Boundary-aware feature and prediction refinement for polyp segmentation
Polyp segmentation from colonoscopy videos is an essential task in medical image processing for detecting early cancer. However, segmenting a precise boundary is still challenging, even with powerful deep neural networks. We consider the difficulty can be caused by: (1) the ambiguity boundary and (2...
Uložené v:
| Vydané v: | Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization Ročník 11; číslo 4; s. 1187 - 1196 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English Japanese |
| Vydavateľské údaje: |
Taylor & Francis
04.07.2023
Informa UK Limited |
| Predmet: | |
| ISSN: | 2168-1163, 2168-1171 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Polyp segmentation from colonoscopy videos is an essential task in medical image processing for detecting early cancer. However, segmenting a precise boundary is still challenging, even with powerful deep neural networks. We consider the difficulty can be caused by: (1) the ambiguity boundary and (2) some complicated shape makes polyps hard to segment. To address these problems, we propose the Boundary-aware Feature and Prediction Refinement framework (BaFPR) for polyp segmentation. Specifically, we design a segmentation decoder for representation learning with boundary prior and propose a novel consistency loss to learn clues from the polar coordinate. The decoder mainly consists of a boundary prior module (BPM) and a bi-directional fusion module (BiFM). BPM is designed to learn the boundary prior, while BiFM learns to fuse representations of BPM and multi-scale representations from an encoder. To handle these complicated shapes of polyps, we maintain an extra segmentation network that learns with polar transformations of data to provide extra clues for the main segmentation network by our proposed consistency loss. We evaluated BaFPR with five challenging datasets for polyp segmentation and the results showed that our proposal consistently improves the segmentation performance of polyps. Code available at:
https://github.com/MoriLabNU/BaFPR
. |
|---|---|
| AbstractList | Polyp segmentation from colonoscopy videos is an essential task in medical image processing for detecting early cancer. However, segmenting a precise boundary is still challenging, even with powerful deep neural networks. We consider the difficulty can be caused by: (1) the ambiguity boundary and (2) some complicated shape makes polyps hard to segment. To address these problems, we propose the Boundary-aware Feature and Prediction Refinement framework (BaFPR) for polyp segmentation. Specifically, we design a segmentation decoder for representation learning with boundary prior and propose a novel consistency loss to learn clues from the polar coordinate. The decoder mainly consists of a boundary prior module (BPM) and a bi-directional fusion module (BiFM). BPM is designed to learn the boundary prior, while BiFM learns to fuse representations of BPM and multi-scale representations from an encoder. To handle these complicated shapes of polyps, we maintain an extra segmentation network that learns with polar transformations of data to provide extra clues for the main segmentation network by our proposed consistency loss. We evaluated BaFPR with five challenging datasets for polyp segmentation and the results showed that our proposal consistently improves the segmentation performance of polyps. Code available at:
https://github.com/MoriLabNU/BaFPR
. |
| Author | Oda, Masahiro Qiu, Jie Hayashi, Yuichiro Kitasaka, Takayuki Mori, Kensaku |
| Author_xml | – sequence: 1 givenname: Jie surname: Qiu fullname: Qiu, Jie email: jieqiu@mori.m.is.nagoya-u.ac.jp organization: Nagoya University – sequence: 2 givenname: Yuichiro surname: Hayashi fullname: Hayashi, Yuichiro organization: Nagoya University – sequence: 3 givenname: Masahiro orcidid: 0000-0001-7714-422X surname: Oda fullname: Oda, Masahiro organization: Nagoya University – sequence: 4 givenname: Takayuki surname: Kitasaka fullname: Kitasaka, Takayuki organization: Aichi Institute of Technology – sequence: 5 givenname: Kensaku orcidid: 0000-0002-0100-4797 surname: Mori fullname: Mori, Kensaku email: kensaku@is.nagoya-u.ac.jp organization: National Institute of Informatics |
| BackLink | https://cir.nii.ac.jp/crid/1873961342830394880$$DView record in CiNii |
| BookMark | eNp9UMtOwzAQtFCRKKWfgJQD1xSvN3acG1BBQarEBc6W6zjIKLUjJ1WVv8dRC0fmsLsazb7mmsx88JaQW6AroJLeMxASQOCKUcZWDDjnZXVB5hOfA5Qw-6sFXpFl33_TBCkECj4nm6dw8LWOY66POtqssXo4pKx9nXXR1s4MLvgs2sZ5u7d-yJoQsy60Y5f19mti9KS4IZeNbnu7POcF-Xx5_li_5tv3zdv6cZsb5DjkDC1yqQUVoFlT7LQQlqKltUiA2qTIJeO7skJpKa8SYZpaA5OFQZQSF4Sf5poY-j6dpbro9ul-BVRNhqhfQ9RkiDobkvruTn3eOWXcFEGWWAnAgkmkWBVS0iR7OMmcT3_u9THEtlaDHtsQm6i9cb3C_zf9AHeHctA |
| Cites_doi | 10.1007/s11548-013-0926-3 10.1007/s11263-021-01453-z 10.1109/CVPR42600.2020.00487 10.1016/j.media.2022.102418 10.1155/2017/4037190 10.1007/978-3-030-87193-2_66 10.1109/ACCESS.2021.3116265 10.1109/ICCV.2017.487 10.1007/978-3-030-37734-2_37 10.1007/s41095-022-0274-8 10.1109/TIP.2003.819861 10.1109/CVPR.2014.39 10.1016/j.neucom.2019.12.036 10.1007/978-3-319-24574-4_28 10.1007/978-3-030-87193-2_2 10.1109/ISM46123.2019.00049 10.1109/TPAMI.2019.2938758 10.1007/978-3-030-00889-5_1 10.1109/LGRS.2018.2802944 10.1007/978-3-030-01234-2_49 10.1007/978-3-030-32239-7_34 10.1109/CVPR42600.2020.00389 10.1016/j.patcog.2012.03.002 10.1016/j.dld.2016.06.025 10.1145/3474085.3475375 10.1007/978-3-030-59725-2_26 10.1109/CVPR.2017.667 10.1007/978-3-030-87193-2_20 10.1109/ICCV.2019.00140 10.1016/j.compmedimag.2015.02.007 10.1109/CVPR.2018.00745 |
| ContentType | Journal Article |
| Copyright | 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 |
| Copyright_xml | – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 |
| DBID | RYH AAYXX CITATION |
| DOI | 10.1080/21681163.2022.2155579 |
| DatabaseName | CiNii Complete CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2168-1171 |
| EndPage | 1196 |
| ExternalDocumentID | 10_1080_21681163_2022_2155579 2155579 |
| Genre | Research Article |
| GroupedDBID | 0BK 30N 4.4 AAGDL AAJMT AALDU AAMIU AAPUL AAQRR ABLIJ ABPAQ ABXUL ABXYU ACGFS ADCVX ADGTB ADMLS AEISY AFRVT AGDLA AHDZW AIJEM AIYEW AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQTUD ARCSS BLEHA CCCUG EBS EUPTU GTTXZ H13 HZ~ KYCEM LJTGL M4Z O9- RIG RNANH ROSJB RTWRZ SNACF SOJIQ TBQAZ TDBHL TEN TFL TFT TFW TTHFI TUROJ RYH AAYXX CITATION |
| ID | FETCH-LOGICAL-c353t-23e358a6061a2f4ba66e03e0d66661dc6665825b7938e059c66cfda1284c33883 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000901947800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2168-1163 |
| IngestDate | Sat Nov 29 06:34:11 EST 2025 Mon Nov 10 09:17:35 EST 2025 Mon Oct 20 23:49:00 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English Japanese |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c353t-23e358a6061a2f4ba66e03e0d66661dc6665825b7938e059c66cfda1284c33883 |
| ORCID | 0000-0001-7714-422X 0000-0002-0100-4797 |
| OpenAccessLink | https://cir.nii.ac.jp/crid/1873961342830394880 |
| PageCount | 10 |
| ParticipantIDs | nii_cinii_1873961342830394880 informaworld_taylorfrancis_310_1080_21681163_2022_2155579 crossref_primary_10_1080_21681163_2022_2155579 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-07-04 |
| PublicationDateYYYYMMDD | 2023-07-04 |
| PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-04 day: 04 |
| PublicationDecade | 2020 |
| PublicationTitle | Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization |
| PublicationYear | 2023 |
| Publisher | Taylor & Francis Informa UK Limited |
| Publisher_xml | – name: Taylor & Francis – name: Informa UK Limited |
| References | cit0011 cit0033 cit0012 cit0034 Kervadec H (cit0016) 2019 cit0031 cit0010 cit0032 Loshchilov I (cit0019) 2018 cit0030 cit0017 cit0018 cit0015 cit0013 cit0035 cit0014 cit0036 cit0022 cit0001 cit0020 cit0021 Dong B (cit0006) 2021 cit0008 cit0009 cit0028 cit0007 cit0029 cit0004 cit0026 cit0005 cit0027 cit0002 cit0024 cit0003 Roy AG (cit0023) 2018 cit0025 |
| References_xml | – ident: cit0024 doi: 10.1007/s11548-013-0926-3 – ident: cit0011 doi: 10.1007/s11263-021-01453-z – ident: cit0018 doi: 10.1109/CVPR42600.2020.00487 – ident: cit0032 doi: 10.1016/j.media.2022.102418 – ident: cit0025 doi: 10.1155/2017/4037190 – ident: cit0031 doi: 10.1007/978-3-030-87193-2_66 – ident: cit0001 doi: 10.1109/ACCESS.2021.3116265 – ident: cit0007 doi: 10.1109/ICCV.2017.487 – ident: cit0014 doi: 10.1007/978-3-030-37734-2_37 – ident: cit0029 doi: 10.1007/s41095-022-0274-8 – ident: cit0026 doi: 10.1109/TIP.2003.819861 – ident: cit0020 doi: 10.1109/CVPR.2014.39 – ident: cit0035 doi: 10.1016/j.neucom.2019.12.036 – volume-title: International Conference on Learning Representations year: 2018 ident: cit0019 – ident: cit0022 doi: 10.1007/978-3-319-24574-4_28 – ident: cit0033 doi: 10.1007/978-3-030-87193-2_2 – ident: cit0015 doi: 10.1109/ISM46123.2019.00049 – ident: cit0010 doi: 10.1109/TPAMI.2019.2938758 – ident: cit0036 doi: 10.1007/978-3-030-00889-5_1 – ident: cit0034 doi: 10.1109/LGRS.2018.2802944 – ident: cit0005 doi: 10.1007/978-3-030-01234-2_49 – ident: cit0008 doi: 10.1007/978-3-030-32239-7_34 – ident: cit0027 doi: 10.1109/CVPR42600.2020.00389 – start-page: 421 volume-title: International conference on medical image computing and computer-assisted intervention year: 2018 ident: cit0023 – ident: cit0003 doi: 10.1016/j.patcog.2012.03.002 – ident: cit0021 doi: 10.1016/j.dld.2016.06.025 – ident: cit0017 doi: 10.1145/3474085.3475375 – ident: cit0009 doi: 10.1007/978-3-030-59725-2_26 – ident: cit0004 doi: 10.1109/CVPR.2017.667 – ident: cit0028 doi: 10.1007/978-3-030-87193-2_20 – ident: cit0030 doi: 10.1007/s41095-022-0274-8 – ident: cit0012 doi: 10.1109/ICCV.2019.00140 – year: 2021 ident: cit0006 publication-title: This is a technical report rather than a journal paper – ident: cit0002 doi: 10.1016/j.compmedimag.2015.02.007 – start-page: 285 volume-title: International conference on medical imaging with deep learning year: 2019 ident: cit0016 – ident: cit0013 doi: 10.1109/CVPR.2018.00745 |
| SSID | ssj0000866365 ssib044168314 ssib039557987 ssib024195514 |
| Score | 2.240919 |
| Snippet | Polyp segmentation from colonoscopy videos is an essential task in medical image processing for detecting early cancer. However, segmenting a precise boundary... |
| SourceID | crossref nii informaworld |
| SourceType | Index Database Publisher |
| StartPage | 1187 |
| SubjectTerms | boundary-aware consistency learning Polyp segmentation |
| Title | Boundary-aware feature and prediction refinement for polyp segmentation |
| URI | https://www.tandfonline.com/doi/abs/10.1080/21681163.2022.2155579 https://cir.nii.ac.jp/crid/1873961342830394880 |
| Volume | 11 |
| WOSCitedRecordID | wos000901947800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Online Journals customDbUrl: eissn: 2168-1171 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000866365 issn: 2168-1163 databaseCode: TFW dateStart: 20130301 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQADb0SBIg-sKUlsx84IiMKAKoYiukVuYqNKEKIkgPrvuXMS1A6IARYPkc6xzo_vzr77jpDzjAOsamZgf1vr8YwrT0sReZmxEiwEbpjvEoXv5XisptP4oY0mrNqwSvShbUMU4c5q3Nx6VnURcRdhEKkA7Ajw7sJwCJglhMQUPoB-rGEwGT1937KAwR4xV08ShTyU6tJ4fupoBaBW6EsBfvL5fAl-Rtv_MPAdstXanvSyWSy7ZM3ke2RziZFwn9xeuTJL5cLTn7o01BpH_Enhl7Qo8VEHJ5LCqEEGLxYpDJwWby-Lglbm-bXNZMoPyOPoZnJ957W1FryUCVZ7ITNMKA3uTKBDy2c6iozPjJ-BexMFWQqtAGdyBttZGTDJ4ENqM43oloKXq9gh6eVvuTkiVCpARQyfYpJzobXiLDUBk1bHQliR9cmwU3BSNJQaSdAylXYaSlBDSauhPomXpyGp3V2GbQqPJOwX2QHMWZLOsQ2UZDHYL0gy57MYz67jP_R9Qjaw-LwL3uWnpFeX72ZA1tOPel6VZ24hfgH8utUn |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagIAEDb0SBggfWQBPbiTMCohRROhXRLXITG0WCNEoDqP-euzxQOiAGWDJEOsc6P767y913hJxHHGBVMQ3n2xiLR1xayhOuFWnjgYXANesWhcIDbziU47HfrIXBtEr0oU1JFFHc1Xi4MRhdp8RdOrYrbTAkwL1znAsALSE8f5msCMBa3OWj3vN3nAVMdpcVHSVRykKxupDnp5EWIGqBwBQAKInjBgD1tv5j6ttkszI_6VW5X3bIkk52yUaDlHCP3F0XnZayuaU-Vaap0QX3J4Vv0jTD_zq4lhSmDTIYW6Qwc5pOX-cpnemXt6qYKdknT73b0U3fqtotWCETLLccppmQCjwaWzmGT5Tr6i7T3Qg8HNeOQngK8CcncKKlBqsMXoQmUghwITi6kh2QVjJN9CGhngRgxAwq5nEulJKchdpmnlG-EEZEbXJRazhIS1aNwK7ISmsNBaihoNJQm_jNdQjyIpxhyt4jAftFtgOLFoQxPm3pMR9MGOSZ6zIfr6-jP4x9Rtb6o8dBMLgfPhyTdexFX-Ty8hPSyrN33SGr4Ucez7LTYld-AaS22VI |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagIAQDb0SBggfWlCS2Y2fkFUBUVYciukVuYqNIkEZpAPXfc84DtQNigCVDpHOs8-P7zjl_h9B5TAFWJVGwvrW2aEyFJTnzrFhpDgyBKmKXF4V7vN8Xo5E_qLMJp3VapYmhdSUUUe7VZnFnsW4y4i5cxxMO8AiI7ly3C5jFGPeX0QpQZ8_EX8Pg-fuYBRi7R8qCksbKMmbNPZ6fWlpAqAX9UsCfNEnm8CfY-oeeb6PNmnziy2q27KAlle6ijTlJwj10d1XWWcpnlvyUucJalcqfGD6Js9z81TEjiaHXYGNOFjF0HGeT11mGp-rlrb7KlO6jp-B2eH1v1cUWrIgwUlguUYQJCfGMI11Nx9LzlE2UHUN84zlxBE8G0eQY1rNQwMngRaRjaeAtgjBXkAPUSiepOkSYC4BFkz9FOKVMSkFJpBzCtfQZ0yxuo27j4DCrNDVCp5YqbTwUGg-FtYfayJ8fhrAoDzN0VXkkJL_YdmDMwigxT0dw4gOBMSpzNvHN5nX0h7bP0NrgJgh7D_3HY7RuCtGXibz0BLWK_F110Gr0USTT_LSck18hMtgD |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Boundary-aware+feature+and+prediction+refinement+for+polyp+segmentation&rft.jtitle=Computer+methods+in+biomechanics+and+biomedical+engineering.&rft.au=Qiu%2C+Jie&rft.au=Hayashi%2C+Yuichiro&rft.au=Oda%2C+Masahiro&rft.au=Kitasaka%2C+Takayuki&rft.date=2023-07-04&rft.pub=Taylor+%26+Francis&rft.issn=2168-1163&rft.eissn=2168-1171&rft.volume=11&rft.issue=4&rft.spage=1187&rft.epage=1196&rft_id=info:doi/10.1080%2F21681163.2022.2155579&rft.externalDocID=2155579 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-1163&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-1163&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-1163&client=summon |