method of choice to gain insight into protein dynamics at near physiological conditions. Computationally, methods such as molecular dynamics (MD) simulations and Normal Mode Analysis (NMA) allow the estimation of a protein’s intrinsic flexibility based on a single protein structure. This work addresses, on a large scale, the relationships for proteins between the AlphaFold2 pLDDT metric, the observed dynamics in solution from NMR metrics, interpreted MD simulations, and the computed dynamics with NMA from single AlphaFold2 models and NMR ensembles. We observe that these metrics agree well for rigid residues that adopt a single well-defined conformation, which are clearly distinct from residues that exhibit dynamic behavior and adopt multiple conformations. This direct order/disorder categorisation is reflected in the correlations observed between the parameters, but becomes very limited when considering only the likely dynamic residues. The gradations of dynamics observed by NMR in flexible protein regions are therefore not represented by these computational approaches. Our results are interactively available for each protein from https://bio2byte.be/af_nmr_nma/.
The advent of accurate methods to predict the fold of proteins initiated by AlphaFold2 is rapidly changing our understanding of proteins and helping their design. However, these methods are mainly trained on protein structures determined with X-ray diffraction, where the protein is packed in crystals at often cryogenic temperatures. They can therefore only reliably cover well-folded parts of proteins that experience few, if any, conformational changes. Experimentally, solution nuclear magnetic resonance (NMR) is the experimental method of choice to gain insight into protein dynamics at near physiological conditions. Computationally, methods such as molecular dynamics (MD) simulations and Normal Mode Analysis (NMA) allow the estimation of a protein's intrinsic flexibility based on a single protein structure. This work addresses, on a large scale, the relationships for proteins between the AlphaFold2 pLDDT metric, the observed dynamics in solution from NMR metrics, interpreted MD simulations, and the computed dynamics with NMA from single AlphaFold2 models and NMR ensembles. We observe that these metrics agree well for rigid residues that adopt a single well-defined conformation, which are clearly distinct from residues that exhibit dynamic behavior and adopt multiple conformations. This direct order/disorder categorisation is reflected in the correlations observed between the parameters, but becomes very limited when considering only the likely dynamic residues. The gradations of dynamics observed by NMR in flexible protein regions are therefore not represented by these computational approaches. Our results are interactively available for each protein from https://bio2byte.be/af_nmr_nma/.
ArticleNumber 168900
Author Vranken, Wim
Dixit, Bhawna
Díaz, Adrián
Ghysels, An
Gavalda-Garcia, Jose
Author_xml – sequence: 1
  givenname: Jose
  surname: Gavalda-Garcia
  fullname: Gavalda-Garcia, Jose
  organization: Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, Brussels, Belgium
– sequence: 2
  givenname: Bhawna
  surname: Dixit
  fullname: Dixit, Bhawna
  organization: Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, Brussels, Belgium
– sequence: 3
  givenname: Adrián
  surname: Díaz
  fullname: Díaz, Adrián
  organization: Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, Brussels, Belgium
– sequence: 4
  givenname: An
  surname: Ghysels
  fullname: Ghysels, An
  organization: IBiTech - BioMMedA group, Ghent University, Belgium
– sequence: 5
  givenname: Wim
  surname: Vranken
  fullname: Vranken, Wim
  email: wim.vranken@vub.be
  organization: Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, Brussels, Belgium
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39647695$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1O3TAQha2KqlygD9BN5SWbXPyT-CZihRBQJFokBGvLPxPhq8RObQd6H6FvXUNg0wWrWcz5zujMOUB7PnhA6Bsla0qoONmut6NeM8LqNRVtR8gntKKk7apW8HYPrQhhrGItF_voIKUtIaThdfsF7fNO1BvRNSv09yoqq7ILPmHn8RRDhjLtzqvRmYSNmvIcwWK9w_BnguhG8FkN-NfPO6wiYB8yfoZhwBGmCKksF_HZMD2qyzBYhsdgYUhYeYtDfoSITRinOb9eLU4j5FhOHaHPvRoSfH2bh-jh8uL-_Ed1c3t1fX52Uxne8FxxrRVl2nBi-1qYmvU9tURQDQ0oAxvV6QbAaAqKCduSpiaNYVR3PaGKbXp-iI4X35L19wwpy9ElUxIoD2FOktNaNC0THS3S72_SWY9g5VTSq7iT7-8rgs0iMDGkFKGXxi25clRukJTIl6LkVpai5EtRcimqkPQ_8t38I-Z0Yco34clBlMk48Aasi2CytMF9QP8DCciuBg
CitedBy_id crossref_primary_10_1360_SSC_2025_0055
crossref_primary_10_3389_fviro_2025_1501616
Cites_doi 10.1021/ja00039a052
10.1038/s41467-020-20177-1
10.1021/cr900095e
10.1021/acs.jpcb.8b00229
10.1002/prot.340230412
10.1073/pnas.1800168115
10.3390/biom12101467
10.1093/nar/gkac1050
10.1038/s41592-022-01685-y
10.1002/prot.22756
10.1002/prot.10286
10.1002/(SICI)1097-0134(19991201)37:4<654::AID-PROT15>3.0.CO;2-J
10.1021/jacs.3c10941
10.1002/jcc.23076
10.1038/s41586-023-06415-8
10.1016/S0006-3495(01)76033-X
10.25080/Majora-92bf1922-00a
10.1021/bi3001825
10.1016/j.jmr.2023.107481
10.1038/ncomms3741
10.1016/j.compbiolchem.2017.08.011
10.1038/nmeth.3324
10.1073/pnas.1323440111
10.1093/nargab/lqae082
10.1016/j.str.2022.04.005
10.1021/acs.jpcb.8b12220
10.1109/TCBB.2008.88
10.1016/j.sbi.2019.12.005
10.1007/978-1-0716-0270-6_14
10.1126/science.add2187
10.1016/j.molcel.2007.09.017
10.1021/ja054842f
10.1021/bi00138a005
10.1038/s41586-023-06622-3
10.1002/jcc.1160
10.1093/nar/gkt960
10.1007/s10858-007-9208-0
10.1186/s12859-014-0427-6
10.1186/1471-2105-6-52
10.1109/TCBB.2008.140
10.1021/jacs.0c03217
10.1002/prot.26382
10.1017/S0033583516000019
10.1002/pro.4353
10.1038/s41586-021-03819-2
10.1093/nar/gkaa391
10.1002/cphc.202200746
10.1016/j.pnmrs.2014.08.001
10.1093/bioinformatics/btac202
10.1038/s42003-023-04488-9
10.1093/nar/28.1.235
10.1093/bioinformatics/btt473
10.1371/journal.pcbi.1005242
10.1002/pro.4466
10.1006/jmbi.1999.3025
10.1093/nar/gkab1061
10.1038/s41594-022-00849-w
10.1126/science.270.5238.935
10.1093/nar/gku270
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright © 2024 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2024 Elsevier Ltd
– notice: Copyright © 2024 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.jmb.2024.168900
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1089-8638
ExternalDocumentID 39647695
10_1016_j_jmb_2024_168900
S0022283624005308
Genre Journal Article
GroupedDBID ---
--K
--M
-DZ
-ET
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5RE
5VS
7-5
71M
85S
8P~
9JM
AAAJQ
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARKO
AAXKI
AAXUO
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABMAC
ABOCM
ABPPZ
ABUDA
ACDAQ
ACGFO
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADUVX
ADVLN
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AFFNX
AFJKZ
AFKWA
AFTJW
AFXIZ
AGEKW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CJTIS
CS3
DM4
DU5
EBS
EFBJH
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GX1
HMG
IH2
IHE
J1W
KOM
LG5
LUGTX
LX2
LZ5
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPCBC
SSI
SSU
SSZ
T5K
TWZ
VQA
WH7
XPP
YQT
ZMT
ZU3
~G-
.55
.GJ
186
29L
3O-
53G
9DU
AAQXK
AATTM
AAYWO
AAYXX
ABDPE
ABEFU
ABUFD
ABWVN
ABXDB
ACKIV
ACLOT
ACRPL
ACVFH
ADCNI
ADFGL
ADIYS
ADMUD
ADNMO
ADXHL
AEUPX
AFPUW
AGHFR
AGQPQ
AGRDE
AI.
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLW
HVGLF
HX~
HZ~
H~9
K-O
MVM
NEJ
R2-
SBG
SIN
UQL
VH1
WUQ
X7M
XOL
Y6R
YYP
ZGI
ZKB
~HD
~KM
AGCQF
AGRNS
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
ID FETCH-LOGICAL-c353t-3bba12bc30df46c42ff1d061be5eace7a9b5eecb1ea26d805405c21b9f01a27f3
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001392849800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-2836
1089-8638
IngestDate Sat Sep 27 18:14:38 EDT 2025
Mon Jul 21 06:04:19 EDT 2025
Sat Nov 29 04:36:13 EST 2025
Tue Nov 18 22:27:33 EST 2025
Sat Jan 18 16:10:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords structural biology
nuclear magnetic resonance
large-scale analysis
protein dynamics
AlphaFold2
Language English
License Copyright © 2024 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c353t-3bba12bc30df46c42ff1d061be5eace7a9b5eecb1ea26d805405c21b9f01a27f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 39647695
PQID 3146582691
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3146582691
pubmed_primary_39647695
crossref_citationtrail_10_1016_j_jmb_2024_168900
crossref_primary_10_1016_j_jmb_2024_168900
elsevier_sciencedirect_doi_10_1016_j_jmb_2024_168900
PublicationCentury 2000
PublicationDate 2025-01-15
PublicationDateYYYYMMDD 2025-01-15
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-15
  day: 15
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of molecular biology
PublicationTitleAlternate J Mol Biol
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References R.B. Fenwick, H. van den Bedem, J.S. Fraser, P.E. Wright, Integrated description of protein dynamics from room-temperature X-ray crystallography and NMR. Proc. Natl. Acad. Sci. 111 (2014) E445–E454. URL
Li (b0310) 2023; 352
Kovermann, Rogne, Wolf-Watz (b0050) 2016; 49
helix unfolding-folding dynamics, J. Phys. Chem. B 122 (2018) 3790–3800. URL: doi: 10.1021/acs.jpcb.8b00229.
P. Robustelli, S. Piana, D.E. Shaw, Mechanism of coupled folding-upon-binding of an intrinsically disordered protein, J. Am. Chem. Soc. 142 (2020) 11092–11101. URL: doi: 10.1021/jacs.0c03217.
Haliloglu, Bahar (b0155) 1999; 37
W. Rieping, W.F. Vranken, Validation of archived chemical shifts through atomic coordinates, Prot.: Struct., Funct., Bioinform. 78 (2010) 2482–2489. URL
deviation, Prot.: Struct., Funct., Bioinform. 50 (2003) 437–450. URL
Vranken (b0215) 2014; 82
Bahar, Lezon, Bakan, Shrivastava (b0130) 2010; 110
Acharyya (b0255) 2019; 123
McKinney (b0160) 2010
Varadi (b0065) 2021; 50
L. Heo, M. Feig, Multi-state modeling of G-protein coupled receptors at experimental accuracy, Prot.: Struct., Funct., Bioinform. 90 (2022) 1873–1885. URL
Hoch (b0170) 2023; 51
Abrusán, Marsh (b0270) 2016; 12
Varadi (b0090) 2014; 42
E. Cilia, R. Pancsa, P. Tompa, T. Lenaerts, W.F. Vranken, From protein sequence to dynamics and disorder with DynaMine, Nat. Commun. 4 (2013) 2741. URL
Noé, De Fabritiis, Clementi (b0055) 2020; 60
DiNitto (b0290) 2007; 28
D. Chakravarty, L.L. Porter, AlphaFold2 fails to predict protein fold switching, Prot. Sci. 31, e4353 (2022). URL
J. Jumper et al., Highly accurate protein structure prediction with AlphaFold, Nature 596 (2021) 583–589. URL
Ghysels, Miller, Pickard, Brooks (b0210) 2012; 33
Taylor, Greenfield, Wu, Privalov (b0265) 1999; 291
Bryson (b0250) 1995; 270
Durairaj (b0015) 2023; 622
M.V. Berjanskii, D.S. Wishart, A simple method to predict protein flexibility using secondary chemical shifts. J. Am. Chem. Soc. 127 (2005) 14970–14971. URL: doi: 10.1021/ja054842f.
Berman (b0190) 2000; 28
P.R. Romero et al., BioMagResBank (BMRB) as a resource for structural biology, In: Z. Gáspári (ed.) Structural Bioinformatics, vol. 2112, 187–218 (Springer, US, New York, NY, 2020). URL
.
Series Title: Methods in Molecular Biology.
and C
Akdel (b0300) 2022; 29
Hollup, Salensminde, Reuter (b0205) 2005; 6
C. Camilloni, A. De Simone, W.F. Vranken, M. Vendruscolo, Determination of secondary structure populations in disordered states of proteins using nuclear magnetic resonance chemical shifts. Biochemistry 51 (2012) 2224–2231. URL: doi: 10.1021/bi3001825.
J. Dauparas et al., Robust deep learning–based protein sequence design using ProteinMPNN, Science 378 (2022) 49–56. URL
Mariani, Biasini, Barbato, Schwede (b0060) 2013; 29
J.L. Watson et al., De novo design of protein structure and function with RFdiffusion, Nature 620 (2023) 1089–1100. URL
H.K. Wayment-Steele et al., Predicting multiple conformations via sequence clustering and AlphaFold2, Nature 1–8 (2023). URL
M.J. Fossat, A.E. Posey, R.V. Pappu, Uncovering the contributions of charge regulation to the stability of single alpha helices, ChemPhysChem 24 (2023) e202200746. URL
Piovesan, Monzon, Tosatto (b0075) 2022; 31
Fowler, Sljoka, Williamson (b0125) 2020; 11
Bordin (b0010) 2023; 6
D. Frishman, P. Argos, Knowledge-based protein secondary structure assignment, Prot.: Struct., Funct., Bioinform. 23 (1995) 566–579. URL
Saldaño (b0295) 2022; 38
Cilia, Pancsa, Tompa, Lenaerts, Vranken (b0225) 2014; 42
van den Bedem, Fraser (b0085) 2015; 12
Brueschweiler (b0145) 1992; 114
Bruley, Mornon, Duprat, Callebaut (b0305) 2022; 12
Doruker, Jernigan, Bahar (b0150) 2002; 23
Gavalda-Garcia (b0180) 2024; 6
L.L. Porter, L.L. Looger, Extant fold-switching proteins are widespread, Proc. Natl. Acad. Sci. 115 (2018) 5968–5973. URL
Jeong, Berman, Przytycka (b0240) 2008; 5
M.L. Hekkelman, I. de Vries, R.P. Joosten, A. Perrakis, AlphaFill: enriching AlphaFold models with ligands and cofactors, Nat. Methods 20 (2023) 205–213. URL
Barbato, Ikura, Kay, Pastor, Bax (b0095) 1992; 31
Saldaño (b0280) 2022; 38
Berjanskii, Wishart (b0110) 2008; 40
Atilgan (b0140) 2001; 80
C.S.H. Jesus, P.F. Cruz, L.G. Arnaut, R.M.M. Brito, C. Serpa, One peptide reveals the two faces of
S.P. Tiwari et al., Webnm@ v2. 0: Web server and services for comparing protein flexibility, BMC Bioinform. 15 (2014) 1–12.
AlphaFold Protein Structure Database. URL
S.C. Lovell et al., Structure validation by C
Orlando, Raimondi, Kagami, Vranken (b0115) 2020; 48
Fowler, Williamson (b0120) 2022; 30
Aydin, Altunbasak, Erdogan (b0245) 2011; 8
K.H. Sumida et al., Improving protein expression, stability, and function with ProteinMPNN, J. Am. Chem. Soc., 146 (2024) 2054–2061. URL: doi: 10.1021/jacs.3c10941.
geometry
Sabzekar, Naghibzadeh, Eghdami, Aydin (b0235) 2017; 70
pandas development team, T. pandas-dev/pandas: Pandas, (2020). URL
Varadi (10.1016/j.jmb.2024.168900_b0065) 2021; 50
Gavalda-Garcia (10.1016/j.jmb.2024.168900_b0180) 2024; 6
McKinney (10.1016/j.jmb.2024.168900_b0160) 2010
Taylor (10.1016/j.jmb.2024.168900_b0265) 1999; 291
Fowler (10.1016/j.jmb.2024.168900_b0125) 2020; 11
Li (10.1016/j.jmb.2024.168900_b0310) 2023; 352
Kovermann (10.1016/j.jmb.2024.168900_b0050) 2016; 49
Berman (10.1016/j.jmb.2024.168900_b0190) 2000; 28
Brueschweiler (10.1016/j.jmb.2024.168900_b0145) 1992; 114
Berjanskii (10.1016/j.jmb.2024.168900_b0110) 2008; 40
10.1016/j.jmb.2024.168900_b0175
Bruley (10.1016/j.jmb.2024.168900_b0305) 2022; 12
Varadi (10.1016/j.jmb.2024.168900_b0090) 2014; 42
10.1016/j.jmb.2024.168900_b0135
Noé (10.1016/j.jmb.2024.168900_b0055) 2020; 60
Hoch (10.1016/j.jmb.2024.168900_b0170) 2023; 51
Jeong (10.1016/j.jmb.2024.168900_b0240) 2008; 5
Cilia (10.1016/j.jmb.2024.168900_b0225) 2014; 42
Fowler (10.1016/j.jmb.2024.168900_b0120) 2022; 30
Ghysels (10.1016/j.jmb.2024.168900_b0210) 2012; 33
10.1016/j.jmb.2024.168900_b0260
10.1016/j.jmb.2024.168900_b0020
10.1016/j.jmb.2024.168900_b0185
van den Bedem (10.1016/j.jmb.2024.168900_b0085) 2015; 12
10.1016/j.jmb.2024.168900_b0100
10.1016/j.jmb.2024.168900_b0220
10.1016/j.jmb.2024.168900_b0025
DiNitto (10.1016/j.jmb.2024.168900_b0290) 2007; 28
10.1016/j.jmb.2024.168900_b0105
Acharyya (10.1016/j.jmb.2024.168900_b0255) 2019; 123
Bahar (10.1016/j.jmb.2024.168900_b0130) 2010; 110
Haliloglu (10.1016/j.jmb.2024.168900_b0155) 1999; 37
Abrusán (10.1016/j.jmb.2024.168900_b0270) 2016; 12
Orlando (10.1016/j.jmb.2024.168900_b0115) 2020; 48
10.1016/j.jmb.2024.168900_b0070
10.1016/j.jmb.2024.168900_b0030
10.1016/j.jmb.2024.168900_b0195
10.1016/j.jmb.2024.168900_b0230
10.1016/j.jmb.2024.168900_b0275
10.1016/j.jmb.2024.168900_b0035
Doruker (10.1016/j.jmb.2024.168900_b0150) 2002; 23
Saldaño (10.1016/j.jmb.2024.168900_b0280) 2022; 38
Hollup (10.1016/j.jmb.2024.168900_b0205) 2005; 6
10.1016/j.jmb.2024.168900_b0315
Bryson (10.1016/j.jmb.2024.168900_b0250) 1995; 270
Saldaño (10.1016/j.jmb.2024.168900_b0295) 2022; 38
Aydin (10.1016/j.jmb.2024.168900_b0245) 2011; 8
Bordin (10.1016/j.jmb.2024.168900_b0010) 2023; 6
Mariani (10.1016/j.jmb.2024.168900_b0060) 2013; 29
Sabzekar (10.1016/j.jmb.2024.168900_b0235) 2017; 70
Akdel (10.1016/j.jmb.2024.168900_b0300) 2022; 29
10.1016/j.jmb.2024.168900_b0080
Vranken (10.1016/j.jmb.2024.168900_b0215) 2014; 82
10.1016/j.jmb.2024.168900_b0040
10.1016/j.jmb.2024.168900_b0285
10.1016/j.jmb.2024.168900_b0045
Piovesan (10.1016/j.jmb.2024.168900_b0075) 2022; 31
10.1016/j.jmb.2024.168900_b0165
Barbato (10.1016/j.jmb.2024.168900_b0095) 1992; 31
Atilgan (10.1016/j.jmb.2024.168900_b0140) 2001; 80
10.1016/j.jmb.2024.168900_b0200
10.1016/j.jmb.2024.168900_b0005
Durairaj (10.1016/j.jmb.2024.168900_b0015) 2023; 622
References_xml – volume: 114
  start-page: 5341
  year: 1992
  end-page: 5344
  ident: b0145
  article-title: Normal modes and nmr order parameters in proteins
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 484
  year: 2008
  end-page: 491
  ident: b0240
  article-title: Improving strand pairing prediction through exploring folding cooperativity
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform./ IEEE, ACM
– volume: 6
  start-page: 160
  year: 2023
  ident: b0010
  article-title: AlphaFold2 reveals commonalities and novelties in protein structure space for 21 model organisms
  publication-title: Commun. Biol.
– reference: K.H. Sumida et al., Improving protein expression, stability, and function with ProteinMPNN, J. Am. Chem. Soc., 146 (2024) 2054–2061. URL: doi: 10.1021/jacs.3c10941.
– reference: C.S.H. Jesus, P.F. Cruz, L.G. Arnaut, R.M.M. Brito, C. Serpa, One peptide reveals the two faces of
– reference: AlphaFold Protein Structure Database. URL:
– reference: E. Cilia, R. Pancsa, P. Tompa, T. Lenaerts, W.F. Vranken, From protein sequence to dynamics and disorder with DynaMine, Nat. Commun. 4 (2013) 2741. URL:
– reference: -helix unfolding-folding dynamics, J. Phys. Chem. B 122 (2018) 3790–3800. URL: doi: 10.1021/acs.jpcb.8b00229.
– volume: 80
  start-page: 505
  year: 2001
  end-page: 515
  ident: b0140
  article-title: Anisotropy of fluctuation dynamics of proteins with an elastic network model
  publication-title: Biophys. J.
– reference: J.L. Watson et al., De novo design of protein structure and function with RFdiffusion, Nature 620 (2023) 1089–1100. URL:
– volume: 33
  start-page: 2250
  year: 2012
  end-page: 2275
  ident: b0210
  article-title: Comparing normal modes across different models and scales: Hessian reduction versus coarse-graining
  publication-title: J. Comput. Chem.
– volume: 28
  start-page: 569
  year: 2007
  end-page: 583
  ident: b0290
  article-title: Structural basis and mechanism of autoregulation in 3-phosphoinositide-dependent Grp1 family Arf GTPase exchange factors
  publication-title: Mol. Cell
– volume: 6
  start-page: lqae082
  year: 2024
  ident: b0180
  article-title: Data-driven probabilistic definition of the low energy conformational states of protein residues
  publication-title: NAR Genom. Bioinform.
– start-page: 56
  year: 2010
  end-page: 61
  ident: b0160
  article-title: Data Structures for Statistical Computing in Python
  publication-title: Proceedings of the 9th Python in Science Conference
– volume: 82
  start-page: 27
  year: 2014
  end-page: 38
  ident: b0215
  article-title: NMR structure validation in relation to dynamics and structure determination
  publication-title: Prog. Nucl. Magn. Reson. Spectrosc.
– volume: 42
  start-page: D326
  year: 2014
  end-page: D335
  ident: b0090
  article-title: pE-DB: a database of structural ensembles of intrinsically disordered and of unfolded proteins
  publication-title: Nucl. Acids Res.
– volume: 12
  start-page: e1005242
  year: 2016
  ident: b0270
  article-title: Alpha helices are more robust to mutations than beta strands
  publication-title: PLoS Comput. Biol.
– reference: L. Heo, M. Feig, Multi-state modeling of G-protein coupled receptors at experimental accuracy, Prot.: Struct., Funct., Bioinform. 90 (2022) 1873–1885. URL:
– reference: deviation, Prot.: Struct., Funct., Bioinform. 50 (2003) 437–450. URL:
– volume: 31
  start-page: e4466
  year: 2022
  ident: b0075
  article-title: Intrinsic protein disorder and conditional folding in AlphaFoldDB
  publication-title: Protein Sci.
– volume: 622
  start-page: 646
  year: 2023
  end-page: 653
  ident: b0015
  article-title: Uncovering new families and folds in the natural protein universe
  publication-title: Nature
– volume: 12
  start-page: 1467
  year: 2022
  ident: b0305
  article-title: Digging into the 3d structure predictions of alphafold2 with low confidence: disorder and beyond
  publication-title: Biomolecules
– reference: . Series Title: Methods in Molecular Biology.
– volume: 31
  start-page: 5269
  year: 1992
  end-page: 5278
  ident: b0095
  article-title: Backbone dynamics of calmodulin studied by nitrogen-15 relaxation using inverse detected two-dimensional NMR spectroscopy: the central helix is flexible
  publication-title: Biochemistry
– reference: S.C. Lovell et al., Structure validation by C
– volume: 42
  start-page: W264
  year: 2014
  end-page: W270
  ident: b0225
  article-title: The dynamine webserver: predicting protein dynamics from sequence
  publication-title: Nucl. Acids Res.
– reference: P. Robustelli, S. Piana, D.E. Shaw, Mechanism of coupled folding-upon-binding of an intrinsically disordered protein, J. Am. Chem. Soc. 142 (2020) 11092–11101. URL: doi: 10.1021/jacs.0c03217.
– volume: 23
  start-page: 119
  year: 2002
  end-page: 127
  ident: b0150
  article-title: Dynamics of large proteins through hierarchical levels of coarse-grained structures
  publication-title: J. Comput. Chem.
– volume: 60
  start-page: 77
  year: 2020
  end-page: 84
  ident: b0055
  article-title: Machine learning for protein folding and dynamics
  publication-title: Curr. Opin. Struct. Biol.
– reference: pandas development team, T. pandas-dev/pandas: Pandas, (2020). URL:
– volume: 70
  start-page: 142
  year: 2017
  end-page: 155
  ident: b0235
  article-title: Protein
  publication-title: Comput. Biol. Chem.
– volume: 352
  start-page: 107481
  year: 2023
  ident: b0310
  article-title: Blind assessment of monomeric AlphaFold2 protein structure models with experimental NMR data
  publication-title: J. Magn. Reson.
– volume: 28
  start-page: 235
  year: 2000
  end-page: 242
  ident: b0190
  article-title: The protein data bank
  publication-title: Nucl. Acids Res.
– volume: 270
  start-page: 935
  year: 1995
  end-page: 941
  ident: b0250
  article-title: Protein design: a hierarchic approach
  publication-title: Science
– reference: L.L. Porter, L.L. Looger, Extant fold-switching proteins are widespread, Proc. Natl. Acad. Sci. 115 (2018) 5968–5973. URL:
– reference: M.J. Fossat, A.E. Posey, R.V. Pappu, Uncovering the contributions of charge regulation to the stability of single alpha helices, ChemPhysChem 24 (2023) e202200746. URL:
– reference: geometry:
– volume: 8
  start-page: 395
  year: 2011
  end-page: 409
  ident: b0245
  article-title: Bayesian Models and Algorithms for Protein
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf.
– volume: 30
  start-page: 925
  year: 2022
  end-page: 933
  ident: b0120
  article-title: The accuracy of protein structures in solution determined by AlphaFold and nmr
  publication-title: Structure
– reference: J. Dauparas et al., Robust deep learning–based protein sequence design using ProteinMPNN, Science 378 (2022) 49–56. URL:
– volume: 49
  start-page: e6
  year: 2016
  ident: b0050
  article-title: Protein dynamics and function from solution state nmr spectroscopy
  publication-title: Q. Rev. Biophys.
– volume: 123
  start-page: 1797
  year: 2019
  end-page: 1807
  ident: b0255
  article-title: Exposing the nucleation site in
  publication-title: J. Phys. Chem. B
– reference: R.B. Fenwick, H. van den Bedem, J.S. Fraser, P.E. Wright, Integrated description of protein dynamics from room-temperature X-ray crystallography and NMR. Proc. Natl. Acad. Sci. 111 (2014) E445–E454. URL:
– reference: S.P. Tiwari et al., Webnm@ v2. 0: Web server and services for comparing protein flexibility, BMC Bioinform. 15 (2014) 1–12.
– volume: 110
  start-page: 1463
  year: 2010
  end-page: 1497
  ident: b0130
  article-title: Normal mode analysis of biomolecular structures: functional mechanisms of membrane proteins
  publication-title: Chem. Rev.
– volume: 51
  start-page: D368
  year: 2023
  end-page: D376
  ident: b0170
  article-title: Biological magnetic resonance data bank
  publication-title: Nucl. Acids Res.
– reference: H.K. Wayment-Steele et al., Predicting multiple conformations via sequence clustering and AlphaFold2, Nature 1–8 (2023). URL:
– volume: 38
  start-page: 2742
  year: 2022
  end-page: 2748
  ident: b0295
  article-title: Impact of protein conformational diversity on AlphaFold predictions
  publication-title: Bioinformatics
– volume: 29
  start-page: 1056
  year: 2022
  end-page: 1067
  ident: b0300
  article-title: A structural biology community assessment of AlphaFold2 applications
  publication-title: Nat. Struct. Mol. Biol.
– reference: C. Camilloni, A. De Simone, W.F. Vranken, M. Vendruscolo, Determination of secondary structure populations in disordered states of proteins using nuclear magnetic resonance chemical shifts. Biochemistry 51 (2012) 2224–2231. URL: doi: 10.1021/bi3001825.
– reference: W. Rieping, W.F. Vranken, Validation of archived chemical shifts through atomic coordinates, Prot.: Struct., Funct., Bioinform. 78 (2010) 2482–2489. URL:
– reference: M.L. Hekkelman, I. de Vries, R.P. Joosten, A. Perrakis, AlphaFill: enriching AlphaFold models with ligands and cofactors, Nat. Methods 20 (2023) 205–213. URL:
– volume: 37
  start-page: 654
  year: 1999
  end-page: 667
  ident: b0155
  article-title: Structure-based analysis of protein dynamics: comparison of theoretical results for hen lysozyme with x-ray diffraction and nmr relaxation data
  publication-title: Proteins: Struct., Funct., Bioinf.
– volume: 29
  start-page: 2722
  year: 2013
  end-page: 2728
  ident: b0060
  article-title: lDDT: a local superposition-free score for comparing protein structures and models using distance difference tests
  publication-title: Bioinformatics
– volume: 12
  start-page: 307
  year: 2015
  end-page: 318
  ident: b0085
  article-title: Integrative, dynamic structural biology at atomic resolution–it’s about time
  publication-title: Nat. Methods
– reference: M.V. Berjanskii, D.S. Wishart, A simple method to predict protein flexibility using secondary chemical shifts. J. Am. Chem. Soc. 127 (2005) 14970–14971. URL: doi: 10.1021/ja054842f.
– volume: 291
  start-page: 965
  year: 1999
  end-page: 976
  ident: b0265
  article-title: A calorimetric study of the folding-unfolding of an
  publication-title: J. Mol. Biol.
– volume: 48
  start-page: W36
  year: 2020
  end-page: W40
  ident: b0115
  article-title: ShiftCrypt: a web server to understand and biophysically align proteins through their NMR chemical shift values
  publication-title: Nucl. Acids Res.
– reference: and C
– reference: P.R. Romero et al., BioMagResBank (BMRB) as a resource for structural biology, In: Z. Gáspári (ed.) Structural Bioinformatics, vol. 2112, 187–218 (Springer, US, New York, NY, 2020). URL:
– reference: .
– volume: 40
  start-page: 31
  year: 2008
  end-page: 48
  ident: b0110
  article-title: Application of the random coil index to studying protein flexibility
  publication-title: J. Biomol. NMR
– reference: D. Chakravarty, L.L. Porter, AlphaFold2 fails to predict protein fold switching, Prot. Sci. 31, e4353 (2022). URL:
– reference: J. Jumper et al., Highly accurate protein structure prediction with AlphaFold, Nature 596 (2021) 583–589. URL:
– volume: 50
  start-page: D439
  year: 2021
  end-page: D444
  ident: b0065
  article-title: AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models
  publication-title: Nucl. Acids Res.
– volume: 38
  start-page: 2742
  year: 2022
  end-page: 2748
  ident: b0280
  article-title: Impact of protein conformational diversity on AlphaFold predictions
  publication-title: Bioinformatics
– volume: 6
  start-page: 1
  year: 2005
  end-page: 8
  ident: b0205
  article-title: Webnm@: a web application for normal mode analyses of proteins
  publication-title: BMC Bioinform.
– volume: 11
  start-page: 6321
  year: 2020
  ident: b0125
  article-title: A method for validating the accuracy of nmr protein structures
  publication-title: Nat. Commun.
– reference: D. Frishman, P. Argos, Knowledge-based protein secondary structure assignment, Prot.: Struct., Funct., Bioinform. 23 (1995) 566–579. URL:
– volume: 114
  start-page: 5341
  year: 1992
  ident: 10.1016/j.jmb.2024.168900_b0145
  article-title: Normal modes and nmr order parameters in proteins
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00039a052
– volume: 11
  start-page: 6321
  year: 2020
  ident: 10.1016/j.jmb.2024.168900_b0125
  article-title: A method for validating the accuracy of nmr protein structures
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20177-1
– volume: 110
  start-page: 1463
  year: 2010
  ident: 10.1016/j.jmb.2024.168900_b0130
  article-title: Normal mode analysis of biomolecular structures: functional mechanisms of membrane proteins
  publication-title: Chem. Rev.
  doi: 10.1021/cr900095e
– ident: 10.1016/j.jmb.2024.168900_b0260
  doi: 10.1021/acs.jpcb.8b00229
– ident: 10.1016/j.jmb.2024.168900_b0195
  doi: 10.1002/prot.340230412
– ident: 10.1016/j.jmb.2024.168900_b0070
– ident: 10.1016/j.jmb.2024.168900_b0045
  doi: 10.1073/pnas.1800168115
– volume: 12
  start-page: 1467
  year: 2022
  ident: 10.1016/j.jmb.2024.168900_b0305
  article-title: Digging into the 3d structure predictions of alphafold2 with low confidence: disorder and beyond
  publication-title: Biomolecules
  doi: 10.3390/biom12101467
– volume: 51
  start-page: D368
  year: 2023
  ident: 10.1016/j.jmb.2024.168900_b0170
  article-title: Biological magnetic resonance data bank
  publication-title: Nucl. Acids Res.
  doi: 10.1093/nar/gkac1050
– ident: 10.1016/j.jmb.2024.168900_b0285
  doi: 10.1038/s41592-022-01685-y
– ident: 10.1016/j.jmb.2024.168900_b0185
  doi: 10.1002/prot.22756
– ident: 10.1016/j.jmb.2024.168900_b0200
  doi: 10.1002/prot.10286
– volume: 37
  start-page: 654
  year: 1999
  ident: 10.1016/j.jmb.2024.168900_b0155
  article-title: Structure-based analysis of protein dynamics: comparison of theoretical results for hen lysozyme with x-ray diffraction and nmr relaxation data
  publication-title: Proteins: Struct., Funct., Bioinf.
  doi: 10.1002/(SICI)1097-0134(19991201)37:4<654::AID-PROT15>3.0.CO;2-J
– ident: 10.1016/j.jmb.2024.168900_b0030
  doi: 10.1021/jacs.3c10941
– volume: 33
  start-page: 2250
  year: 2012
  ident: 10.1016/j.jmb.2024.168900_b0210
  article-title: Comparing normal modes across different models and scales: Hessian reduction versus coarse-graining
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.23076
– ident: 10.1016/j.jmb.2024.168900_b0025
  doi: 10.1038/s41586-023-06415-8
– volume: 80
  start-page: 505
  year: 2001
  ident: 10.1016/j.jmb.2024.168900_b0140
  article-title: Anisotropy of fluctuation dynamics of proteins with an elastic network model
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(01)76033-X
– start-page: 56
  year: 2010
  ident: 10.1016/j.jmb.2024.168900_b0160
  article-title: Data Structures for Statistical Computing in Python
  doi: 10.25080/Majora-92bf1922-00a
– ident: 10.1016/j.jmb.2024.168900_b0230
  doi: 10.1021/bi3001825
– volume: 352
  start-page: 107481
  year: 2023
  ident: 10.1016/j.jmb.2024.168900_b0310
  article-title: Blind assessment of monomeric AlphaFold2 protein structure models with experimental NMR data
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2023.107481
– ident: 10.1016/j.jmb.2024.168900_b0175
  doi: 10.1038/ncomms3741
– volume: 70
  start-page: 142
  year: 2017
  ident: 10.1016/j.jmb.2024.168900_b0235
  article-title: Protein β-sheet prediction using an efficient dynamic programming algorithm
  publication-title: Comput. Biol. Chem.
  doi: 10.1016/j.compbiolchem.2017.08.011
– volume: 12
  start-page: 307
  year: 2015
  ident: 10.1016/j.jmb.2024.168900_b0085
  article-title: Integrative, dynamic structural biology at atomic resolution–it’s about time
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3324
– ident: 10.1016/j.jmb.2024.168900_b0080
  doi: 10.1073/pnas.1323440111
– ident: 10.1016/j.jmb.2024.168900_b0035
– volume: 6
  start-page: lqae082
  year: 2024
  ident: 10.1016/j.jmb.2024.168900_b0180
  article-title: Data-driven probabilistic definition of the low energy conformational states of protein residues
  publication-title: NAR Genom. Bioinform.
  doi: 10.1093/nargab/lqae082
– volume: 30
  start-page: 925
  year: 2022
  ident: 10.1016/j.jmb.2024.168900_b0120
  article-title: The accuracy of protein structures in solution determined by AlphaFold and nmr
  publication-title: Structure
  doi: 10.1016/j.str.2022.04.005
– ident: 10.1016/j.jmb.2024.168900_b0165
– volume: 123
  start-page: 1797
  year: 2019
  ident: 10.1016/j.jmb.2024.168900_b0255
  article-title: Exposing the nucleation site in α-helix folding: a joint experimental and simulation study
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.8b12220
– volume: 5
  start-page: 484
  year: 2008
  ident: 10.1016/j.jmb.2024.168900_b0240
  article-title: Improving strand pairing prediction through exploring folding cooperativity
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform./ IEEE, ACM
  doi: 10.1109/TCBB.2008.88
– volume: 60
  start-page: 77
  year: 2020
  ident: 10.1016/j.jmb.2024.168900_b0055
  article-title: Machine learning for protein folding and dynamics
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2019.12.005
– ident: 10.1016/j.jmb.2024.168900_b0100
  doi: 10.1007/978-1-0716-0270-6_14
– ident: 10.1016/j.jmb.2024.168900_b0020
  doi: 10.1126/science.add2187
– volume: 28
  start-page: 569
  year: 2007
  ident: 10.1016/j.jmb.2024.168900_b0290
  article-title: Structural basis and mechanism of autoregulation in 3-phosphoinositide-dependent Grp1 family Arf GTPase exchange factors
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2007.09.017
– ident: 10.1016/j.jmb.2024.168900_b0105
  doi: 10.1021/ja054842f
– volume: 31
  start-page: 5269
  year: 1992
  ident: 10.1016/j.jmb.2024.168900_b0095
  article-title: Backbone dynamics of calmodulin studied by nitrogen-15 relaxation using inverse detected two-dimensional NMR spectroscopy: the central helix is flexible
  publication-title: Biochemistry
  doi: 10.1021/bi00138a005
– volume: 622
  start-page: 646
  year: 2023
  ident: 10.1016/j.jmb.2024.168900_b0015
  article-title: Uncovering new families and folds in the natural protein universe
  publication-title: Nature
  doi: 10.1038/s41586-023-06622-3
– volume: 23
  start-page: 119
  year: 2002
  ident: 10.1016/j.jmb.2024.168900_b0150
  article-title: Dynamics of large proteins through hierarchical levels of coarse-grained structures
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.1160
– volume: 42
  start-page: D326
  year: 2014
  ident: 10.1016/j.jmb.2024.168900_b0090
  article-title: pE-DB: a database of structural ensembles of intrinsically disordered and of unfolded proteins
  publication-title: Nucl. Acids Res.
  doi: 10.1093/nar/gkt960
– volume: 40
  start-page: 31
  year: 2008
  ident: 10.1016/j.jmb.2024.168900_b0110
  article-title: Application of the random coil index to studying protein flexibility
  publication-title: J. Biomol. NMR
  doi: 10.1007/s10858-007-9208-0
– ident: 10.1016/j.jmb.2024.168900_b0135
  doi: 10.1186/s12859-014-0427-6
– volume: 6
  start-page: 1
  year: 2005
  ident: 10.1016/j.jmb.2024.168900_b0205
  article-title: Webnm@: a web application for normal mode analyses of proteins
  publication-title: BMC Bioinform.
  doi: 10.1186/1471-2105-6-52
– volume: 8
  start-page: 395
  year: 2011
  ident: 10.1016/j.jmb.2024.168900_b0245
  article-title: Bayesian Models and Algorithms for Protein β-Sheet Prediction
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf.
  doi: 10.1109/TCBB.2008.140
– ident: 10.1016/j.jmb.2024.168900_b0275
  doi: 10.1021/jacs.0c03217
– ident: 10.1016/j.jmb.2024.168900_b0040
  doi: 10.1002/prot.26382
– volume: 49
  start-page: e6
  year: 2016
  ident: 10.1016/j.jmb.2024.168900_b0050
  article-title: Protein dynamics and function from solution state nmr spectroscopy
  publication-title: Q. Rev. Biophys.
  doi: 10.1017/S0033583516000019
– ident: 10.1016/j.jmb.2024.168900_b0315
  doi: 10.1002/pro.4353
– ident: 10.1016/j.jmb.2024.168900_b0005
  doi: 10.1038/s41586-021-03819-2
– volume: 48
  start-page: W36
  year: 2020
  ident: 10.1016/j.jmb.2024.168900_b0115
  article-title: ShiftCrypt: a web server to understand and biophysically align proteins through their NMR chemical shift values
  publication-title: Nucl. Acids Res.
  doi: 10.1093/nar/gkaa391
– ident: 10.1016/j.jmb.2024.168900_b0220
  doi: 10.1002/cphc.202200746
– volume: 82
  start-page: 27
  year: 2014
  ident: 10.1016/j.jmb.2024.168900_b0215
  article-title: NMR structure validation in relation to dynamics and structure determination
  publication-title: Prog. Nucl. Magn. Reson. Spectrosc.
  doi: 10.1016/j.pnmrs.2014.08.001
– volume: 38
  start-page: 2742
  year: 2022
  ident: 10.1016/j.jmb.2024.168900_b0295
  article-title: Impact of protein conformational diversity on AlphaFold predictions
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btac202
– volume: 6
  start-page: 160
  year: 2023
  ident: 10.1016/j.jmb.2024.168900_b0010
  article-title: AlphaFold2 reveals commonalities and novelties in protein structure space for 21 model organisms
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-023-04488-9
– volume: 28
  start-page: 235
  year: 2000
  ident: 10.1016/j.jmb.2024.168900_b0190
  article-title: The protein data bank
  publication-title: Nucl. Acids Res.
  doi: 10.1093/nar/28.1.235
– volume: 29
  start-page: 2722
  year: 2013
  ident: 10.1016/j.jmb.2024.168900_b0060
  article-title: lDDT: a local superposition-free score for comparing protein structures and models using distance difference tests
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt473
– volume: 12
  start-page: e1005242
  year: 2016
  ident: 10.1016/j.jmb.2024.168900_b0270
  article-title: Alpha helices are more robust to mutations than beta strands
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1005242
– volume: 31
  start-page: e4466
  year: 2022
  ident: 10.1016/j.jmb.2024.168900_b0075
  article-title: Intrinsic protein disorder and conditional folding in AlphaFoldDB
  publication-title: Protein Sci.
  doi: 10.1002/pro.4466
– volume: 38
  start-page: 2742
  year: 2022
  ident: 10.1016/j.jmb.2024.168900_b0280
  article-title: Impact of protein conformational diversity on AlphaFold predictions
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btac202
– volume: 291
  start-page: 965
  year: 1999
  ident: 10.1016/j.jmb.2024.168900_b0265
  article-title: A calorimetric study of the folding-unfolding of an α-helix with covalently closed N and C-terminal loops 1
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1999.3025
– volume: 50
  start-page: D439
  year: 2021
  ident: 10.1016/j.jmb.2024.168900_b0065
  article-title: AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models
  publication-title: Nucl. Acids Res.
  doi: 10.1093/nar/gkab1061
– volume: 29
  start-page: 1056
  year: 2022
  ident: 10.1016/j.jmb.2024.168900_b0300
  article-title: A structural biology community assessment of AlphaFold2 applications
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-022-00849-w
– volume: 270
  start-page: 935
  year: 1995
  ident: 10.1016/j.jmb.2024.168900_b0250
  article-title: Protein design: a hierarchic approach
  publication-title: Science
  doi: 10.1126/science.270.5238.935
– volume: 42
  start-page: W264
  year: 2014
  ident: 10.1016/j.jmb.2024.168900_b0225
  article-title: The dynamine webserver: predicting protein dynamics from sequence
  publication-title: Nucl. Acids Res.
  doi: 10.1093/nar/gku270
SSID ssj0005348
Score 2.5009308
Snippet [Display omitted] •AlphaFold2’s pLDDT can differentiate between ordered or disordered residues.•AlphaFold2’s pLDDT does not reflect gradations on residue...
The advent of accurate methods to predict the fold of proteins initiated by AlphaFold2 is rapidly changing our understanding of proteins and helping their...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 168900
SubjectTerms AlphaFold2
Computational Biology - methods
large-scale analysis
Magnetic Resonance Spectroscopy - methods
Molecular Dynamics Simulation
nuclear magnetic resonance
Nuclear Magnetic Resonance, Biomolecular - methods
Protein Conformation
protein dynamics
Protein Folding
Proteins - chemistry
structural biology
Title Gradations in protein dynamics captured by experimental NMR are not well represented by AlphaFold2 models and other computational metrics
URI https://dx.doi.org/10.1016/j.jmb.2024.168900
https://www.ncbi.nlm.nih.gov/pubmed/39647695
https://www.proquest.com/docview/3146582691
Volume 437
WOSCitedRecordID wos001392849800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1089-8638
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005348
  issn: 0022-2836
  databaseCode: AIEXJ
  dateStart: 20210903
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1089-8638
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005348
  issn: 0022-2836
  databaseCode: AIEXJ
  dateStart: 20210806
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1089-8638
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005348
  issn: 0022-2836
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKB2IvCMZl5TIZiSeqVLEdN8lj2aWAoEIwpL5FduKIVG1ade3ofgJ_hN_JsR0nHbAJkHiJ2siuI39f4-Pj75yD0AuWhxkPBGxLYs69gKV9L-I596gMaUZyqnxlqpa8C0ejaDyOP7Ra310szPk0LMtos4kX_xVquAdg69DZv4C7_lG4AZ8BdLgC7HD9I-CHS5FtKcR1HgateLWV53Uq6oU-NDB256X0_qP3H7taBlbOV13j0TP5LnVskm080FG5J_NpRm35HJvc2QRwGWH6euX8ijNdpasS0f9q985cQd5ulQCqlgAJmIZMeENd3ki444na0i42hVkwXn0RX8t6MTkyJ_1HwvjBB9myMN9JTfkh8BCe1Wo3t10cVKsJPRvkaf1uLvamETq5OAQwjvrb7_LAZpCpSEt_u0ZYd8WkN5nJHowW9Eg_in2_WRBrmeInEyoMQ2ihLWc6pnyHhjyO2mhn8OZ4_LYRE7EgcnnpdQd3fm6UhD8NdJUFdNUOx1g6p3fRnQoqPLDUuodaqtxDt2zR0os9dPvQ1Qi8j741ZMNFiSuyYUc27MiG5QXeJhsGsmEgGwayYU02vEU23bghG7Zkw0A2bMiGL5ENV2R7gD6fHJ8evvaq4h5eyjhbeUxKQahMmZ_lQT8NaJ6TDIxLqTjYAioUseRKpZIoQftZZHYWKSUyzn0iaJizh6hdzku1jzChPqMSFp9YpkGodA7JHKbaF4wqkim_g3w34UlaZb7XBVimiZM4ThLAKNEYJRajDnpZd1nYtC_XNQ4cikllt1p7NAHKXdftuUM8Adj0QZ0o1Xx9ljAwXzjs-2PSQY8sFeqnYDp0HF6sj_9t0Cdot_mHPUXt1XKtnqGb6fmqOFseoBvhODqoyP0DNvzU7A
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gradations+in+protein+dynamics+captured+by+experimental+NMR+are+not+well+represented+by+AlphaFold2+models+and+other+computational+metrics&rft.jtitle=Journal+of+molecular+biology&rft.au=Gavalda-Garcia%2C+Jose&rft.au=Dixit%2C+Bhawna&rft.au=D%C3%ADaz%2C+Adri%C3%A1n&rft.au=Ghysels%2C+An&rft.date=2025-01-15&rft.pub=Elsevier+Ltd&rft.issn=0022-2836&rft.volume=437&rft.issue=2&rft_id=info:doi/10.1016%2Fj.jmb.2024.168900&rft.externalDocID=S0022283624005308
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2836&client=summon