Online Multistage Subset Maximization Problems

Numerous combinatorial optimization problems (knapsack, maximum-weight matching, etc.) can be expressed as subset maximization problems : One is given a ground set N = { 1 , ⋯ , n } , a collection F ⊆ 2 N of subsets thereof such that ∅ ∈ F , and an objective (profit) function p : F → R + . The task...

Full description

Saved in:
Bibliographic Details
Published in:Algorithmica Vol. 83; no. 8; pp. 2374 - 2399
Main Authors: Bampis, Evripidis, Escoffier, Bruno, Schewior, Kevin, Teiller, Alexandre
Format: Journal Article
Language:English
Published: New York Springer US 01.08.2021
Springer Nature B.V
Springer Verlag
Subjects:
ISSN:0178-4617, 1432-0541
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Numerous combinatorial optimization problems (knapsack, maximum-weight matching, etc.) can be expressed as subset maximization problems : One is given a ground set N = { 1 , ⋯ , n } , a collection F ⊆ 2 N of subsets thereof such that ∅ ∈ F , and an objective (profit) function p : F → R + . The task is to choose a set S ∈ F that maximizes p ( S ). We consider the multistage version (Eisenstat et al., Gupta et al., both ICALP 2014) of such problems: The profit function p t (and possibly the set of feasible solutions F t ) may change over time. Since in many applications changing the solution is costly, the task becomes to find a sequence of solutions that optimizes the trade-off between good per-time solutions and stable solutions taking into account an additional similarity bonus. As similarity measure for two consecutive solutions, we consider either the size of the intersection of the two solutions or the difference of n and the Hamming distance between the two characteristic vectors. We study multistage subset maximization problems in the online setting, that is, p t (along with possibly F t ) only arrive one by one and, upon such an arrival, the online algorithm has to output the corresponding solution without knowledge of the future. We develop general techniques for online multistage subset maximization and thereby characterize those models (given by the type of data evolution and the type of similarity measure) that admit a constant-competitive online algorithm. When no constant competitive ratio is possible, we employ lookahead to circumvent this issue. When a constant competitive ratio is possible, we provide almost matching lower and upper bounds on the best achievable one.
AbstractList Numerous combinatorial optimization problems (knapsack, maximum-weight matching, etc.) can be expressed as subset maximization problems: One is given a ground set N = {1, . . . , n}, a collection F ⊆ 2N of subsets thereof such that ∅ ∈ F, and an objective (profit) function p : F → R+. The task is to choose a set S ∈ F that maximizes p(S). We consider the multistage version (Eisenstat et al., Gupta et al., both ICALP 2014) of such problems: The profit function pt (and possibly the set of feasible solutions Ft) may change over time. Since in many applications changing the solution is costly, the task becomes to find a sequence of solutions that optimizes the trade-off between good per-time solutions and stable solutions taking into account an additional similarity bonus. As similarity measure for two consecutive solutions, we consider either the size of the intersection of the two solutions or the difference of n and the Hamming distance between the two characteristic vectors. We study multistage subset maximization problems in the online setting, that is, pt (along with possibly Ft) only arrive one by one and, upon such an arrival, the online algorithm has to output the corresponding solution without knowledge of the future. We develop general techniques for online multistage subset maximization and thereby characterize those models (given by the type of data evolution and the type of similarity measure) that admit a constant-competitive online algorithm. When no constant competitive ratio is possible, we employ lookahead to circumvent this issue. When a constant competitive ratio is possible, we provide almost matching lower and upper bounds on the best achievable one.
Numerous combinatorial optimization problems (knapsack, maximum-weight matching, etc.) can be expressed as subset maximization problems: One is given a ground set N={1,⋯,n}, a collection F⊆2N of subsets thereof such that ∅∈F, and an objective (profit) function p:F→R+. The task is to choose a set S∈F that maximizes p(S). We consider the multistage version (Eisenstat et al., Gupta et al., both ICALP 2014) of such problems: The profit function pt (and possibly the set of feasible solutions Ft) may change over time. Since in many applications changing the solution is costly, the task becomes to find a sequence of solutions that optimizes the trade-off between good per-time solutions and stable solutions taking into account an additional similarity bonus. As similarity measure for two consecutive solutions, we consider either the size of the intersection of the two solutions or the difference of n and the Hamming distance between the two characteristic vectors. We study multistage subset maximization problems in the online setting, that is, pt (along with possibly Ft) only arrive one by one and, upon such an arrival, the online algorithm has to output the corresponding solution without knowledge of the future. We develop general techniques for online multistage subset maximization and thereby characterize those models (given by the type of data evolution and the type of similarity measure) that admit a constant-competitive online algorithm. When no constant competitive ratio is possible, we employ lookahead to circumvent this issue. When a constant competitive ratio is possible, we provide almost matching lower and upper bounds on the best achievable one.
Numerous combinatorial optimization problems (knapsack, maximum-weight matching, etc.) can be expressed as subset maximization problems : One is given a ground set N = { 1 , ⋯ , n } , a collection F ⊆ 2 N of subsets thereof such that ∅ ∈ F , and an objective (profit) function p : F → R + . The task is to choose a set S ∈ F that maximizes p ( S ). We consider the multistage version (Eisenstat et al., Gupta et al., both ICALP 2014) of such problems: The profit function p t (and possibly the set of feasible solutions F t ) may change over time. Since in many applications changing the solution is costly, the task becomes to find a sequence of solutions that optimizes the trade-off between good per-time solutions and stable solutions taking into account an additional similarity bonus. As similarity measure for two consecutive solutions, we consider either the size of the intersection of the two solutions or the difference of n and the Hamming distance between the two characteristic vectors. We study multistage subset maximization problems in the online setting, that is, p t (along with possibly F t ) only arrive one by one and, upon such an arrival, the online algorithm has to output the corresponding solution without knowledge of the future. We develop general techniques for online multistage subset maximization and thereby characterize those models (given by the type of data evolution and the type of similarity measure) that admit a constant-competitive online algorithm. When no constant competitive ratio is possible, we employ lookahead to circumvent this issue. When a constant competitive ratio is possible, we provide almost matching lower and upper bounds on the best achievable one.
Author Escoffier, Bruno
Bampis, Evripidis
Teiller, Alexandre
Schewior, Kevin
Author_xml – sequence: 1
  givenname: Evripidis
  surname: Bampis
  fullname: Bampis, Evripidis
  organization: Sorbonne Université, CNRS, LIP6
– sequence: 2
  givenname: Bruno
  orcidid: 0000-0002-6477-8706
  surname: Escoffier
  fullname: Escoffier, Bruno
  email: bruno.escoffier@lip6.fr
  organization: Sorbonne Université, CNRS, LIP6, Institut Universitaire de France
– sequence: 3
  givenname: Kevin
  surname: Schewior
  fullname: Schewior, Kevin
  organization: Department Mathematik/Informatik, Abteilung Informatik, Universität zu Köln
– sequence: 4
  givenname: Alexandre
  surname: Teiller
  fullname: Teiller, Alexandre
  organization: Sorbonne Université, CNRS, LIP6
BackLink https://hal.science/hal-03333729$$DView record in HAL
BookMark eNp9kF1LwzAUhoNMcJv-Aa8KXnnRme-kl2OoEzYmqNchbdOZ0bUzSUX99WarKHixcCBweJ9zDs8IDJq2MQBcIjhBEIobDyFlJIUYpRBKQlNxAoaIEpxCRtEADCESMqUciTMw8n4DIcIi40MwWTW1bUyy7OpgfdBrkzx1uTchWeoPu7VfOti2SR5dm9dm68_BaaVrby5-_jF4ubt9ns3Txer-YTZdpAVhJKSoKiTOZUZklmFhiopzjnJWmpIgimhmqI6lpRE5N1AzXghEdckllgbTMidjcN3PfdW12jm71e5Ttdqq-XSh9j1I4hM4e0cxe9Vnd65964wPatN2ronnKcwYJYLJjMUU7lOFa713pvodi6DaO1S9QxUdqoNDJSIk_0GFDQcjwWlbH0dJj_q4p1kb93fVEeobBRiF8g
CitedBy_id crossref_primary_10_1007_s00224_022_10069_w
crossref_primary_10_3390_app142210427
crossref_primary_10_1109_ACCESS_2024_3466149
crossref_primary_10_1016_j_procs_2023_08_245
Cites_doi 10.1007/978-3-030-04693-4_19
10.1016/j.tcs.2007.03.006
10.1137/1.9781611973402.32
10.1137/140955276
10.1007/978-3-540-72792-7_32
10.1109/TNET.2012.2226216
10.1007/978-3-319-89441-6_13
10.1007/978-3-662-43948-7_47
10.1007/978-3-319-53925-6_3
10.1145/2963103
10.1137/130917703
10.1016/j.disopt.2013.10.001
10.4230/LIPIcs.ESA.2019.11
10.1145/2637364.2592004
10.1145/3210377.3210385
10.1287/moor.2015.0742
10.1145/2928272
10.1109/INFCOM.2012.6195799
10.1007/978-3-662-43951-7_39
10.1145/2786.2793
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
JQ2
1XC
DOI 10.1007/s00453-021-00834-7
DatabaseName CrossRef
ProQuest Computer Science Collection
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1432-0541
EndPage 2399
ExternalDocumentID oai:HAL:hal-03333729v1
10_1007_s00453_021_00834_7
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFSI
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
E.L
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9O
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UQL
UTJUX
UZXMN
VC2
VFIZW
VH1
VXZ
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
1XC
ID FETCH-LOGICAL-c353t-1fc82b89389927ecf6661b5ded314149e4ae4aa8e7b6e0a56c714ad6828e24db3
IEDL.DBID RSV
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000654114800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0178-4617
IngestDate Tue Oct 14 20:04:41 EDT 2025
Sun Nov 09 08:51:48 EST 2025
Tue Nov 18 21:39:54 EST 2025
Sat Nov 29 02:20:30 EST 2025
Fri Feb 21 02:48:19 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Online algorithms
Multistage Optimization
Multistage optimization
On-line algorithms
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c353t-1fc82b89389927ecf6661b5ded314149e4ae4aa8e7b6e0a56c714ad6828e24db3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6477-8706
0000-0002-4498-3040
PQID 2554375895
PQPubID 2043795
PageCount 26
ParticipantIDs hal_primary_oai_HAL_hal_03333729v1
proquest_journals_2554375895
crossref_primary_10_1007_s00453_021_00834_7
crossref_citationtrail_10_1007_s00453_021_00834_7
springer_journals_10_1007_s00453_021_00834_7
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Algorithmica
PublicationTitleAbbrev Algorithmica
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Springer Verlag
References Bampis, E., Escoffier, B., Lampis, M., Paschos, V.T.: Multistage matchings. In: Scandinavian Symposium and Workshops on Algorithm Theory (SWAT), pp. 1–13 (2018)
PruhsKWoegingerGJApproximation schemes for a class of subset selection problemsTheor. Comput. Sci.20073822151156235211010.1016/j.tcs.2007.03.006
Bampis, E., Escoffier, B., Mladenovic, S.: Fair resource allocation over time. In: International Conference on Autonomous Agents and MultiAgent Systems (AAMAS), pp. 766–773 (2018)
Buchbinder, N., Chen, S., Naor, J.: Competitive analysis via regularization. In: ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 436–444 (2014)
GuAGuptaAKumarAThe power of deferral: maintaining a constant-competitive steiner tree onlineSIAM J. Comput.2016451128343977810.1137/140955276
Albers, S., Quedenfeld, J.: Optimal algorithms for right-sizing data centers. In: ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 363–372 (2018)
Gupta, A., Talwar, K., Wieder, U.: Changing bases: Multistage optimization for matroids and matchings. In: International Colloquium on Automata, Languages, and Programming (ICALP), pp. 563–575 (2014)
CohenECormodeGDuffieldNGLundCOn the tradeoff between stability and fitACM Trans. Algorithms2016131124359810610.1145/2963103
Bampis, E., Escoffier, B., Schewior, K., Teiller, A.: Online multistage subset maximization problems. In: M.A. Bender, O. Svensson, G. Herman (eds.) 27th Annual European Symposium on Algorithms, ESA 2019, September 9-11, 2019, Munich/Garching, Germany., LIPIcs, vol. 144, pp. 11:1–11:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019). https://doi.org/10.4230/LIPIcs.ESA.2019.11
Antoniadis, A., Schewior, K.: A tight lower bound for online convex optimization with switching costs. In: Workshop on Approximation and Online Algorithms (WAOA), pp. 164–175 (2017)
BuchbinderNChenSNaorJShamirOUnified algorithms for online learning and competitive analysisMath. Oper. Res.2016412612625348681010.1287/moor.2015.0742
Anthony, B.M., Gupta, A.: Infrastructure leasing problems. In: Conference on Integer Programming and Combinatorial Optimization (IPCO), pp. 424–438 (2007)
AnHNorouzi-FardASvenssonODynamic facility location via exponential clocksACM Trans. Algorithms2017132120365924310.1145/2928272
MegowNSkutellaMVerschaeJWieseAThe power of recourse for online MST and TSPSIAM J. Comput.2016453859880351687210.1137/130917703
LinMWiermanAAndrewLLHThereskaEDynamic right-sizing for power-proportional data centersIEEE/ACM Trans. Netw.20132151378139110.1109/TNET.2012.2226216
NagarajanCWilliamsonDPOffline and online facility leasingDiscret. Optim.2013104361370312862310.1016/j.disopt.2013.10.001
SleatorDDTarjanREAmortized efficiency of list update and paging rulesCommun. ACM198528220220877738510.1145/2786.2793
Eisenstat, D., Mathieu, C., Schabanel, N.: Facility location in evolving metrics. In: International Colloquium on Automata, Languages, and Programming (ICALP), pp. 459–470 (2014)
Joseph, V., de Veciana, G.: Jointly optimizing multi-user rate adaptation for video transport over wireless systems: Mean-fairness-variability tradeoffs. In: IEEE International Conference on Computer Communications (INFOCOM), pp. 567–575 (2012)
Rottner, C.: Combinatorial aspects of the unit commitment problem. Ph.D. thesis, Sorbonne Université (2018)
Bansal, N., Gupta, A., Krishnaswamy, R., Pruhs, K., Schewior, K., Stein, C.: A 2-competitive algorithm for online convex optimization with switching costs. In: Workshop on Approximation, Randomization, and Combinatorial Optimization Algorithms and Techniques (APPROX/RANDOM), pp. 96–109 (2015)
Blanchard, N.K., Schabanel, N.: Dynamic sum-radii clustering. In: International Conference and Workshops on Algorithms and Computation (WALCOM), pp. 30–41 (2017)
Liu, Z., Liu, I., Low, S.H., Wierman, A.: Pricing data center demand response. In: ACM International Conference on Measurement and Modeling of Computer Systems (SIGMETRICS), pp. 111–123 (2014)
Olver, N., Pruhs, K., Sitters, R., Schewior, K., Stougie, L.: The itinerant list-update problem. In: Workshop on Approximation and Online Algorithms (WAOA), pp. 310–326 (2018)
834_CR23
834_CR13
834_CR10
834_CR21
N Megow (834_CR19) 2016; 45
834_CR9
834_CR18
834_CR6
N Buchbinder (834_CR11) 2016; 41
A Gu (834_CR14) 2016; 45
834_CR16
834_CR5
834_CR8
834_CR7
834_CR15
M Lin (834_CR17) 2013; 21
834_CR1
834_CR4
834_CR3
K Pruhs (834_CR22) 2007; 382
DD Sleator (834_CR24) 1985; 28
C Nagarajan (834_CR20) 2013; 10
H An (834_CR2) 2017; 13
E Cohen (834_CR12) 2016; 13
References_xml – reference: AnHNorouzi-FardASvenssonODynamic facility location via exponential clocksACM Trans. Algorithms2017132120365924310.1145/2928272
– reference: CohenECormodeGDuffieldNGLundCOn the tradeoff between stability and fitACM Trans. Algorithms2016131124359810610.1145/2963103
– reference: Bampis, E., Escoffier, B., Lampis, M., Paschos, V.T.: Multistage matchings. In: Scandinavian Symposium and Workshops on Algorithm Theory (SWAT), pp. 1–13 (2018)
– reference: Blanchard, N.K., Schabanel, N.: Dynamic sum-radii clustering. In: International Conference and Workshops on Algorithms and Computation (WALCOM), pp. 30–41 (2017)
– reference: Eisenstat, D., Mathieu, C., Schabanel, N.: Facility location in evolving metrics. In: International Colloquium on Automata, Languages, and Programming (ICALP), pp. 459–470 (2014)
– reference: LinMWiermanAAndrewLLHThereskaEDynamic right-sizing for power-proportional data centersIEEE/ACM Trans. Netw.20132151378139110.1109/TNET.2012.2226216
– reference: MegowNSkutellaMVerschaeJWieseAThe power of recourse for online MST and TSPSIAM J. Comput.2016453859880351687210.1137/130917703
– reference: PruhsKWoegingerGJApproximation schemes for a class of subset selection problemsTheor. Comput. Sci.20073822151156235211010.1016/j.tcs.2007.03.006
– reference: Liu, Z., Liu, I., Low, S.H., Wierman, A.: Pricing data center demand response. In: ACM International Conference on Measurement and Modeling of Computer Systems (SIGMETRICS), pp. 111–123 (2014)
– reference: Bansal, N., Gupta, A., Krishnaswamy, R., Pruhs, K., Schewior, K., Stein, C.: A 2-competitive algorithm for online convex optimization with switching costs. In: Workshop on Approximation, Randomization, and Combinatorial Optimization Algorithms and Techniques (APPROX/RANDOM), pp. 96–109 (2015)
– reference: Gupta, A., Talwar, K., Wieder, U.: Changing bases: Multistage optimization for matroids and matchings. In: International Colloquium on Automata, Languages, and Programming (ICALP), pp. 563–575 (2014)
– reference: Buchbinder, N., Chen, S., Naor, J.: Competitive analysis via regularization. In: ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 436–444 (2014)
– reference: Olver, N., Pruhs, K., Sitters, R., Schewior, K., Stougie, L.: The itinerant list-update problem. In: Workshop on Approximation and Online Algorithms (WAOA), pp. 310–326 (2018)
– reference: Bampis, E., Escoffier, B., Schewior, K., Teiller, A.: Online multistage subset maximization problems. In: M.A. Bender, O. Svensson, G. Herman (eds.) 27th Annual European Symposium on Algorithms, ESA 2019, September 9-11, 2019, Munich/Garching, Germany., LIPIcs, vol. 144, pp. 11:1–11:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019). https://doi.org/10.4230/LIPIcs.ESA.2019.11
– reference: Albers, S., Quedenfeld, J.: Optimal algorithms for right-sizing data centers. In: ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 363–372 (2018)
– reference: NagarajanCWilliamsonDPOffline and online facility leasingDiscret. Optim.2013104361370312862310.1016/j.disopt.2013.10.001
– reference: BuchbinderNChenSNaorJShamirOUnified algorithms for online learning and competitive analysisMath. Oper. Res.2016412612625348681010.1287/moor.2015.0742
– reference: GuAGuptaAKumarAThe power of deferral: maintaining a constant-competitive steiner tree onlineSIAM J. Comput.2016451128343977810.1137/140955276
– reference: Rottner, C.: Combinatorial aspects of the unit commitment problem. Ph.D. thesis, Sorbonne Université (2018)
– reference: SleatorDDTarjanREAmortized efficiency of list update and paging rulesCommun. ACM198528220220877738510.1145/2786.2793
– reference: Antoniadis, A., Schewior, K.: A tight lower bound for online convex optimization with switching costs. In: Workshop on Approximation and Online Algorithms (WAOA), pp. 164–175 (2017)
– reference: Joseph, V., de Veciana, G.: Jointly optimizing multi-user rate adaptation for video transport over wireless systems: Mean-fairness-variability tradeoffs. In: IEEE International Conference on Computer Communications (INFOCOM), pp. 567–575 (2012)
– reference: Anthony, B.M., Gupta, A.: Infrastructure leasing problems. In: Conference on Integer Programming and Combinatorial Optimization (IPCO), pp. 424–438 (2007)
– reference: Bampis, E., Escoffier, B., Mladenovic, S.: Fair resource allocation over time. In: International Conference on Autonomous Agents and MultiAgent Systems (AAMAS), pp. 766–773 (2018)
– ident: 834_CR6
– ident: 834_CR5
– ident: 834_CR21
  doi: 10.1007/978-3-030-04693-4_19
– volume: 382
  start-page: 151
  issue: 2
  year: 2007
  ident: 834_CR22
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2007.03.006
– ident: 834_CR8
– ident: 834_CR10
  doi: 10.1137/1.9781611973402.32
– volume: 45
  start-page: 1
  issue: 1
  year: 2016
  ident: 834_CR14
  publication-title: SIAM J. Comput.
  doi: 10.1137/140955276
– ident: 834_CR3
  doi: 10.1007/978-3-540-72792-7_32
– ident: 834_CR23
– volume: 21
  start-page: 1378
  issue: 5
  year: 2013
  ident: 834_CR17
  publication-title: IEEE/ACM Trans. Netw.
  doi: 10.1109/TNET.2012.2226216
– ident: 834_CR4
  doi: 10.1007/978-3-319-89441-6_13
– ident: 834_CR15
  doi: 10.1007/978-3-662-43948-7_47
– ident: 834_CR9
  doi: 10.1007/978-3-319-53925-6_3
– volume: 13
  start-page: 1
  issue: 1
  year: 2016
  ident: 834_CR12
  publication-title: ACM Trans. Algorithms
  doi: 10.1145/2963103
– volume: 45
  start-page: 859
  issue: 3
  year: 2016
  ident: 834_CR19
  publication-title: SIAM J. Comput.
  doi: 10.1137/130917703
– volume: 10
  start-page: 361
  issue: 4
  year: 2013
  ident: 834_CR20
  publication-title: Discret. Optim.
  doi: 10.1016/j.disopt.2013.10.001
– ident: 834_CR7
  doi: 10.4230/LIPIcs.ESA.2019.11
– ident: 834_CR18
  doi: 10.1145/2637364.2592004
– ident: 834_CR1
  doi: 10.1145/3210377.3210385
– volume: 41
  start-page: 612
  issue: 2
  year: 2016
  ident: 834_CR11
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.2015.0742
– volume: 13
  start-page: 1
  issue: 2
  year: 2017
  ident: 834_CR2
  publication-title: ACM Trans. Algorithms
  doi: 10.1145/2928272
– ident: 834_CR16
  doi: 10.1109/INFCOM.2012.6195799
– ident: 834_CR13
  doi: 10.1007/978-3-662-43951-7_39
– volume: 28
  start-page: 202
  issue: 2
  year: 1985
  ident: 834_CR24
  publication-title: Commun. ACM
  doi: 10.1145/2786.2793
SSID ssj0012796
Score 2.3539443
Snippet Numerous combinatorial optimization problems (knapsack, maximum-weight matching, etc.) can be expressed as subset maximization problems : One is given a ground...
Numerous combinatorial optimization problems (knapsack, maximum-weight matching, etc.) can be expressed as subset maximization problems: One is given a ground...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2374
SubjectTerms Algorithm Analysis and Problem Complexity
Algorithms
Combinatorial analysis
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Matching
Mathematics of Computing
Maximization
Optimization
Similarity
Similarity measures
Theory of Computation
Upper bounds
Title Online Multistage Subset Maximization Problems
URI https://link.springer.com/article/10.1007/s00453-021-00834-7
https://www.proquest.com/docview/2554375895
https://hal.science/hal-03333729
Volume 83
WOSCitedRecordID wos000654114800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-0541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012796
  issn: 0178-4617
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60evBifWK0ShBvGukmm83mWMTSg5bii97CZjNRQau0tfjznd08fKCChpySzYOZfXwfszMfwAEyn4CAUJ7geewR_tdeGqm2pwPGtAh9UxDGik1E_b4cDuNBmRQ2qXa7VyFJO1PXyW4GfZiYI9Ffwg3ci-ZhgZY7aQQbLi5v6tiBH1lVLqM773FaoMtUme_f8Wk5mr8zmyE_IM0vwVG75nSb__vbFVguMabbKTrFKszhaA2alX6DWw7ndTgu6oy6NgmXUOItumYewal7rl7vH8sMTXdQaM5MNuC6e3p10vNK_QSydBhMPZZr6acESIhT-RHqnKgKS8MMs4BxYkbIFZ1KYpQKbKtQ6IhxlQkiYejzLA02oTF6GuEWuFoS0lIiDWOec0SUCpFrmUsWYiqEdIBVZkx0WVzcaFw8JHVZZGuQhAySWIMkkQOH9TPPRWmNX1vvk3fqhqYqdq9zlphr7YAOIgkz5kCrcl5SjsVJQqSJB0SL4tCBo8pZ77d__uT235rvwJJv_W12B7agMR2_4C4s6hm5cLxn--gb2lLcgA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5sFfRifWK1ahBvGukmm016LGKp2JaiVXpbNtuJClqlrcWf7-w2iQ9U0JBTsnkws7vzfcwL4BCZR0BAKFfwpOYS_tduHKqqq33GtAg8UxDGNpsIO52o369106SwcRbtnrkk7U6dJ7sZ9GF8jkR_CTdwNyzAPCeLZSrmX17d5L4DL7RduUzfeZeTgU5TZb5_xydzVLgzwZAfkOYX56i1OY3S__52BZZTjOnUZ5NiFeZwuAalrH-Dky7ndTiZ1Rl1bBIuocRbdMw-ghOnrV7vH9MMTac76zkz3oDrxlnvtOmm_RNI0oE_cVmiIy8mQEKcygtRJ0RVWBwMcOAzTswIuaJTRRjGAqsqEDpkXA0EkTD0-CD2N6E4fBriFjg6IqSlRBzUeMIRMVKIXEdJxAKMhYjKwDIxSp0WFzc9Lh5kXhbZCkSSQKQViAzLcJQ_8zwrrfHr6APSTj7QVMVu1lvSXKv6dBBJmLIyVDLlyXQtjiWRJu4TLaoFZTjOlPV---dPbv9t-D4sNnvtlmyddy52YMmzujeRghUoTkYvuAsLekrqHO3Z-foGOOzfZA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEB68EF-sJ8YziG8a2002m_SxqEVRS8ED35bNZqKC1tJW8ec7uzk8UEEMeUo2BzOb7PcxM98A7CDzCQgI5QmeNT3C_9pLItXwdMCYFqFvBGFss4mo04lvbprdD1X8Ntu9DEnmNQ1Gpak3qvfTrF4VvhkkYuKPRIUJQ3AvGodJbhLpDV-_uK7iCH5kO3SZHvQep8W6KJv5_h6flqbxO5MY-QF1fgmU2vWnXfv_m8_BbIE93VY-WeZhDHsLUCv7OrjFZ74I-7n-qGuLcwk93qJr_i84cs_V6_1jUbnpdvNeNMMluGofXR4ce0VfBfJAGIw8lunYTwioENfyI9QZURiWhCmmAePEmJAr2lWMUSKwoUKhI8ZVKoicoc_TJFiGid5TD1fA1TEhMCWSsMkzjoixQuQ6zmIWYiJE7AArTSp1ITpuel88yEou2RpEkkGkNYiMHNitrunnkhu_jt4mT1UDjVr2cetMmmONgDYiDy_MgfXSkbL4RoeSyBQPiC41Qwf2Sse9n_75kat_G74F093Dtjw76ZyuwYxvXW8SCNdhYjR4xg2Y0i_kzcGmnbpv11foSA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+Multistage+Subset+Maximization+Problems&rft.jtitle=Algorithmica&rft.au=Bampis+Evripidis&rft.au=Escoffier+Bruno&rft.au=Schewior%2C+Kevin&rft.au=Teiller+Alexandre&rft.date=2021-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0178-4617&rft.eissn=1432-0541&rft.volume=83&rft.issue=8&rft.spage=2374&rft.epage=2399&rft_id=info:doi/10.1007%2Fs00453-021-00834-7&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon