Online Multistage Subset Maximization Problems
Numerous combinatorial optimization problems (knapsack, maximum-weight matching, etc.) can be expressed as subset maximization problems : One is given a ground set N = { 1 , ⋯ , n } , a collection F ⊆ 2 N of subsets thereof such that ∅ ∈ F , and an objective (profit) function p : F → R + . The task...
Saved in:
| Published in: | Algorithmica Vol. 83; no. 8; pp. 2374 - 2399 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.08.2021
Springer Nature B.V Springer Verlag |
| Subjects: | |
| ISSN: | 0178-4617, 1432-0541 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Numerous combinatorial optimization problems (knapsack, maximum-weight matching, etc.) can be expressed as
subset maximization problems
: One is given a ground set
N
=
{
1
,
⋯
,
n
}
, a collection
F
⊆
2
N
of subsets thereof such that
∅
∈
F
, and an objective (profit) function
p
:
F
→
R
+
. The task is to choose a set
S
∈
F
that maximizes
p
(
S
). We consider the
multistage
version (Eisenstat et al., Gupta et al., both ICALP 2014) of such problems: The profit function
p
t
(and possibly the set of feasible solutions
F
t
) may change over time. Since in many applications changing the solution is costly, the task becomes to find a sequence of solutions that optimizes the trade-off between good per-time solutions and stable solutions taking into account an additional similarity bonus. As similarity measure for two consecutive solutions, we consider either the size of the intersection of the two solutions or the difference of
n
and the Hamming distance between the two characteristic vectors. We study multistage subset maximization problems in the
online
setting, that is,
p
t
(along with possibly
F
t
) only arrive one by one and, upon such an arrival, the online algorithm has to output the corresponding solution without knowledge of the future. We develop general techniques for online multistage subset maximization and thereby characterize those models (given by the type of data evolution and the type of similarity measure) that admit a constant-competitive online algorithm. When no constant competitive ratio is possible, we employ lookahead to circumvent this issue. When a constant competitive ratio is possible, we provide almost matching lower and upper bounds on the best achievable one. |
|---|---|
| AbstractList | Numerous combinatorial optimization problems (knapsack, maximum-weight matching, etc.) can be expressed as subset maximization problems: One is given a ground set N = {1, . . . , n}, a collection F ⊆ 2N of subsets thereof such that ∅ ∈ F, and an objective (profit) function p : F → R+. The task is to choose a set S ∈ F that maximizes p(S). We consider the multistage version (Eisenstat et al., Gupta et al., both ICALP 2014) of such problems: The profit function pt (and possibly the set of feasible solutions Ft) may change over time. Since in many applications changing the solution is costly, the task becomes to find a sequence of solutions that optimizes the trade-off between good per-time solutions and stable solutions taking into account an additional similarity bonus. As similarity measure for two consecutive solutions, we consider either the size of the intersection of the two solutions or the difference of n and the Hamming distance between the two characteristic vectors. We study multistage subset maximization problems in the online setting, that is, pt (along with possibly Ft) only arrive one by one and, upon such an arrival, the online algorithm has to output the corresponding solution without knowledge of the future. We develop general techniques for online multistage subset maximization and thereby characterize those models (given by the type of data evolution and the type of similarity measure) that admit a constant-competitive online algorithm. When no constant competitive ratio is possible, we employ lookahead to circumvent this issue. When a constant competitive ratio is possible, we provide almost matching lower and upper bounds on the best achievable one. Numerous combinatorial optimization problems (knapsack, maximum-weight matching, etc.) can be expressed as subset maximization problems: One is given a ground set N={1,⋯,n}, a collection F⊆2N of subsets thereof such that ∅∈F, and an objective (profit) function p:F→R+. The task is to choose a set S∈F that maximizes p(S). We consider the multistage version (Eisenstat et al., Gupta et al., both ICALP 2014) of such problems: The profit function pt (and possibly the set of feasible solutions Ft) may change over time. Since in many applications changing the solution is costly, the task becomes to find a sequence of solutions that optimizes the trade-off between good per-time solutions and stable solutions taking into account an additional similarity bonus. As similarity measure for two consecutive solutions, we consider either the size of the intersection of the two solutions or the difference of n and the Hamming distance between the two characteristic vectors. We study multistage subset maximization problems in the online setting, that is, pt (along with possibly Ft) only arrive one by one and, upon such an arrival, the online algorithm has to output the corresponding solution without knowledge of the future. We develop general techniques for online multistage subset maximization and thereby characterize those models (given by the type of data evolution and the type of similarity measure) that admit a constant-competitive online algorithm. When no constant competitive ratio is possible, we employ lookahead to circumvent this issue. When a constant competitive ratio is possible, we provide almost matching lower and upper bounds on the best achievable one. Numerous combinatorial optimization problems (knapsack, maximum-weight matching, etc.) can be expressed as subset maximization problems : One is given a ground set N = { 1 , ⋯ , n } , a collection F ⊆ 2 N of subsets thereof such that ∅ ∈ F , and an objective (profit) function p : F → R + . The task is to choose a set S ∈ F that maximizes p ( S ). We consider the multistage version (Eisenstat et al., Gupta et al., both ICALP 2014) of such problems: The profit function p t (and possibly the set of feasible solutions F t ) may change over time. Since in many applications changing the solution is costly, the task becomes to find a sequence of solutions that optimizes the trade-off between good per-time solutions and stable solutions taking into account an additional similarity bonus. As similarity measure for two consecutive solutions, we consider either the size of the intersection of the two solutions or the difference of n and the Hamming distance between the two characteristic vectors. We study multistage subset maximization problems in the online setting, that is, p t (along with possibly F t ) only arrive one by one and, upon such an arrival, the online algorithm has to output the corresponding solution without knowledge of the future. We develop general techniques for online multistage subset maximization and thereby characterize those models (given by the type of data evolution and the type of similarity measure) that admit a constant-competitive online algorithm. When no constant competitive ratio is possible, we employ lookahead to circumvent this issue. When a constant competitive ratio is possible, we provide almost matching lower and upper bounds on the best achievable one. |
| Author | Escoffier, Bruno Bampis, Evripidis Teiller, Alexandre Schewior, Kevin |
| Author_xml | – sequence: 1 givenname: Evripidis surname: Bampis fullname: Bampis, Evripidis organization: Sorbonne Université, CNRS, LIP6 – sequence: 2 givenname: Bruno orcidid: 0000-0002-6477-8706 surname: Escoffier fullname: Escoffier, Bruno email: bruno.escoffier@lip6.fr organization: Sorbonne Université, CNRS, LIP6, Institut Universitaire de France – sequence: 3 givenname: Kevin surname: Schewior fullname: Schewior, Kevin organization: Department Mathematik/Informatik, Abteilung Informatik, Universität zu Köln – sequence: 4 givenname: Alexandre surname: Teiller fullname: Teiller, Alexandre organization: Sorbonne Université, CNRS, LIP6 |
| BackLink | https://hal.science/hal-03333729$$DView record in HAL |
| BookMark | eNp9kF1LwzAUhoNMcJv-Aa8KXnnRme-kl2OoEzYmqNchbdOZ0bUzSUX99WarKHixcCBweJ9zDs8IDJq2MQBcIjhBEIobDyFlJIUYpRBKQlNxAoaIEpxCRtEADCESMqUciTMw8n4DIcIi40MwWTW1bUyy7OpgfdBrkzx1uTchWeoPu7VfOti2SR5dm9dm68_BaaVrby5-_jF4ubt9ns3Txer-YTZdpAVhJKSoKiTOZUZklmFhiopzjnJWmpIgimhmqI6lpRE5N1AzXghEdckllgbTMidjcN3PfdW12jm71e5Ttdqq-XSh9j1I4hM4e0cxe9Vnd65964wPatN2ronnKcwYJYLJjMUU7lOFa713pvodi6DaO1S9QxUdqoNDJSIk_0GFDQcjwWlbH0dJj_q4p1kb93fVEeobBRiF8g |
| CitedBy_id | crossref_primary_10_1007_s00224_022_10069_w crossref_primary_10_3390_app142210427 crossref_primary_10_1109_ACCESS_2024_3466149 crossref_primary_10_1016_j_procs_2023_08_245 |
| Cites_doi | 10.1007/978-3-030-04693-4_19 10.1016/j.tcs.2007.03.006 10.1137/1.9781611973402.32 10.1137/140955276 10.1007/978-3-540-72792-7_32 10.1109/TNET.2012.2226216 10.1007/978-3-319-89441-6_13 10.1007/978-3-662-43948-7_47 10.1007/978-3-319-53925-6_3 10.1145/2963103 10.1137/130917703 10.1016/j.disopt.2013.10.001 10.4230/LIPIcs.ESA.2019.11 10.1145/2637364.2592004 10.1145/3210377.3210385 10.1287/moor.2015.0742 10.1145/2928272 10.1109/INFCOM.2012.6195799 10.1007/978-3-662-43951-7_39 10.1145/2786.2793 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION JQ2 1XC |
| DOI | 10.1007/s00453-021-00834-7 |
| DatabaseName | CrossRef ProQuest Computer Science Collection Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1432-0541 |
| EndPage | 2399 |
| ExternalDocumentID | oai:HAL:hal-03333729v1 10_1007_s00453_021_00834_7 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 203 23M 28- 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFSI ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP E.L EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9O PF- PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UQL UTJUX UZXMN VC2 VFIZW VH1 VXZ W23 W48 WK8 YLTOR Z45 Z7X Z83 Z88 Z8R Z8W Z92 ZMTXR ZY4 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION JQ2 1XC |
| ID | FETCH-LOGICAL-c353t-1fc82b89389927ecf6661b5ded314149e4ae4aa8e7b6e0a56c714ad6828e24db3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000654114800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0178-4617 |
| IngestDate | Tue Oct 14 20:04:41 EDT 2025 Sun Nov 09 08:51:48 EST 2025 Tue Nov 18 21:39:54 EST 2025 Sat Nov 29 02:20:30 EST 2025 Fri Feb 21 02:48:19 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | Online algorithms Multistage Optimization Multistage optimization On-line algorithms |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c353t-1fc82b89389927ecf6661b5ded314149e4ae4aa8e7b6e0a56c714ad6828e24db3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6477-8706 0000-0002-4498-3040 |
| PQID | 2554375895 |
| PQPubID | 2043795 |
| PageCount | 26 |
| ParticipantIDs | hal_primary_oai_HAL_hal_03333729v1 proquest_journals_2554375895 crossref_primary_10_1007_s00453_021_00834_7 crossref_citationtrail_10_1007_s00453_021_00834_7 springer_journals_10_1007_s00453_021_00834_7 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-08-01 |
| PublicationDateYYYYMMDD | 2021-08-01 |
| PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Algorithmica |
| PublicationTitleAbbrev | Algorithmica |
| PublicationYear | 2021 |
| Publisher | Springer US Springer Nature B.V Springer Verlag |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: Springer Verlag |
| References | Bampis, E., Escoffier, B., Lampis, M., Paschos, V.T.: Multistage matchings. In: Scandinavian Symposium and Workshops on Algorithm Theory (SWAT), pp. 1–13 (2018) PruhsKWoegingerGJApproximation schemes for a class of subset selection problemsTheor. Comput. Sci.20073822151156235211010.1016/j.tcs.2007.03.006 Bampis, E., Escoffier, B., Mladenovic, S.: Fair resource allocation over time. In: International Conference on Autonomous Agents and MultiAgent Systems (AAMAS), pp. 766–773 (2018) Buchbinder, N., Chen, S., Naor, J.: Competitive analysis via regularization. In: ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 436–444 (2014) GuAGuptaAKumarAThe power of deferral: maintaining a constant-competitive steiner tree onlineSIAM J. Comput.2016451128343977810.1137/140955276 Albers, S., Quedenfeld, J.: Optimal algorithms for right-sizing data centers. In: ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 363–372 (2018) Gupta, A., Talwar, K., Wieder, U.: Changing bases: Multistage optimization for matroids and matchings. In: International Colloquium on Automata, Languages, and Programming (ICALP), pp. 563–575 (2014) CohenECormodeGDuffieldNGLundCOn the tradeoff between stability and fitACM Trans. Algorithms2016131124359810610.1145/2963103 Bampis, E., Escoffier, B., Schewior, K., Teiller, A.: Online multistage subset maximization problems. In: M.A. Bender, O. Svensson, G. Herman (eds.) 27th Annual European Symposium on Algorithms, ESA 2019, September 9-11, 2019, Munich/Garching, Germany., LIPIcs, vol. 144, pp. 11:1–11:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019). https://doi.org/10.4230/LIPIcs.ESA.2019.11 Antoniadis, A., Schewior, K.: A tight lower bound for online convex optimization with switching costs. In: Workshop on Approximation and Online Algorithms (WAOA), pp. 164–175 (2017) BuchbinderNChenSNaorJShamirOUnified algorithms for online learning and competitive analysisMath. Oper. Res.2016412612625348681010.1287/moor.2015.0742 Anthony, B.M., Gupta, A.: Infrastructure leasing problems. In: Conference on Integer Programming and Combinatorial Optimization (IPCO), pp. 424–438 (2007) AnHNorouzi-FardASvenssonODynamic facility location via exponential clocksACM Trans. Algorithms2017132120365924310.1145/2928272 MegowNSkutellaMVerschaeJWieseAThe power of recourse for online MST and TSPSIAM J. Comput.2016453859880351687210.1137/130917703 LinMWiermanAAndrewLLHThereskaEDynamic right-sizing for power-proportional data centersIEEE/ACM Trans. Netw.20132151378139110.1109/TNET.2012.2226216 NagarajanCWilliamsonDPOffline and online facility leasingDiscret. Optim.2013104361370312862310.1016/j.disopt.2013.10.001 SleatorDDTarjanREAmortized efficiency of list update and paging rulesCommun. ACM198528220220877738510.1145/2786.2793 Eisenstat, D., Mathieu, C., Schabanel, N.: Facility location in evolving metrics. In: International Colloquium on Automata, Languages, and Programming (ICALP), pp. 459–470 (2014) Joseph, V., de Veciana, G.: Jointly optimizing multi-user rate adaptation for video transport over wireless systems: Mean-fairness-variability tradeoffs. In: IEEE International Conference on Computer Communications (INFOCOM), pp. 567–575 (2012) Rottner, C.: Combinatorial aspects of the unit commitment problem. Ph.D. thesis, Sorbonne Université (2018) Bansal, N., Gupta, A., Krishnaswamy, R., Pruhs, K., Schewior, K., Stein, C.: A 2-competitive algorithm for online convex optimization with switching costs. In: Workshop on Approximation, Randomization, and Combinatorial Optimization Algorithms and Techniques (APPROX/RANDOM), pp. 96–109 (2015) Blanchard, N.K., Schabanel, N.: Dynamic sum-radii clustering. In: International Conference and Workshops on Algorithms and Computation (WALCOM), pp. 30–41 (2017) Liu, Z., Liu, I., Low, S.H., Wierman, A.: Pricing data center demand response. In: ACM International Conference on Measurement and Modeling of Computer Systems (SIGMETRICS), pp. 111–123 (2014) Olver, N., Pruhs, K., Sitters, R., Schewior, K., Stougie, L.: The itinerant list-update problem. In: Workshop on Approximation and Online Algorithms (WAOA), pp. 310–326 (2018) 834_CR23 834_CR13 834_CR10 834_CR21 N Megow (834_CR19) 2016; 45 834_CR9 834_CR18 834_CR6 N Buchbinder (834_CR11) 2016; 41 A Gu (834_CR14) 2016; 45 834_CR16 834_CR5 834_CR8 834_CR7 834_CR15 M Lin (834_CR17) 2013; 21 834_CR1 834_CR4 834_CR3 K Pruhs (834_CR22) 2007; 382 DD Sleator (834_CR24) 1985; 28 C Nagarajan (834_CR20) 2013; 10 H An (834_CR2) 2017; 13 E Cohen (834_CR12) 2016; 13 |
| References_xml | – reference: AnHNorouzi-FardASvenssonODynamic facility location via exponential clocksACM Trans. Algorithms2017132120365924310.1145/2928272 – reference: CohenECormodeGDuffieldNGLundCOn the tradeoff between stability and fitACM Trans. Algorithms2016131124359810610.1145/2963103 – reference: Bampis, E., Escoffier, B., Lampis, M., Paschos, V.T.: Multistage matchings. In: Scandinavian Symposium and Workshops on Algorithm Theory (SWAT), pp. 1–13 (2018) – reference: Blanchard, N.K., Schabanel, N.: Dynamic sum-radii clustering. In: International Conference and Workshops on Algorithms and Computation (WALCOM), pp. 30–41 (2017) – reference: Eisenstat, D., Mathieu, C., Schabanel, N.: Facility location in evolving metrics. In: International Colloquium on Automata, Languages, and Programming (ICALP), pp. 459–470 (2014) – reference: LinMWiermanAAndrewLLHThereskaEDynamic right-sizing for power-proportional data centersIEEE/ACM Trans. Netw.20132151378139110.1109/TNET.2012.2226216 – reference: MegowNSkutellaMVerschaeJWieseAThe power of recourse for online MST and TSPSIAM J. Comput.2016453859880351687210.1137/130917703 – reference: PruhsKWoegingerGJApproximation schemes for a class of subset selection problemsTheor. Comput. Sci.20073822151156235211010.1016/j.tcs.2007.03.006 – reference: Liu, Z., Liu, I., Low, S.H., Wierman, A.: Pricing data center demand response. In: ACM International Conference on Measurement and Modeling of Computer Systems (SIGMETRICS), pp. 111–123 (2014) – reference: Bansal, N., Gupta, A., Krishnaswamy, R., Pruhs, K., Schewior, K., Stein, C.: A 2-competitive algorithm for online convex optimization with switching costs. In: Workshop on Approximation, Randomization, and Combinatorial Optimization Algorithms and Techniques (APPROX/RANDOM), pp. 96–109 (2015) – reference: Gupta, A., Talwar, K., Wieder, U.: Changing bases: Multistage optimization for matroids and matchings. In: International Colloquium on Automata, Languages, and Programming (ICALP), pp. 563–575 (2014) – reference: Buchbinder, N., Chen, S., Naor, J.: Competitive analysis via regularization. In: ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 436–444 (2014) – reference: Olver, N., Pruhs, K., Sitters, R., Schewior, K., Stougie, L.: The itinerant list-update problem. In: Workshop on Approximation and Online Algorithms (WAOA), pp. 310–326 (2018) – reference: Bampis, E., Escoffier, B., Schewior, K., Teiller, A.: Online multistage subset maximization problems. In: M.A. Bender, O. Svensson, G. Herman (eds.) 27th Annual European Symposium on Algorithms, ESA 2019, September 9-11, 2019, Munich/Garching, Germany., LIPIcs, vol. 144, pp. 11:1–11:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019). https://doi.org/10.4230/LIPIcs.ESA.2019.11 – reference: Albers, S., Quedenfeld, J.: Optimal algorithms for right-sizing data centers. In: ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 363–372 (2018) – reference: NagarajanCWilliamsonDPOffline and online facility leasingDiscret. Optim.2013104361370312862310.1016/j.disopt.2013.10.001 – reference: BuchbinderNChenSNaorJShamirOUnified algorithms for online learning and competitive analysisMath. Oper. Res.2016412612625348681010.1287/moor.2015.0742 – reference: GuAGuptaAKumarAThe power of deferral: maintaining a constant-competitive steiner tree onlineSIAM J. Comput.2016451128343977810.1137/140955276 – reference: Rottner, C.: Combinatorial aspects of the unit commitment problem. Ph.D. thesis, Sorbonne Université (2018) – reference: SleatorDDTarjanREAmortized efficiency of list update and paging rulesCommun. ACM198528220220877738510.1145/2786.2793 – reference: Antoniadis, A., Schewior, K.: A tight lower bound for online convex optimization with switching costs. In: Workshop on Approximation and Online Algorithms (WAOA), pp. 164–175 (2017) – reference: Joseph, V., de Veciana, G.: Jointly optimizing multi-user rate adaptation for video transport over wireless systems: Mean-fairness-variability tradeoffs. In: IEEE International Conference on Computer Communications (INFOCOM), pp. 567–575 (2012) – reference: Anthony, B.M., Gupta, A.: Infrastructure leasing problems. In: Conference on Integer Programming and Combinatorial Optimization (IPCO), pp. 424–438 (2007) – reference: Bampis, E., Escoffier, B., Mladenovic, S.: Fair resource allocation over time. In: International Conference on Autonomous Agents and MultiAgent Systems (AAMAS), pp. 766–773 (2018) – ident: 834_CR6 – ident: 834_CR5 – ident: 834_CR21 doi: 10.1007/978-3-030-04693-4_19 – volume: 382 start-page: 151 issue: 2 year: 2007 ident: 834_CR22 publication-title: Theor. Comput. Sci. doi: 10.1016/j.tcs.2007.03.006 – ident: 834_CR8 – ident: 834_CR10 doi: 10.1137/1.9781611973402.32 – volume: 45 start-page: 1 issue: 1 year: 2016 ident: 834_CR14 publication-title: SIAM J. Comput. doi: 10.1137/140955276 – ident: 834_CR3 doi: 10.1007/978-3-540-72792-7_32 – ident: 834_CR23 – volume: 21 start-page: 1378 issue: 5 year: 2013 ident: 834_CR17 publication-title: IEEE/ACM Trans. Netw. doi: 10.1109/TNET.2012.2226216 – ident: 834_CR4 doi: 10.1007/978-3-319-89441-6_13 – ident: 834_CR15 doi: 10.1007/978-3-662-43948-7_47 – ident: 834_CR9 doi: 10.1007/978-3-319-53925-6_3 – volume: 13 start-page: 1 issue: 1 year: 2016 ident: 834_CR12 publication-title: ACM Trans. Algorithms doi: 10.1145/2963103 – volume: 45 start-page: 859 issue: 3 year: 2016 ident: 834_CR19 publication-title: SIAM J. Comput. doi: 10.1137/130917703 – volume: 10 start-page: 361 issue: 4 year: 2013 ident: 834_CR20 publication-title: Discret. Optim. doi: 10.1016/j.disopt.2013.10.001 – ident: 834_CR7 doi: 10.4230/LIPIcs.ESA.2019.11 – ident: 834_CR18 doi: 10.1145/2637364.2592004 – ident: 834_CR1 doi: 10.1145/3210377.3210385 – volume: 41 start-page: 612 issue: 2 year: 2016 ident: 834_CR11 publication-title: Math. Oper. Res. doi: 10.1287/moor.2015.0742 – volume: 13 start-page: 1 issue: 2 year: 2017 ident: 834_CR2 publication-title: ACM Trans. Algorithms doi: 10.1145/2928272 – ident: 834_CR16 doi: 10.1109/INFCOM.2012.6195799 – ident: 834_CR13 doi: 10.1007/978-3-662-43951-7_39 – volume: 28 start-page: 202 issue: 2 year: 1985 ident: 834_CR24 publication-title: Commun. ACM doi: 10.1145/2786.2793 |
| SSID | ssj0012796 |
| Score | 2.3539443 |
| Snippet | Numerous combinatorial optimization problems (knapsack, maximum-weight matching, etc.) can be expressed as
subset maximization problems
: One is given a ground... Numerous combinatorial optimization problems (knapsack, maximum-weight matching, etc.) can be expressed as subset maximization problems: One is given a ground... |
| SourceID | hal proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2374 |
| SubjectTerms | Algorithm Analysis and Problem Complexity Algorithms Combinatorial analysis Computer Science Computer Systems Organization and Communication Networks Data Structures and Information Theory Matching Mathematics of Computing Maximization Optimization Similarity Similarity measures Theory of Computation Upper bounds |
| Title | Online Multistage Subset Maximization Problems |
| URI | https://link.springer.com/article/10.1007/s00453-021-00834-7 https://www.proquest.com/docview/2554375895 https://hal.science/hal-03333729 |
| Volume | 83 |
| WOSCitedRecordID | wos000654114800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Nature Link Journals customDbUrl: eissn: 1432-0541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012796 issn: 0178-4617 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD646YMvzitWpxTxTSttkjbt4xDHHuYY3thbSNNUBZ2yzeHP9yS9eEEFLX1q0wvnJDnfx7kBHBJJcsrT3POjnHuM2zVHcTNk1KCTRGbSarrPB4N4NEqGZVLYtIp2r1ySdqeuk90M-jA-R6S_iBuYxxuwiOYuNg0bLi5vat8B4bYrl-k77zE00GWqzPfv-GSOGncmGPID0vziHLU2p9v639-uwkqJMd1OMSnWYEGP16FV9W9wy-W8ASdFnVHXJuEiSrzVrtlH9Mw9l6_3j2WGpjsses5MN-G6e3Z12vPK_gmeoiGdeUGuYpIiIEFORbhWOVKVIA0zndGAITPSTOIpY83TSPsyjBQPmMwiJGGasCylW9AcP431NrgJWjGiTW2bUDOaR7FiRKah4r4K8kglDgSVGIUqi4ubHhcPoi6LbAUiUCDCCkRwB47qZ56L0hq_jj5A7dQDTVXsXqcvzDWf4oEkYR440K6UJ8q1OBVImhhFWpSEDhxXynq__fMnd_42fBeWidW3iQ5sQ3M2edF7sKTmqMLJvp2jb9Sk26o |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_cFPTF-YnTqUV800qbpM36OMQxcRtDp-wtpGmqgk7Z5vDP95K19QMVtPSpTT-4S3L34-5-B3BIJEkpj1PXC1PuMm7XHMXNkFHjnUQykVbTbd7t1geDqJcVhY3zbPc8JGl36qLYzXgfJuaI8Bf9BubyEswztFiGMf_y6qaIHRBuu3KZvvMuQwOdlcp8_45P5qh0Z5IhP3iaX4Kj1uY0K__72xVYznxMpzGbFKswp4drUMn7NzjZcl6HkxnPqGOLcNFLvNWO2Uf0xOnI1_vHrELT6c16zow34Lp51j9tuVn_BFfRgE5cP1V1EqNDgpiKcK1ShCp-HCQ6oT5DZKSZxFPWNY9D7ckgVNxnMgkRhGnCkphuQnn4NNRb4ERoxYg23DaBZjQN64oRGQeKe8pPQxVVwc_FKFRGLm56XDyIghbZCkSgQIQViOBVOCqeeZ5Ra_w6-gC1Uww0rNitRluYax7FA0HC1K9CLVeeyNbiWCBoYhRhURRU4ThX1vvtnz-5_bfh-7DY6nfaon3evdiBJWJ1bzIFa1CejF70LiyoKapztGfn6xspNt6O |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFPHFecXp1CK-ad2apM36ONShOMfAC76FNE1V0CquDn--J-nFCyqIpU9teuGcJOf7ODeAHSJJQnmUuO0g4S7jds1R3AwZNegklLG0mu7zwaBzfR0OP2Tx22j30iWZ5zSYKk1p1nqKk1aV-GaQiPE_IhVGDMFcPglTzATSG75-flX5EQi3HbpMD3qXobEu0ma-f8cn0zR5awIjP6DOL45Sa3969f__-TzMFdjT6eaTZQEmdLoI9bKvg1Ms8yXYz-uPOjY5F9HjjXbM_qIz50y-3j0UmZvOMO9FM1qGy97RxcGxW_RVcBX1aeZ6ieqQCIEKci3CtUqQwniRH-uYegwZk2YST9nRPAp0W_qB4h6TcYDkTBMWR3QFauljqlfBCdG6EW1q3via0SToKEZk5CveVl4SqLABXilSoYqi46b3xb2oyiVbgQgUiLACEbwBu9UzT3nJjV9Hb6OmqoGmWvZxty_MtTbFA8nD2GtAs1SkKNboSCCZYhTpUug3YK9U3Pvtnz-59rfhWzAzPOyJ_sngdB1miVW9CSBsQi17ftEbMK3GqM3nTTt13wDIv-dy |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+Multistage+Subset+Maximization+Problems&rft.jtitle=Algorithmica&rft.au=Bampis%2C+Evripidis&rft.au=Escoffier%2C+Bruno&rft.au=Schewior%2C+Kevin&rft.au=Teiller%2C+Alexandre&rft.date=2021-08-01&rft.issn=0178-4617&rft.eissn=1432-0541&rft.volume=83&rft.issue=8&rft.spage=2374&rft.epage=2399&rft_id=info:doi/10.1007%2Fs00453-021-00834-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00453_021_00834_7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon |