CJRS' Special Issue on Deep Learning for Environmental Applications of Remote Sensing Data

Uložené v:
Podrobná bibliografia
Vydané v:Canadian journal of remote sensing Ročník 47; číslo 2; s. 159 - 161
Hlavní autori: Mahdianpari, Masoud, Homayouni, Saeid, Foucher, Samuel
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cogent 04.03.2021
Taylor & Francis Group
ISSN:0703-8992, 1712-7971
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Author Homayouni, Saeid
Foucher, Samuel
Mahdianpari, Masoud
Author_xml – sequence: 1
  givenname: Masoud
  orcidid: 0000-0002-7234-959X
  surname: Mahdianpari
  fullname: Mahdianpari, Masoud
  organization: C-CORE and Department of Electrical and Computer Engineering, Memorial University of Newfoundland
– sequence: 2
  givenname: Saeid
  orcidid: 0000-0002-0214-5356
  surname: Homayouni
  fullname: Homayouni, Saeid
  organization: INRS
– sequence: 3
  givenname: Samuel
  orcidid: 0000-0001-9557-6907
  surname: Foucher
  fullname: Foucher, Samuel
  organization: CRIM
BookMark eNqFkM1O3DAURq2KSh1oH6GSd6wy-CcZO2JTNEA7aKRKTLvpxrpxrpFRxo5sF8TbkzCw6YKuLF1_5_P1OSZHIQYk5CtnS840O2OKSd22YimY4EveSq706gNZcMVFpVrFj8hizlRz6BM5zvmeMVmvhF6QP-ub290p3Y1oPQx0k_NfpDHQS8SRbhFS8OGOupjoVXjwKYY9hjIFL8Zx8BaKjyHT6Ogt7mNBusOQZ-ASCnwmHx0MGb-8nifk9_XVr_WPavvz-2Z9sa2sbGSpuO5arJXtlLCuV7W0DXSN6GvHVdfzGnnLUFsJXK6sFX2HzPHpohXTTKtGnpDNobePcG_G5PeQnkwEb14GMd0ZSMXbAU0nJicWm45LUUNT695JpxsE5urpFZi6zg9dNsWcEzpjfXn5ZUngB8OZmZWbN-VmVm5elU908w_9ts3_uG8HzofJ9B4eYxp6U-BpiMklCNZnI9-veAY93Zoc
CitedBy_id crossref_primary_10_1007_s40722_023_00285_y
crossref_primary_10_1007_s11802_025_5937_5
crossref_primary_10_1155_2022_1319087
ContentType Journal Article
Copyright Copyright © CASI
Copyright_xml – notice: Copyright © CASI
DBID AAYXX
CITATION
DOA
DOI 10.1080/07038992.2021.1931786
DatabaseName CrossRef
Open Access: DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1712-7971
EndPage 161
ExternalDocumentID oai_doaj_org_article_b2171ce5b1324a548df3f85ea0f490ea
10_1080_07038992_2021_1931786
1931786
Genre Editorial
GroupedDBID 0BK
0YH
29B
30N
4.4
5GY
5RQ
AAGDL
AAHBH
AAIKC
AAJMT
AALDU
AAMIU
AAMNW
AAPUL
AAQRR
ABCCY
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGFS
ACTIO
ADCVX
ADGTB
AEISY
AENEX
AEYOC
AFRVT
AGDLA
AHDZW
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
BLEHA
CCCUG
D8U
DGEBU
DKSSO
EBS
ECGQY
GTTXZ
H13
HZ~
IPNFZ
KYCEM
LJTGL
M4Z
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
SNACF
TBQAZ
TEI
TFL
TFT
TFW
TQWBC
TTHFI
TUROJ
~KM
AAYXX
CITATION
GROUPED_DOAJ
ID FETCH-LOGICAL-c353t-18b9e47cb72cfd743c5ab52d4f17bd14e190e8c3a136cc2dbe0f1bd192c3a8753
IEDL.DBID TFW
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000673017200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0703-8992
IngestDate Fri Oct 03 12:40:28 EDT 2025
Sat Nov 29 06:16:43 EST 2025
Tue Nov 18 22:08:42 EST 2025
Mon Oct 20 23:47:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c353t-18b9e47cb72cfd743c5ab52d4f17bd14e190e8c3a136cc2dbe0f1bd192c3a8753
ORCID 0000-0002-0214-5356
0000-0001-9557-6907
0000-0002-7234-959X
OpenAccessLink https://doaj.org/article/b2171ce5b1324a548df3f85ea0f490ea
PageCount 3
ParticipantIDs informaworld_taylorfrancis_310_1080_07038992_2021_1931786
crossref_primary_10_1080_07038992_2021_1931786
crossref_citationtrail_10_1080_07038992_2021_1931786
doaj_primary_oai_doaj_org_article_b2171ce5b1324a548df3f85ea0f490ea
PublicationCentury 2000
PublicationDate 2021-03-04
PublicationDateYYYYMMDD 2021-03-04
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-04
  day: 04
PublicationDecade 2020
PublicationTitle Canadian journal of remote sensing
PublicationYear 2021
Publisher Cogent
Taylor & Francis Group
Publisher_xml – name: Cogent
– name: Taylor & Francis Group
SSID ssj0034628
Score 2.2784233
SourceID doaj
crossref
informaworld
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 159
SummonAdditionalLinks – databaseName: Open Access: DOAJ - Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yCHoRn7i-yMFr16ZJNu1R94GILLKrsAeh5KmCdJe1Ct78G_49f4lJml2LB_fiNW2mw2TozLQz3wfAqUza1m2piJQyLCIpN5GDAIliIjA2KTaJ8awl12wwSMfj7KZG9eV6wip44MpwZ8LmzEhqKmzZRLjNr5WxMqjmsSFZrH1qFLNsXkxV72DsJi7n8zoOSZt5HDk3eJWgls1ZEHPD07VI5AH7f8GV1gJNfxNshAwRnleabYEVXWyDtUBW_vi-A-47V8PR18cnDNzx0DPowUkBu1pPYUBMfYD2EbD3M8fmZNb-VsOJgUNtD0rDkWtitxu6vOS74K7fu-1cRoEkIZKY4jJCqcg0YVKwRBpl8wFJuaCJIgYxoRDRNuLrVGKOsGuRVkLHBtkLWWLXXLGyBxrFpND7AErCYyFxWylb9nGOnRzKDc0UTrhGqAnI3GC5DAjijsjiOUdzoNFg59zZOQ92boLWYtu0gtBYtuHCncbiZoeA7ResX-TBL_JlftEEWf0s89J_ADEVW0mO_1Tg4D8UOATrTqbvVyNHoFHOXvUxWJVv5dPL7MS76zeu1OtP
  priority: 102
  providerName: Directory of Open Access Journals
Title CJRS' Special Issue on Deep Learning for Environmental Applications of Remote Sensing Data
URI https://www.tandfonline.com/doi/abs/10.1080/07038992.2021.1931786
https://doaj.org/article/b2171ce5b1324a548df3f85ea0f490ea
Volume 47
WOSCitedRecordID wos000673017200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1712-7971
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0034628
  issn: 0703-8992
  databaseCode: TFW
  dateStart: 19750501
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4igl58i-uLHARP1aZJt-1RVxcREdlVFC8lTxVkd9mtgv_emWyqq6Ae9Ni0E9LJpJlJZ76PkF2dNMFsUxUZ47JI5NJFCAESxUJx7nLuEudZS86zi4v89ra4DNmEo5BWiTG0GwNF-G81Lm6pRnVG3AFaKYQJWEaVsH3wQFiWI-g2bP24NK_aN_W3mGPlpQfijHmEInUNz3e9fNqdPIj_FwjTic2nvfAPw14k88HzpIdjU1kiU7a3TGYDCfrD6wq5a511uns0MNJTz8tH-z16bO2ABhzWewqDpCcf1XHY48Q_cNp3tGNh-i3tYmo8CBzLSq6S6_bJVes0CtQLkeYpryKWq8KKTKss0c6Al6FTqdLECMcyZZiw4EfYXHPJOCZeG2Vjx-BGkUAbhkBrZLrX79l1QrWQsdK8aQwEk1Jy7CeVLi0MT6RlrEFErfJSB1xypMd4KlkNXxoUV6LiyqC4Btl_FxuMgTl-EzjC-Xx_GHG1fUN_eF-GZVoqiNCYtqmCIF1IiOaMA4tNrYydgDeWDVJMWkNZ-WMVN-ZAKfmPA9j4g-wmmcNLn_wmtsh0NXy222RGv1SPo-GOP0jY8Zb_BmQU_Ec
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5Bi9ReoOWhLuXhQyVOKXFsb5IjfawK3e6hXUTFxfKzIKHdaglI_HtmvE5ZkIADXO2M5UzG9owz830Ae64aotkqW3gf60I2JhYEAVKU0goRGxGrmFhLxvVk0lxetqu1MJRWSTF0XAJFpL2aFjddRvcpcS_JTDFOoDqqiu-jC8LrZngb1hWetYSfPx2963djQbWXCYqzFAXJ9FU8vxvmp_Mpwfj_AmK6cvyM7v2PiW_B3ex8sldLa9mGW2F2HzYyD_qHbw_g_eGb84sXLJPSs0TNx-YzdhTCNctQrFcMZ8mOfxTI0Ygrv8HZPLLzgBYQ2AVlx6PAkenMQ3g7Op4enhSZfaFwQomu4I1tg6ydrSsXPToaThmrKi8jr63nMqArERonDBeUe-1tKCPHjrbCNoqCHsHabD4LO8CcNKV1Yug9xpPGCBpHmahaLyoTOB-A7HWuXYYmJ4aMT5r3CKZZcZoUp7PiBrB_I3a9xOb4m8ABfdCbhwlaOzXMF1c6r1RtMUjjLiiLcbo0GND5iEargimjxDc2A2hXzUF36WYlLmlQtPjjBB7_g-xz2DiZno31-PXkdBc2qSvlwsknsNYtvoSncMd97T5-XjxLC-A7dA__fA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dTxQxEJ8oEvVFATGeIvaBhKfF7bZ7u_uoHBdFciF8BOJL0080MXeXYzXxv3em14WDBHzQ13an6U6n7czuzO8HsGWLPpptaTLnQpXJWoeMIECyXBohQi1CESJryUE1GtXn581hyia8TGmVFEOHOVBEPKtpc09d6DLi3pOVYphAZVQF30EPhFd1_yE8Qte5T0Z-MjzrDmNBpZcRiTMXGcl0RTx3DXPjeooo_rcwTBdun-Hz_zDvFXiWXE_2YW4rq_DAj9fgSWJB__b7BXzd3T863maJkp5FYj42GbOB91OWgFgvGE6S7V2Xx9GICz_B2SSwI4_r79kx5cajwEC3eh1Oh3snu5-yxL2QWVGKNuO1abysrKkKGxy6GbbUpiycDLwyjkuPjoSvrdBcUOa1Mz4PHDuaAtsoBnoJS-PJ2L8CZqXOjRV95zCa1FrQOKUOZeNEoT3nPZCdypVNwOTEj_FD8Q6_NClOkeJUUlwPdq7EpnNkjr8JfKT1vHqYgLVjw2R2odI-VQZDNG59aTBKlxrDORfQZEuv8yDxjXUPmkVrUG38rhLmJChK3DuB1_8g-w4eHw6G6uDz6MsbeEo9MRFObsBSO_vp38Ky_dV-v5xtRvP_A2c6_i4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CJRS%E2%80%99+Special+Issue+on+Deep+Learning+for+Environmental+Applications+of+Remote+Sensing+Data&rft.jtitle=Canadian+journal+of+remote+sensing&rft.au=Mahdianpari%2C+Masoud&rft.au=Homayouni%2C+Saeid&rft.au=Foucher%2C+Samuel&rft.date=2021-03-04&rft.issn=0703-8992&rft.eissn=1712-7971&rft.volume=47&rft.issue=2&rft.spage=159&rft.epage=161&rft_id=info:doi/10.1080%2F07038992.2021.1931786&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_07038992_2021_1931786
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0703-8992&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0703-8992&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0703-8992&client=summon