Micellar and sub-micellar liquid chromatography of terephthalic acid contaminants using a C18 column coated with Tween 20

The tremendous amounts of terephthalic acid (TPA) produced globally require consistent monitoring of its contaminants during the different stages of production for quality control purposes. In this paper, a simple, robust and green liquid chromatography method has been developed using an isocratic 1...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Analytica chimica acta Ročník 1105; s. 214 - 223
Hlavní autoři: Ali, Abd al-karim F., Danielson, Neil D.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Netherlands Elsevier B.V 08.04.2020
Témata:
ISSN:0003-2670, 1873-4324, 1873-4324
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The tremendous amounts of terephthalic acid (TPA) produced globally require consistent monitoring of its contaminants during the different stages of production for quality control purposes. In this paper, a simple, robust and green liquid chromatography method has been developed using an isocratic 100% aqueous mobile phase at pH 2 (dilute sulfuric acid) to separate TPA contaminants (mono-, di-, and tri-carboxylic aromatic acids) on a C18 stationary phase coated with Tween 20 (polyoxyethylene(20)sorbitan monolaurate). After optimization of all chromatographic conditions, near baseline separation of the nine carboxylic acids under investigation was achieved with a 2.5 mL/min flow rate on a 5 micron C18 silica column (100 x 4.6 mm) in under 20 min. The modified stationary phase showed an excellent capability to separate structural isomers in a reasonable time, markedly better that the bare C18 stationary phase. Plots of ln retention factor versus 1/temperature showed the expected linear relationship for the di- and tri-carboxylic aromatic acids (single retention mechanism likely) but a quadratic fit for the mono-carboxylic aromatic acids (dual retention mechanism likely). Due to the stability of the surfactant modified stationary phase, future potential mass spectrometry compatibility was shown through the alternative use of trifluoroacetic acid in the 100% H2O (no Tween) mobile phase but still with UV detection. The developed method with 0.001% (vol/vol) Tween in the mobile phase was successfully used to analyze two different types of TPA industrial samples for all nine components plus revealing some other impurity peaks. The lowest limit of detection was 0.010 nmoles for o-phthalic acid and p-toluic acid (PTA), while the highest was 0.065 nmoles for 4-carboxybenzaldehyde (CBA). The concentrations of these important contaminants, PTA and CBA, in the mother liquor sample were 3348 mg/L and 1806 mg/L, respectively, while their respective concentrations in the purified TPA powder were 135 mg/kg and 17.7 mg/kg. [Display omitted] •Positional aromatic isomers in industrial terephthalic acid samples separated.•“Green” chromatography using Tween 20 surfactant coated column.•Potential for mass spectrometry detection shown.
AbstractList The tremendous amounts of terephthalic acid (TPA) produced globally require consistent monitoring of its contaminants during the different stages of production for quality control purposes. In this paper, a simple, robust and green liquid chromatography method has been developed using an isocratic 100% aqueous mobile phase at pH 2 (dilute sulfuric acid) to separate TPA contaminants (mono-, di-, and tri-carboxylic aromatic acids) on a C18 stationary phase coated with Tween 20 (polyoxyethylene(20)sorbitan monolaurate). After optimization of all chromatographic conditions, near baseline separation of the nine carboxylic acids under investigation was achieved with a 2.5 mL/min flow rate on a 5 micron C18 silica column (100 x 4.6 mm) in under 20 min. The modified stationary phase showed an excellent capability to separate structural isomers in a reasonable time, markedly better that the bare C18 stationary phase. Plots of ln retention factor versus 1/temperature showed the expected linear relationship for the di- and tri-carboxylic aromatic acids (single retention mechanism likely) but a quadratic fit for the mono-carboxylic aromatic acids (dual retention mechanism likely). Due to the stability of the surfactant modified stationary phase, future potential mass spectrometry compatibility was shown through the alternative use of trifluoroacetic acid in the 100% H O (no Tween) mobile phase but still with UV detection. The developed method with 0.001% (vol/vol) Tween in the mobile phase was successfully used to analyze two different types of TPA industrial samples for all nine components plus revealing some other impurity peaks. The lowest limit of detection was 0.010 nmoles for o-phthalic acid and p-toluic acid (PTA), while the highest was 0.065 nmoles for 4-carboxybenzaldehyde (CBA). The concentrations of these important contaminants, PTA and CBA, in the mother liquor sample were 3348 mg/L and 1806 mg/L, respectively, while their respective concentrations in the purified TPA powder were 135 mg/kg and 17.7 mg/kg.
The tremendous amounts of terephthalic acid (TPA) produced globally require consistent monitoring of its contaminants during the different stages of production for quality control purposes. In this paper, a simple, robust and green liquid chromatography method has been developed using an isocratic 100% aqueous mobile phase at pH 2 (dilute sulfuric acid) to separate TPA contaminants (mono-, di-, and tri-carboxylic aromatic acids) on a C18 stationary phase coated with Tween 20 (polyoxyethylene(20)sorbitan monolaurate). After optimization of all chromatographic conditions, near baseline separation of the nine carboxylic acids under investigation was achieved with a 2.5 mL/min flow rate on a 5 micron C18 silica column (100 x 4.6 mm) in under 20 min. The modified stationary phase showed an excellent capability to separate structural isomers in a reasonable time, markedly better that the bare C18 stationary phase. Plots of ln retention factor versus 1/temperature showed the expected linear relationship for the di- and tri-carboxylic aromatic acids (single retention mechanism likely) but a quadratic fit for the mono-carboxylic aromatic acids (dual retention mechanism likely). Due to the stability of the surfactant modified stationary phase, future potential mass spectrometry compatibility was shown through the alternative use of trifluoroacetic acid in the 100% H2O (no Tween) mobile phase but still with UV detection. The developed method with 0.001% (vol/vol) Tween in the mobile phase was successfully used to analyze two different types of TPA industrial samples for all nine components plus revealing some other impurity peaks. The lowest limit of detection was 0.010 nmoles for o-phthalic acid and p-toluic acid (PTA), while the highest was 0.065 nmoles for 4-carboxybenzaldehyde (CBA). The concentrations of these important contaminants, PTA and CBA, in the mother liquor sample were 3348 mg/L and 1806 mg/L, respectively, while their respective concentrations in the purified TPA powder were 135 mg/kg and 17.7 mg/kg.The tremendous amounts of terephthalic acid (TPA) produced globally require consistent monitoring of its contaminants during the different stages of production for quality control purposes. In this paper, a simple, robust and green liquid chromatography method has been developed using an isocratic 100% aqueous mobile phase at pH 2 (dilute sulfuric acid) to separate TPA contaminants (mono-, di-, and tri-carboxylic aromatic acids) on a C18 stationary phase coated with Tween 20 (polyoxyethylene(20)sorbitan monolaurate). After optimization of all chromatographic conditions, near baseline separation of the nine carboxylic acids under investigation was achieved with a 2.5 mL/min flow rate on a 5 micron C18 silica column (100 x 4.6 mm) in under 20 min. The modified stationary phase showed an excellent capability to separate structural isomers in a reasonable time, markedly better that the bare C18 stationary phase. Plots of ln retention factor versus 1/temperature showed the expected linear relationship for the di- and tri-carboxylic aromatic acids (single retention mechanism likely) but a quadratic fit for the mono-carboxylic aromatic acids (dual retention mechanism likely). Due to the stability of the surfactant modified stationary phase, future potential mass spectrometry compatibility was shown through the alternative use of trifluoroacetic acid in the 100% H2O (no Tween) mobile phase but still with UV detection. The developed method with 0.001% (vol/vol) Tween in the mobile phase was successfully used to analyze two different types of TPA industrial samples for all nine components plus revealing some other impurity peaks. The lowest limit of detection was 0.010 nmoles for o-phthalic acid and p-toluic acid (PTA), while the highest was 0.065 nmoles for 4-carboxybenzaldehyde (CBA). The concentrations of these important contaminants, PTA and CBA, in the mother liquor sample were 3348 mg/L and 1806 mg/L, respectively, while their respective concentrations in the purified TPA powder were 135 mg/kg and 17.7 mg/kg.
The tremendous amounts of terephthalic acid (TPA) produced globally require consistent monitoring of its contaminants during the different stages of production for quality control purposes. In this paper, a simple, robust and green liquid chromatography method has been developed using an isocratic 100% aqueous mobile phase at pH 2 (dilute sulfuric acid) to separate TPA contaminants (mono-, di-, and tri-carboxylic aromatic acids) on a C18 stationary phase coated with Tween 20 (polyoxyethylene(20)sorbitan monolaurate). After optimization of all chromatographic conditions, near baseline separation of the nine carboxylic acids under investigation was achieved with a 2.5 mL/min flow rate on a 5 micron C18 silica column (100 x 4.6 mm) in under 20 min. The modified stationary phase showed an excellent capability to separate structural isomers in a reasonable time, markedly better that the bare C18 stationary phase. Plots of ln retention factor versus 1/temperature showed the expected linear relationship for the di- and tri-carboxylic aromatic acids (single retention mechanism likely) but a quadratic fit for the mono-carboxylic aromatic acids (dual retention mechanism likely). Due to the stability of the surfactant modified stationary phase, future potential mass spectrometry compatibility was shown through the alternative use of trifluoroacetic acid in the 100% H2O (no Tween) mobile phase but still with UV detection. The developed method with 0.001% (vol/vol) Tween in the mobile phase was successfully used to analyze two different types of TPA industrial samples for all nine components plus revealing some other impurity peaks. The lowest limit of detection was 0.010 nmoles for o-phthalic acid and p-toluic acid (PTA), while the highest was 0.065 nmoles for 4-carboxybenzaldehyde (CBA). The concentrations of these important contaminants, PTA and CBA, in the mother liquor sample were 3348 mg/L and 1806 mg/L, respectively, while their respective concentrations in the purified TPA powder were 135 mg/kg and 17.7 mg/kg. [Display omitted] •Positional aromatic isomers in industrial terephthalic acid samples separated.•“Green” chromatography using Tween 20 surfactant coated column.•Potential for mass spectrometry detection shown.
Author Danielson, Neil D.
Ali, Abd al-karim F.
Author_xml – sequence: 1
  givenname: Abd al-karim F.
  surname: Ali
  fullname: Ali, Abd al-karim F.
– sequence: 2
  givenname: Neil D.
  orcidid: 0000-0003-4857-5789
  surname: Danielson
  fullname: Danielson, Neil D.
  email: danielnd@miamioh.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32138921$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFv1DAQhS1URLeFH8AF-cglYWzHiSNOaFVopSIu5Ww5zqTxKnG2tkO1_x4v271w6Gk0M-970sy7Ihd-8UjIRwYlA1Z_2ZXGmpIDhxJYCaJ-QzZMNaKoBK8uyAYARMHrBi7JVYy73HIG1TtyKTgTquVsQw4_ncVpMoEa39O4dsV8HkzuaXU9tWNYZpOWx2D244EuA00YcD-m0UzOUmOPmsUnMztvfIp0jc4_UkO3TOXFtM4-F5Owp88ujfThGdFTDu_J28FMET-81Gvy-_vNw_a2uP_142777b6wQopUMNZDDY3AzrRSAqquqS0MbOBWNBWiaphsRdeyGmRrpVRGSdkPnVG1VRWz4pp8Pvnuw_K0Ykx6dvHfiR6XNWqebQQoqKos_fQiXbsZe70PbjbhoM_vyoLmJLBhiTHgoK1LJrl8fjBu0gz0MRi90zkYfQxGA9M5mEyy_8iz-WvM1xOD-T1_HAYdrUNvsXcBbdL94l6h_wKbUKTx
CitedBy_id crossref_primary_10_1002_jssc_202000429
crossref_primary_10_1016_j_chroma_2022_463152
crossref_primary_10_1016_j_trac_2021_116418
crossref_primary_10_1080_00958972_2021_1881067
crossref_primary_10_1002_er_5831
crossref_primary_10_1016_j_cogsc_2021_100510
crossref_primary_10_3390_separations9030061
crossref_primary_10_1016_j_chroma_2022_463442
crossref_primary_10_1186_s43094_024_00658_6
crossref_primary_10_3390_separations10020070
Cites_doi 10.1016/S0021-9673(03)00846-X
10.1016/j.compchemeng.2016.01.017
10.1021/ie0002733
10.1590/S0103-50532004000300010
10.1002/open.201700178
10.1081/JLC-120014387
10.1016/j.cogsc.2017.03.002
10.1016/j.jct.2017.01.020
10.1016/j.jiec.2015.02.015
10.1021/ed066p1007
10.1021/ac00173a018
10.1081/JLC-100101492
10.1016/j.trac.2015.06.012
10.1016/j.aca.2017.12.021
10.1016/j.trac.2012.02.006
10.1039/C5GC00338E
10.1021/ar010065m
10.1021/ac00273a005
10.1016/j.trac.2013.04.010
10.1016/j.chroma.2017.02.039
10.1039/C5GC01771H
10.1021/ac00298a020
10.1016/0165-9936(88)85075-1
10.1007/s00216-001-1199-1
10.1093/chromsci/49.1.27
10.1016/S0021-9673(01)83976-5
10.1016/j.chroma.2016.06.036
10.1021/ac00298a021
10.1016/j.chroma.2016.02.024
10.1016/S0039-9140(01)00395-2
10.1021/cr300298j
10.1021/ac50049a025
10.1016/j.trac.2010.03.008
10.1002/cssc.201600718
10.1016/j.chroma.2009.01.003
10.1016/j.chroma.2013.01.071
10.1016/j.chroma.2013.07.099
10.1039/C5GC00887E
10.1016/S0021-9673(00)91044-6
10.1080/10826076.2017.1348954
10.1016/S0021-9673(01)84040-1
10.1016/S0021-9673(00)00664-6
10.1002/jssc.201401059
10.1016/j.colsurfa.2017.10.044
10.1016/0021-9673(95)01301-6
10.1016/S1004-9541(08)60191-3
10.1021/ac00257a024
10.1093/chromsci/bms018
10.1021/ac00298a019
10.1016/j.chroma.2008.09.053
10.1016/S0021-9673(03)00734-9
10.1021/acs.iecr.6b04586
10.1016/j.ces.2013.09.004
10.1021/acs.iecr.8b01270
10.1016/S0021-9673(00)96150-8
10.1093/chromsci/bmw028
10.1021/ac00264a026
10.1021/ac00150a003
10.1007/s00216-018-1161-0
10.1021/ie200737x
10.1021/acsomega.9b02689
10.1039/b103187m
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright © 2020 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright © 2020 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.aca.2020.01.036
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-4324
EndPage 223
ExternalDocumentID 32138921
10_1016_j_aca_2020_01_036
S0003267020300878
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABFYP
ABGSF
ABJNI
ABLST
ABMAC
ABUDA
ABYKQ
ACBEA
ACCUC
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ACRLP
ADBBV
ADECG
ADEZE
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SCH
SDF
SDG
SDP
SES
SPC
SPCBC
SSJ
SSK
SSU
SSZ
T5K
TN5
TWZ
UPT
WH7
YK3
ZMT
~02
~G-
.GJ
3O-
53G
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABDPE
ABEFU
ABWVN
ABXDB
ACKIV
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AGRDE
AI.
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FA8
FEDTE
FGOYB
HMU
HVGLF
HZ~
H~9
MVM
NHB
R2-
SCB
SEW
T9H
UQL
VH1
WUQ
XOL
XPP
ZCG
ZXP
ZY4
~HD
AGCQF
AGRNS
BNPGV
NPM
SSH
7X8
ID FETCH-LOGICAL-c353t-11d06073eba9550e8b76c0f1f2c374ee871593b916059c558a855dfba86c841c3
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000517755300024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0003-2670
1873-4324
IngestDate Thu Oct 02 10:42:28 EDT 2025
Mon Jul 21 05:45:25 EDT 2025
Tue Nov 18 21:51:12 EST 2025
Sat Nov 29 07:28:14 EST 2025
Fri Feb 23 02:49:08 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Tween 20
Green liquid chromatography
Aromatic acid positional isomers
Terephthalic acid
Language English
License Copyright © 2020 Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c353t-11d06073eba9550e8b76c0f1f2c374ee871593b916059c558a855dfba86c841c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4857-5789
PMID 32138921
PQID 2374308044
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2374308044
pubmed_primary_32138921
crossref_citationtrail_10_1016_j_aca_2020_01_036
crossref_primary_10_1016_j_aca_2020_01_036
elsevier_sciencedirect_doi_10_1016_j_aca_2020_01_036
PublicationCentury 2000
PublicationDate 2020-04-08
PublicationDateYYYYMMDD 2020-04-08
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-08
  day: 08
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Analytica chimica acta
PublicationTitleAlternate Anal Chim Acta
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Berthod, Girard, Gonnet (bib31) 1986; 58
Harvianto, Kang, Lee (bib39) 2017; 56
Penmetsa, Reddick, Fink, Kleintop, DiDonato, Volk, Klohr (bib75) 2000; 23
Chester, Coym (bib73) 2003; 1003
Khaledi, Peuler, Ngeh-Ngwainbi (bib22) 1987; 59
Tykodi (bib71) 1989; 66
Richardson, McPherson, Fasciano, Pauls, Danielson (bib12) 2017; 1491
Medford (bib74) 1986; 368
Shen, Chen, Van Beek (bib17) 2015; 17
Pang, Zheng, Sun, Wang, Wang, Zhang (bib41) 2016; 18
Obradović, Poša (bib64) 2017; 110
Ramezani, Absalan, Ahmadi (bib11) 2018; 1010
Dorsey, Khaledi, Landy, Lin (bib21) 1984; 316
Borgerding, Quina, Hinze, Bowermaster, McNair (bib26) 1988; 60
Suresh, Sharma, Sridhar (bib52) 2000; 39
Song, Kim, Hong, Lim, Lee (bib49) 2004; 10
Fasciano, Danielson (bib38) 2016; 1438
Cheng, Peng, Wang, Li (bib51) 2009; 17
Suresh, Sharma, Sridhar (bib50) 2000; 39
bib43
Li, Niu, Zuo, Metelski, Busch, Subramaniam (bib56) 2013; 104
Li, Locke (bib67) 1996; 734
Fasciano, Mansour, Danielson (bib32) 2016; 54
Tanase, Soare, David, Moldoveanu (bib72) 2019; 4
Pramauro, Pelizzetti (bib16) 1988; 7
Ruiz-Ángel, Carda-Broch, Torres-Lapasió, García-Álvarez-Coque (bib25) 2009; 1216
Dorsey, DeEchegaray, Landy (bib23) 1983; 55
Huang, Wei, Lin, Lu (bib55) 2009; 1216
Armstrong, Terrill (bib15) 1979; 51
bib3
Rocha, Nóbrega, Fatibello Filho (bib8) 2001; 3
Armstron, Stine (bib19) 1983; 55
Qian, Tao, Sun, Du (bib54) 2012; 51
Desilets, Rounds, Regnier (bib70) 1991; 544
Rambla-Alegre (bib20) 2012
Neaţu, Culică, Florea, Parvulescu, Cavani (bib40) 2016; 9
Yang, Ding (bib63) 2002; 25
Berthod, Girard, Gonnet (bib29) 1986; 58
Płotka, Tobiszewski, Sulej, Kupska, Górecki, Namieśnik (bib9) 2013; 1307
Tomás, Bordado, Gomes (bib53) 2013; 113
Zhong, Jiang, Peng, Li, Qian (bib58) 2018; 57
Yuan, Qiao, Lian (bib61) 2012; 50
Peris-García, Rodríguez-Martínez, Baeza-Baeza, García-Alvarez-Coque, Ruiz-Angel (bib37) 2018; 410
Gałuszka, Migaszewski, Namieśnik (bib5) 2013; 50
Jongedijk, van der Klis, de Zwart, van Es, Beekwilder (bib42) 2018; 7
Nakao, Halldin (bib65) 2013; 1281
Anastas, Kirchhoff (bib1) 2002; 35
Arunyanart, Cline Love (bib24) 1984; 56
Ortiz-Bolsico, Ruiz-Angel, García-Alvarez-Coque (bib33) 2015; 38
Castelletti, Verzola, Gelfi, Stoyanov, Righetti (bib68) 2000; 894
P.T. Anastas, J.C. Warner, Green Chemistry: Theory and Practice, Oxford University Press, Oxford, UK.
Berthod, Tomer, Dorsey (bib27) 2001; 55
Viola, Cao (bib62) 1996; 34
Tobiszewski, Namieśnik (bib7) 2012; 35
Aransiola, Daramola, Ojumu (bib48) 2013
Mirabal, Scholz, Carus (bib44)
Armenta, de la Guardia (bib6) 2016; 80
Mori, Hu, Haddad, Fritz, Tanaka, Tsue, Tanaka (bib66) 2002; 372
Armstrong (bib18) 1981; 13
Armstrong, Nome (bib14) 1981
Ruiz-Angel, Peris-García, García-Alvarez-Coque (bib13) 2015; 17
Berthod, Girard, Gonnet (bib28) 1986; 58
Tobiszewski, Namieśnik (bib2) 2017; 5
Ghaemi, Wall (bib69) 1981; 212
Welch, Wu, Biba, Hartman, Brkovic, Gong, Helmy, Schafer, Cuff, Pirzada, Zhou (bib10) 2010; 29
Koneva, Ritter, Anufrikov, Lezov, Klestova, Smirnova, Safonova, Smirnova (bib34) 2018; 538
Hadjmohammadi, Kiasari, Nazari (bib36) 2016; 71
Fadzil, Rahim, Maniam (bib46) 2014; 35
Li, Zhong, Wang, Luo, Qian (bib47) 2016; 88
Tomás, Bordado, Gomes (bib45) 2013; 113
Tourani, Khorasheh, Rashidi, Safekordi (bib57) 2015; 28
Åsberg, Samuelsson, Fornstedt (bib30) 2016; 1457
Wu, Lo, Nian, Lin (bib59) 2003; 1003
Alwera, Bhushan (bib35) 2017; 40
Moraes, Rubim, Realpozo, Tavares (bib60) 2004; 15
Aransiola (10.1016/j.aca.2020.01.036_bib48) 2013
Penmetsa (10.1016/j.aca.2020.01.036_bib75) 2000; 23
Anastas (10.1016/j.aca.2020.01.036_bib1) 2002; 35
Ruiz-Ángel (10.1016/j.aca.2020.01.036_bib25) 2009; 1216
Zhong (10.1016/j.aca.2020.01.036_bib58) 2018; 57
Neaţu (10.1016/j.aca.2020.01.036_bib40) 2016; 9
Pang (10.1016/j.aca.2020.01.036_bib41) 2016; 18
Song (10.1016/j.aca.2020.01.036_bib49) 2004; 10
Huang (10.1016/j.aca.2020.01.036_bib55) 2009; 1216
Borgerding (10.1016/j.aca.2020.01.036_bib26) 1988; 60
Suresh (10.1016/j.aca.2020.01.036_bib52) 2000; 39
Viola (10.1016/j.aca.2020.01.036_bib62) 1996; 34
Castelletti (10.1016/j.aca.2020.01.036_bib68) 2000; 894
Harvianto (10.1016/j.aca.2020.01.036_bib39) 2017; 56
Medford (10.1016/j.aca.2020.01.036_bib74) 1986; 368
Berthod (10.1016/j.aca.2020.01.036_bib29) 1986; 58
Mori (10.1016/j.aca.2020.01.036_bib66) 2002; 372
Chester (10.1016/j.aca.2020.01.036_bib73) 2003; 1003
Armstron (10.1016/j.aca.2020.01.036_bib19) 1983; 55
Berthod (10.1016/j.aca.2020.01.036_bib31) 1986; 58
Armstrong (10.1016/j.aca.2020.01.036_bib18) 1981; 13
Qian (10.1016/j.aca.2020.01.036_bib54) 2012; 51
Li (10.1016/j.aca.2020.01.036_bib56) 2013; 104
Suresh (10.1016/j.aca.2020.01.036_bib50) 2000; 39
Yuan (10.1016/j.aca.2020.01.036_bib61) 2012; 50
Arunyanart (10.1016/j.aca.2020.01.036_bib24) 1984; 56
Rambla-Alegre (10.1016/j.aca.2020.01.036_bib20) 2012
Dorsey (10.1016/j.aca.2020.01.036_bib21) 1984; 316
Ruiz-Angel (10.1016/j.aca.2020.01.036_bib13) 2015; 17
Fasciano (10.1016/j.aca.2020.01.036_bib38) 2016; 1438
Mirabal (10.1016/j.aca.2020.01.036_bib44)
Ghaemi (10.1016/j.aca.2020.01.036_bib69) 1981; 212
Yang (10.1016/j.aca.2020.01.036_bib63) 2002; 25
Pramauro (10.1016/j.aca.2020.01.036_bib16) 1988; 7
Berthod (10.1016/j.aca.2020.01.036_bib28) 1986; 58
Hadjmohammadi (10.1016/j.aca.2020.01.036_bib36) 2016; 71
Tobiszewski (10.1016/j.aca.2020.01.036_bib2) 2017; 5
Fadzil (10.1016/j.aca.2020.01.036_bib46) 2014; 35
Tobiszewski (10.1016/j.aca.2020.01.036_bib7) 2012; 35
Welch (10.1016/j.aca.2020.01.036_bib10) 2010; 29
Tanase (10.1016/j.aca.2020.01.036_bib72) 2019; 4
Wu (10.1016/j.aca.2020.01.036_bib59) 2003; 1003
Richardson (10.1016/j.aca.2020.01.036_bib12) 2017; 1491
Cheng (10.1016/j.aca.2020.01.036_bib51) 2009; 17
Ortiz-Bolsico (10.1016/j.aca.2020.01.036_bib33) 2015; 38
Moraes (10.1016/j.aca.2020.01.036_bib60) 2004; 15
Jongedijk (10.1016/j.aca.2020.01.036_bib42) 2018; 7
Khaledi (10.1016/j.aca.2020.01.036_bib22) 1987; 59
Tykodi (10.1016/j.aca.2020.01.036_bib71) 1989; 66
Tomás (10.1016/j.aca.2020.01.036_bib53) 2013; 113
Tourani (10.1016/j.aca.2020.01.036_bib57) 2015; 28
Obradović (10.1016/j.aca.2020.01.036_bib64) 2017; 110
Rocha (10.1016/j.aca.2020.01.036_bib8) 2001; 3
Desilets (10.1016/j.aca.2020.01.036_bib70) 1991; 544
Gałuszka (10.1016/j.aca.2020.01.036_bib5) 2013; 50
Armenta (10.1016/j.aca.2020.01.036_bib6) 2016; 80
Fasciano (10.1016/j.aca.2020.01.036_bib32) 2016; 54
Berthod (10.1016/j.aca.2020.01.036_bib27) 2001; 55
Koneva (10.1016/j.aca.2020.01.036_bib34) 2018; 538
Ramezani (10.1016/j.aca.2020.01.036_bib11) 2018; 1010
Armstrong (10.1016/j.aca.2020.01.036_bib14) 1981
Nakao (10.1016/j.aca.2020.01.036_bib65) 2013; 1281
Li (10.1016/j.aca.2020.01.036_bib67) 1996; 734
10.1016/j.aca.2020.01.036_bib4
Armstrong (10.1016/j.aca.2020.01.036_bib15) 1979; 51
Peris-García (10.1016/j.aca.2020.01.036_bib37) 2018; 410
Płotka (10.1016/j.aca.2020.01.036_bib9) 2013; 1307
Alwera (10.1016/j.aca.2020.01.036_bib35) 2017; 40
Dorsey (10.1016/j.aca.2020.01.036_bib23) 1983; 55
Åsberg (10.1016/j.aca.2020.01.036_bib30) 2016; 1457
Tomás (10.1016/j.aca.2020.01.036_bib45) 2013; 113
Shen (10.1016/j.aca.2020.01.036_bib17) 2015; 17
Li (10.1016/j.aca.2020.01.036_bib47) 2016; 88
References_xml – volume: 58
  start-page: 1356
  year: 1986
  end-page: 1358
  ident: bib31
  article-title: Micellar liquid chromatography. Adsorption isotherms of two ionic surfactants on five stationary phases
  publication-title: Anal. Chem.
– volume: 35
  start-page: 686
  year: 2002
  end-page: 694
  ident: bib1
  article-title: Origins, current status, and future challenges of green chemistry
  publication-title: Acc. Chem. Res.
– volume: 50
  start-page: 410
  year: 2012
  end-page: 413
  ident: bib61
  article-title: Simultaneous determination of nine related substances in p-phthalic acid residue by RP-HPLC
  publication-title: J. Chromatogr. Sci.
– volume: 23
  start-page: 831
  year: 2000
  end-page: 839
  ident: bib75
  article-title: Development of Reversed-phase Chiral HPLC Methods Using Mass Spectrometry Compatible Mobile Phases
  publication-title: J. Liq. Chromatogr. Relat. Technol
– volume: 88
  start-page: 1
  year: 2016
  end-page: 12
  ident: bib47
  article-title: Control structure design of an industrial crude terephthalic acid hydropurification process with catalyst deactivation
  publication-title: Comput. Chem. Eng.
– volume: 1216
  start-page: 1798
  year: 2009
  end-page: 1814
  ident: bib25
  article-title: Retention mechanisms in micellar liquid chromatography
  publication-title: J. Chromatogr., A
– volume: 56
  start-page: 2168
  year: 2017
  end-page: 2176
  ident: bib39
  article-title: Process design and optimization of an acetic acid recovery system in terephthalic acid production via hybrid extraction-distillation using a novel mixed solvent
  publication-title: Ind. Eng. Chem. Res.
– volume: 39
  start-page: 3958
  year: 2000
  end-page: 3997
  ident: bib52
  article-title: Engineering aspects of industrial liquid-phase air oxidation of hydrocarbons
  publication-title: Ind. Eng. Chem. Res.
– volume: 55
  start-page: 69
  year: 2001
  end-page: 83
  ident: bib27
  article-title: Polyoxyethylene alkyl ether nonionic surfactants: physicochemical properties and use for cholesterol determination in food
  publication-title: Talanta
– year: 2013
  ident: bib48
  article-title: Xylenes : production technologies and uses
  publication-title: Chapter in Xylenes: Synthesis, Characterization and Physiochemical Properties, Chemical Engineering Methods and Technology
– volume: 1216
  start-page: 2560
  year: 2009
  end-page: 2566
  ident: bib55
  article-title: Determining organic impurities in mother liquors from oxidative terephthalic acid synthesis by microemulsion electrokinetic chromatography
  publication-title: J. Chromatogr., A
– volume: 372
  start-page: 181
  year: 2002
  end-page: 186
  ident: bib66
  article-title: Capillary electrophoresis using high ionic strength background electrolytes containing zwitterionic and non-ionic surfactants and its application to direct determination of bromide and nitrate in seawater
  publication-title: Anal. Bioanal. Chem.
– volume: 10
  start-page: 77
  year: 2004
  end-page: 80
  ident: bib49
  article-title: Uncatalyzed partial oxidation of p-xylene to terephthalic acid in sub-critical water
  publication-title: Theor. Appl. Chem. Eng.
– year: 1981
  ident: bib14
  article-title: Partitioning Behavior of Solutes Eluted with Micellar Mobile Phases in Liquid Chromatography
– volume: 13
  start-page: 14
  year: 1981
  end-page: 20
  ident: bib18
  article-title: Application of pseudophase liquid chromatography
  publication-title: Am. Labor.
– volume: 60
  start-page: 2520
  year: 1988
  end-page: 2527
  ident: bib26
  article-title: Investigation of the retention mechanism in nonionic micellar liquid chromatography using an alkylbenzene homologous series
  publication-title: Anal. Chem.
– volume: 56
  start-page: 1557
  year: 1984
  end-page: 1561
  ident: bib24
  article-title: Model for micellar effects on liquid chromatography capacity factors and for determination of micelle-solute equilibrium constants
  publication-title: Anal. Chem.
– volume: 3
  start-page: 216
  year: 2001
  end-page: 220
  ident: bib8
  article-title: Flow analysis strategies to greener analytical chemistry. An overview
  publication-title: Green Chem.
– volume: 1003
  start-page: 101
  year: 2003
  end-page: 111
  ident: bib73
  article-title: Effect of phase ratio on van’t Hoff analysis in reversed- phase liquid chromatography, and phase-ratio-independent estimation of transfer enthalpy
  publication-title: J. Chromatogr. A
– volume: 35
  start-page: 1641
  year: 2014
  end-page: 1652
  ident: bib46
  article-title: A brief review of para-xylene oxidation to terephthalic acid as a model of primary C-H bond activation
  publication-title: Cuihua Xuebao/Chinese J. Catal.
– volume: 54
  start-page: 958
  year: 2016
  end-page: 970
  ident: bib32
  article-title: Ion-exclusion high-performance liquid chromatography of aliphatic organic acids using a surfactant-modified C18 column
  publication-title: J. Chromatogr. Sci.
– volume: 538
  start-page: 45
  year: 2018
  end-page: 55
  ident: bib34
  article-title: Mixed aqueous solutions of nonionic surfactants Brij 35/Triton X-100: micellar properties, solutes’ partitioning from micellar liquid chromatography and modelling with COSMOmic
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
– volume: 55
  start-page: 2317
  year: 1983
  end-page: 2320
  ident: bib19
  article-title: Selectivity in pseudophase liquid chromatography
  publication-title: Anal. Chem.
– volume: 38
  start-page: 550
  year: 2015
  end-page: 555
  ident: bib33
  article-title: Adsorption of the anionic surfactant sodium dodecyl sulfate on a C
  publication-title: J. Separ. Sci.
– volume: 1491
  start-page: 67
  year: 2017
  end-page: 74
  ident: bib12
  article-title: Micellar liquid chromatography of terephthalic acid impurities
  publication-title: J. Chromatogr., A
– volume: 17
  start-page: 4073
  year: 2015
  end-page: 4081
  ident: bib17
  article-title: Alternative solvents can make preparative liquid chromatography greener
  publication-title: Green Chem.
– volume: 113
  start-page: 7421
  year: 2013
  end-page: 7469
  ident: bib45
  article-title: p -xylene oxidation to terephthalic acid: a literature review oriented toward process optimization and development
  publication-title: Chem. Rev.
– volume: 57
  start-page: 9604
  year: 2018
  end-page: 9614
  ident: bib58
  article-title: Online quality prediction of industrial terephthalic acid hydropurification process using modified regularized slow-feature analysis
  publication-title: Ind. Eng. Chem. Res.
– volume: 7
  start-page: 260
  year: 1988
  end-page: 265
  ident: bib16
  article-title: Micelles: a new dimension in analytical chemistry
  publication-title: Trends Anal. Chem.
– volume: 29
  start-page: 667
  year: 2010
  end-page: 680
  ident: bib10
  article-title: Greening analytical chromatography
  publication-title: TrAC Trends Anal. Chem. (Reference Ed.)
– reference: P.T. Anastas, J.C. Warner, Green Chemistry: Theory and Practice, Oxford University Press, Oxford, UK.
– volume: 316
  start-page: 183
  year: 1984
  end-page: 191
  ident: bib21
  article-title: Gradient elution micellar liquid chromatography
  publication-title: J. Chromatogr., A
– volume: 80
  start-page: 517
  year: 2016
  end-page: 530
  ident: bib6
  article-title: Green chromatography for the analysis of foods of animal origin
  publication-title: TrAC Trends Anal. Chem. (Reference Ed.)
– volume: 1003
  start-page: 179
  year: 2003
  end-page: 187
  ident: bib59
  article-title: Capillary electrophoretic analysis of the derivatives and isomers of benzoate and phthalate
  publication-title: J. Chromatogr., A
– volume: 1307
  start-page: 1
  year: 2013
  end-page: 20
  ident: bib9
  article-title: Green chromatography
  publication-title: J. Chromatogr., A
– volume: 17
  start-page: 3561
  year: 2015
  end-page: 3570
  ident: bib13
  article-title: Reversed-phase liquid chromatography with mixed micellar mobile phases of Brij-35 and sodium dodecyl sulphate: a method for the analysis of basic compounds
  publication-title: Green Chem.
– volume: 51
  start-page: 2160
  year: 1979
  end-page: 2163
  ident: bib15
  article-title: Thin layer chromatographic separation of pesticides, decachlorobiphenyl, and nucleosides with micellar solutions
  publication-title: Anal. Chem.
– volume: 544
  start-page: 25
  year: 1991
  end-page: 39
  ident: bib70
  article-title: Semipermeable-surface reversed-phase media for high- performance liquid chromatography
  publication-title: J. Chromatogr. A
– volume: 58
  start-page: 1362
  year: 1986
  end-page: 1367
  ident: bib29
  article-title: Additive effects on surfactant adsorption and ionic solute retention in micellar liquid chromatography
  publication-title: Anal. Chem.
– volume: 51
  start-page: 3229
  year: 2012
  end-page: 3237
  ident: bib54
  article-title: Development of a free radical kinetic model for industrial oxidation of p-xylene based on artificial neural network and adaptive immune genetic algorithm
  publication-title: Ind. Eng. Chem. Res.
– volume: 34
  start-page: 27
  year: 1996
  end-page: 33
  ident: bib62
  article-title: Rapid direct analysis of p-xylene oxidation products by reversed-phase high-performance liquid chromatography
  publication-title: J. Chromatogr. Sci.
– volume: 40
  start-page: 707
  year: 2017
  end-page: 714
  ident: bib35
  article-title: Micellar liquid chromatography for enantioseparation of β-adrenolytics using (S)-ketoprofen-based reagents
  publication-title: J. Liq. Chromatogr. Relat. Technol.
– volume: 5
  start-page: 1
  year: 2017
  end-page: 4
  ident: bib2
  article-title: Greener organic solvents in analytical chemistry
  publication-title: Curr. Opin. Green Sustain. Chem.
– volume: 113
  start-page: 7421
  year: 2013
  end-page: 7469
  ident: bib53
  article-title: p -xylene oxidation to terephthalic acid: a literature review oriented toward process optimization and development
  publication-title: Chem. Rev.
– volume: 212
  start-page: 271
  year: 1981
  end-page: 281
  ident: bib69
  article-title: Hydrophobic chromatography with dynamically coated stationary phases
  publication-title: J. Chromatogr.
– volume: 15
  start-page: 400
  year: 2004
  end-page: 406
  ident: bib60
  article-title: Analysis of impurities in crude and highly-purified terephthalic acid by capillary electrophoresis
  publication-title: J. Braz. Chem. Soc.
– volume: 734
  start-page: 357
  year: 1996
  end-page: 365
  ident: bib67
  article-title: Nonionic surfactants for improving resolution of the priority pollutant phenols by micelle-modified capillary electrophoresis
  publication-title: J. Chromatogr., A
– volume: 894
  start-page: 281
  year: 2000
  end-page: 289
  ident: bib68
  article-title: Quantitative studies on the adsorption of proteins to the bare silica wall in capillary electrophoresis. III: effects of adsorbed surfactants on quenching the interaction
  publication-title: J. Chromatogr., A
– volume: 55
  start-page: 924
  year: 1983
  end-page: 928
  ident: bib23
  article-title: Efficiency enhancement in micellar liquid chromatography
  publication-title: Anal. Chem.
– volume: 7
  start-page: 201
  year: 2018
  end-page: 203
  ident: bib42
  article-title: Methyl perillate as a highly functionalized natural starting material for terephthalic acid
  publication-title: ChemistryOpen
– volume: 410
  start-page: 5043
  year: 2018
  end-page: 5057
  ident: bib37
  article-title: Search of non-ionic surfactants suitable for micellar liquid chromatography
  publication-title: Anal. Bioanal. Chem.
– volume: 9
  start-page: 3102
  year: 2016
  end-page: 3112
  ident: bib40
  article-title: Synthesis of terephthalic acid by p-cymene oxidation using oxygen: toward a more sustainable production of bio-polyethylene terephthalate
  publication-title: ChemSusChem
– ident: bib43
  article-title: Purified terephthalic acid (PTA) production and market
– volume: 1281
  start-page: 54
  year: 2013
  end-page: 59
  ident: bib65
  article-title: “ Mixed” anionic and non-ionic micellar liquid chromatography for high-speed radiometabolite analysis of positron emission tomography radioligands
  publication-title: J. Chromatogr., A
– volume: 59
  start-page: 2738
  year: 1987
  end-page: 2747
  ident: bib22
  article-title: Retention behavior of homologous series in reversed-phase liquid chromatography using micellar, hydro-organic, and hybrid mobile phases
  publication-title: Anal. Chem.
– volume: 71
  start-page: 639
  year: 2016
  end-page: 645
  ident: bib36
  article-title: Separation of some phenolic acids in micellar liquid chromatography using design of experiment-response surface methodology
  publication-title: J. Anal. Chem.
– volume: 18
  start-page: 342
  year: 2016
  end-page: 359
  ident: bib41
  article-title: Synthesis of ethylene glycol and terephthalic acid from biomass for producing PET
  publication-title: Green Chem.
– volume: 39
  start-page: 3958
  year: 2000
  end-page: 3997
  ident: bib50
  article-title: Engineering aspects of industrial liquid-phase air oxidation of hydrocarbons
  publication-title: Ind. Eng. Chem. Res.
– volume: 50
  start-page: 78
  year: 2013
  end-page: 84
  ident: bib5
  article-title: The 12 principles of green analytical chemistry and the significance mnemonic of green analytical practices
  publication-title: TrAC Trends Anal. Chem. (Reference Ed.)
– volume: 35
  start-page: 67
  year: 2012
  end-page: 73
  ident: bib7
  article-title: Direct chromatographic methods in the context of green analytical chemistry
  publication-title: TrAC Trends Anal. Chem. (Reference Ed.)
– volume: 17
  start-page: 181
  year: 2009
  end-page: 188
  ident: bib51
  article-title: Kinetics of burning side reaction in the liquid-phase oxidation of p-xylene
  publication-title: Chin. J. Chem. Eng.
– volume: 104
  start-page: 93
  year: 2013
  end-page: 102
  ident: bib56
  article-title: A spray reactor concept for catalytic oxidation of p-xylene to produce high-purity terephthalic acid
  publication-title: Chem. Eng. Sci.
– volume: 28
  start-page: 202
  year: 2015
  end-page: 210
  ident: bib57
  article-title: Hydro-purification of crude terephthalic acid using palladium catalyst supported on multi-wall carbon nanotubes
  publication-title: J. Ind. Eng. Chem.
– volume: 110
  start-page: 41
  year: 2017
  end-page: 50
  ident: bib64
  article-title: The influence of the structure of selected Brij and Tween homologues on the thermodynamic stability of their binary mixed micelles
  publication-title: J. Chem. Thermodyn.
– volume: 66
  start-page: 1007
  year: 1989
  ident: bib71
  article-title: Identifying polar and nonpolar molecules
  publication-title: J. Chem. Educ.
– volume: 368
  start-page: 31
  year: 1986
  end-page: 37
  ident: bib74
  article-title: Modification of reversed-phase separations of small molecules using non-ionic sufactants and mixed ionic-non-ionic surfactants
  publication-title: J. Chromatogr.
– volume: 25
  start-page: 2709
  year: 2002
  end-page: 2715
  ident: bib63
  article-title: Determination of
  publication-title: J. Liq. Chromatogr. Relat. Technol.
– start-page: 1
  year: 2012
  end-page: 5
  ident: bib20
  article-title: Retention behaviour in micellar liquid chromatography
  publication-title: Chromatogr. Res. Int.
– volume: 1438
  start-page: 150
  year: 2016
  end-page: 159
  ident: bib38
  article-title: Micellar and sub-micellar ultra-high performance liquid chromatography of hydroxybenzoic acid and phthalic acid positional isomers
  publication-title: J. Chromatogr., A
– volume: 4
  start-page: 19808
  year: 2019
  end-page: 19817
  ident: bib72
  article-title: Sources of nonlinear van’t Hoff temperature dependence in high performance liquid chromatography
  publication-title: ACS Omega
– volume: 1010
  start-page: 76
  year: 2018
  end-page: 85
  ident: bib11
  article-title: Green-modified micellar liquid chromatography for isocratic isolation of some cardiovascular drugs with different polarities through experimental design approach
  publication-title: Anal. Chim. Acta
– ident: bib3
  article-title: Pollution prevention act of 1990
– volume: 1457
  start-page: 97
  year: 2016
  end-page: 106
  ident: bib30
  article-title: A fundamental study of the impact of pressure on the adsorption mechanism in reversed-phase liquid chromatography
  publication-title: J. Chromatogr., A
– volume: 58
  start-page: 1359
  year: 1986
  end-page: 1362
  ident: bib28
  article-title: Micellar liquid chromatography. Retention study of solutes of various polarities
  publication-title: Anal. Chem.
– ident: bib44
  article-title: Market study on bio-based polymers in the world capacities, production and applications: status quo and trends towards 2020
– volume: 1003
  start-page: 101
  year: 2003
  ident: 10.1016/j.aca.2020.01.036_bib73
  article-title: Effect of phase ratio on van’t Hoff analysis in reversed- phase liquid chromatography, and phase-ratio-independent estimation of transfer enthalpy
  publication-title: J. Chromatogr. A
  doi: 10.1016/S0021-9673(03)00846-X
– volume: 35
  start-page: 1641
  year: 2014
  ident: 10.1016/j.aca.2020.01.036_bib46
  article-title: A brief review of para-xylene oxidation to terephthalic acid as a model of primary C-H bond activation
  publication-title: Cuihua Xuebao/Chinese J. Catal.
– volume: 88
  start-page: 1
  year: 2016
  ident: 10.1016/j.aca.2020.01.036_bib47
  article-title: Control structure design of an industrial crude terephthalic acid hydropurification process with catalyst deactivation
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2016.01.017
– volume: 13
  start-page: 14
  year: 1981
  ident: 10.1016/j.aca.2020.01.036_bib18
  article-title: Application of pseudophase liquid chromatography
  publication-title: Am. Labor.
– volume: 39
  start-page: 3958
  year: 2000
  ident: 10.1016/j.aca.2020.01.036_bib50
  article-title: Engineering aspects of industrial liquid-phase air oxidation of hydrocarbons
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie0002733
– volume: 15
  start-page: 400
  year: 2004
  ident: 10.1016/j.aca.2020.01.036_bib60
  article-title: Analysis of impurities in crude and highly-purified terephthalic acid by capillary electrophoresis
  publication-title: J. Braz. Chem. Soc.
  doi: 10.1590/S0103-50532004000300010
– volume: 7
  start-page: 201
  year: 2018
  ident: 10.1016/j.aca.2020.01.036_bib42
  article-title: Methyl perillate as a highly functionalized natural starting material for terephthalic acid
  publication-title: ChemistryOpen
  doi: 10.1002/open.201700178
– volume: 25
  start-page: 2709
  year: 2002
  ident: 10.1016/j.aca.2020.01.036_bib63
  article-title: Determination of o -toluic acid and its micro amounts of impurities in industrial products by HPLC
  publication-title: J. Liq. Chromatogr. Relat. Technol.
  doi: 10.1081/JLC-120014387
– volume: 5
  start-page: 1
  year: 2017
  ident: 10.1016/j.aca.2020.01.036_bib2
  article-title: Greener organic solvents in analytical chemistry
  publication-title: Curr. Opin. Green Sustain. Chem.
  doi: 10.1016/j.cogsc.2017.03.002
– volume: 110
  start-page: 41
  year: 2017
  ident: 10.1016/j.aca.2020.01.036_bib64
  article-title: The influence of the structure of selected Brij and Tween homologues on the thermodynamic stability of their binary mixed micelles
  publication-title: J. Chem. Thermodyn.
  doi: 10.1016/j.jct.2017.01.020
– volume: 28
  start-page: 202
  year: 2015
  ident: 10.1016/j.aca.2020.01.036_bib57
  article-title: Hydro-purification of crude terephthalic acid using palladium catalyst supported on multi-wall carbon nanotubes
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2015.02.015
– volume: 66
  start-page: 1007
  year: 1989
  ident: 10.1016/j.aca.2020.01.036_bib71
  article-title: Identifying polar and nonpolar molecules
  publication-title: J. Chem. Educ.
  doi: 10.1021/ed066p1007
– volume: 60
  start-page: 2520
  year: 1988
  ident: 10.1016/j.aca.2020.01.036_bib26
  article-title: Investigation of the retention mechanism in nonionic micellar liquid chromatography using an alkylbenzene homologous series
  publication-title: Anal. Chem.
  doi: 10.1021/ac00173a018
– volume: 23
  start-page: 831
  year: 2000
  ident: 10.1016/j.aca.2020.01.036_bib75
  article-title: Development of Reversed-phase Chiral HPLC Methods Using Mass Spectrometry Compatible Mobile Phases
  publication-title: J. Liq. Chromatogr. Relat. Technol
  doi: 10.1081/JLC-100101492
– volume: 80
  start-page: 517
  year: 2016
  ident: 10.1016/j.aca.2020.01.036_bib6
  article-title: Green chromatography for the analysis of foods of animal origin
  publication-title: TrAC Trends Anal. Chem. (Reference Ed.)
  doi: 10.1016/j.trac.2015.06.012
– volume: 1010
  start-page: 76
  year: 2018
  ident: 10.1016/j.aca.2020.01.036_bib11
  article-title: Green-modified micellar liquid chromatography for isocratic isolation of some cardiovascular drugs with different polarities through experimental design approach
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2017.12.021
– volume: 35
  start-page: 67
  year: 2012
  ident: 10.1016/j.aca.2020.01.036_bib7
  article-title: Direct chromatographic methods in the context of green analytical chemistry
  publication-title: TrAC Trends Anal. Chem. (Reference Ed.)
  doi: 10.1016/j.trac.2012.02.006
– volume: 17
  start-page: 3561
  year: 2015
  ident: 10.1016/j.aca.2020.01.036_bib13
  article-title: Reversed-phase liquid chromatography with mixed micellar mobile phases of Brij-35 and sodium dodecyl sulphate: a method for the analysis of basic compounds
  publication-title: Green Chem.
  doi: 10.1039/C5GC00338E
– volume: 35
  start-page: 686
  year: 2002
  ident: 10.1016/j.aca.2020.01.036_bib1
  article-title: Origins, current status, and future challenges of green chemistry
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar010065m
– volume: 56
  start-page: 1557
  year: 1984
  ident: 10.1016/j.aca.2020.01.036_bib24
  article-title: Model for micellar effects on liquid chromatography capacity factors and for determination of micelle-solute equilibrium constants
  publication-title: Anal. Chem.
  doi: 10.1021/ac00273a005
– volume: 50
  start-page: 78
  year: 2013
  ident: 10.1016/j.aca.2020.01.036_bib5
  article-title: The 12 principles of green analytical chemistry and the significance mnemonic of green analytical practices
  publication-title: TrAC Trends Anal. Chem. (Reference Ed.)
  doi: 10.1016/j.trac.2013.04.010
– volume: 1491
  start-page: 67
  year: 2017
  ident: 10.1016/j.aca.2020.01.036_bib12
  article-title: Micellar liquid chromatography of terephthalic acid impurities
  publication-title: J. Chromatogr., A
  doi: 10.1016/j.chroma.2017.02.039
– volume: 18
  start-page: 342
  year: 2016
  ident: 10.1016/j.aca.2020.01.036_bib41
  article-title: Synthesis of ethylene glycol and terephthalic acid from biomass for producing PET
  publication-title: Green Chem.
  doi: 10.1039/C5GC01771H
– volume: 58
  start-page: 1359
  year: 1986
  ident: 10.1016/j.aca.2020.01.036_bib28
  article-title: Micellar liquid chromatography. Retention study of solutes of various polarities
  publication-title: Anal. Chem.
  doi: 10.1021/ac00298a020
– volume: 7
  start-page: 260
  year: 1988
  ident: 10.1016/j.aca.2020.01.036_bib16
  article-title: Micelles: a new dimension in analytical chemistry
  publication-title: Trends Anal. Chem.
  doi: 10.1016/0165-9936(88)85075-1
– volume: 372
  start-page: 181
  year: 2002
  ident: 10.1016/j.aca.2020.01.036_bib66
  article-title: Capillary electrophoresis using high ionic strength background electrolytes containing zwitterionic and non-ionic surfactants and its application to direct determination of bromide and nitrate in seawater
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-001-1199-1
– volume: 34
  start-page: 27
  year: 1996
  ident: 10.1016/j.aca.2020.01.036_bib62
  article-title: Rapid direct analysis of p-xylene oxidation products by reversed-phase high-performance liquid chromatography
  publication-title: J. Chromatogr. Sci.
  doi: 10.1093/chromsci/49.1.27
– volume: 544
  start-page: 25
  year: 1991
  ident: 10.1016/j.aca.2020.01.036_bib70
  article-title: Semipermeable-surface reversed-phase media for high- performance liquid chromatography
  publication-title: J. Chromatogr. A
  doi: 10.1016/S0021-9673(01)83976-5
– volume: 1457
  start-page: 97
  year: 2016
  ident: 10.1016/j.aca.2020.01.036_bib30
  article-title: A fundamental study of the impact of pressure on the adsorption mechanism in reversed-phase liquid chromatography
  publication-title: J. Chromatogr., A
  doi: 10.1016/j.chroma.2016.06.036
– volume: 39
  start-page: 3958
  year: 2000
  ident: 10.1016/j.aca.2020.01.036_bib52
  article-title: Engineering aspects of industrial liquid-phase air oxidation of hydrocarbons
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie0002733
– year: 2013
  ident: 10.1016/j.aca.2020.01.036_bib48
  article-title: Xylenes : production technologies and uses
– volume: 58
  start-page: 1362
  year: 1986
  ident: 10.1016/j.aca.2020.01.036_bib29
  article-title: Additive effects on surfactant adsorption and ionic solute retention in micellar liquid chromatography
  publication-title: Anal. Chem.
  doi: 10.1021/ac00298a021
– volume: 1438
  start-page: 150
  year: 2016
  ident: 10.1016/j.aca.2020.01.036_bib38
  article-title: Micellar and sub-micellar ultra-high performance liquid chromatography of hydroxybenzoic acid and phthalic acid positional isomers
  publication-title: J. Chromatogr., A
  doi: 10.1016/j.chroma.2016.02.024
– volume: 55
  start-page: 69
  year: 2001
  ident: 10.1016/j.aca.2020.01.036_bib27
  article-title: Polyoxyethylene alkyl ether nonionic surfactants: physicochemical properties and use for cholesterol determination in food
  publication-title: Talanta
  doi: 10.1016/S0039-9140(01)00395-2
– volume: 113
  start-page: 7421
  year: 2013
  ident: 10.1016/j.aca.2020.01.036_bib53
  article-title: p -xylene oxidation to terephthalic acid: a literature review oriented toward process optimization and development
  publication-title: Chem. Rev.
  doi: 10.1021/cr300298j
– volume: 113
  start-page: 7421
  year: 2013
  ident: 10.1016/j.aca.2020.01.036_bib45
  article-title: p -xylene oxidation to terephthalic acid: a literature review oriented toward process optimization and development
  publication-title: Chem. Rev.
  doi: 10.1021/cr300298j
– ident: 10.1016/j.aca.2020.01.036_bib4
– volume: 51
  start-page: 2160
  year: 1979
  ident: 10.1016/j.aca.2020.01.036_bib15
  article-title: Thin layer chromatographic separation of pesticides, decachlorobiphenyl, and nucleosides with micellar solutions
  publication-title: Anal. Chem.
  doi: 10.1021/ac50049a025
– volume: 29
  start-page: 667
  year: 2010
  ident: 10.1016/j.aca.2020.01.036_bib10
  article-title: Greening analytical chromatography
  publication-title: TrAC Trends Anal. Chem. (Reference Ed.)
  doi: 10.1016/j.trac.2010.03.008
– volume: 9
  start-page: 3102
  year: 2016
  ident: 10.1016/j.aca.2020.01.036_bib40
  article-title: Synthesis of terephthalic acid by p-cymene oxidation using oxygen: toward a more sustainable production of bio-polyethylene terephthalate
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201600718
– volume: 1216
  start-page: 2560
  year: 2009
  ident: 10.1016/j.aca.2020.01.036_bib55
  article-title: Determining organic impurities in mother liquors from oxidative terephthalic acid synthesis by microemulsion electrokinetic chromatography
  publication-title: J. Chromatogr., A
  doi: 10.1016/j.chroma.2009.01.003
– start-page: 1
  year: 2012
  ident: 10.1016/j.aca.2020.01.036_bib20
  article-title: Retention behaviour in micellar liquid chromatography
  publication-title: Chromatogr. Res. Int.
– volume: 1281
  start-page: 54
  year: 2013
  ident: 10.1016/j.aca.2020.01.036_bib65
  article-title: “ Mixed” anionic and non-ionic micellar liquid chromatography for high-speed radiometabolite analysis of positron emission tomography radioligands
  publication-title: J. Chromatogr., A
  doi: 10.1016/j.chroma.2013.01.071
– volume: 1307
  start-page: 1
  year: 2013
  ident: 10.1016/j.aca.2020.01.036_bib9
  article-title: Green chromatography
  publication-title: J. Chromatogr., A
  doi: 10.1016/j.chroma.2013.07.099
– ident: 10.1016/j.aca.2020.01.036_bib44
– volume: 17
  start-page: 4073
  year: 2015
  ident: 10.1016/j.aca.2020.01.036_bib17
  article-title: Alternative solvents can make preparative liquid chromatography greener
  publication-title: Green Chem.
  doi: 10.1039/C5GC00887E
– volume: 368
  start-page: 31
  year: 1986
  ident: 10.1016/j.aca.2020.01.036_bib74
  article-title: Modification of reversed-phase separations of small molecules using non-ionic sufactants and mixed ionic-non-ionic surfactants
  publication-title: J. Chromatogr.
  doi: 10.1016/S0021-9673(00)91044-6
– volume: 40
  start-page: 707
  year: 2017
  ident: 10.1016/j.aca.2020.01.036_bib35
  article-title: Micellar liquid chromatography for enantioseparation of β-adrenolytics using (S)-ketoprofen-based reagents
  publication-title: J. Liq. Chromatogr. Relat. Technol.
  doi: 10.1080/10826076.2017.1348954
– volume: 212
  start-page: 271
  year: 1981
  ident: 10.1016/j.aca.2020.01.036_bib69
  article-title: Hydrophobic chromatography with dynamically coated stationary phases
  publication-title: J. Chromatogr.
  doi: 10.1016/S0021-9673(01)84040-1
– volume: 894
  start-page: 281
  year: 2000
  ident: 10.1016/j.aca.2020.01.036_bib68
  article-title: Quantitative studies on the adsorption of proteins to the bare silica wall in capillary electrophoresis. III: effects of adsorbed surfactants on quenching the interaction
  publication-title: J. Chromatogr., A
  doi: 10.1016/S0021-9673(00)00664-6
– volume: 38
  start-page: 550
  year: 2015
  ident: 10.1016/j.aca.2020.01.036_bib33
  article-title: Adsorption of the anionic surfactant sodium dodecyl sulfate on a C 18 column under micellar and high submicellar conditions in reversed-phase liquid chromatography
  publication-title: J. Separ. Sci.
  doi: 10.1002/jssc.201401059
– volume: 538
  start-page: 45
  year: 2018
  ident: 10.1016/j.aca.2020.01.036_bib34
  article-title: Mixed aqueous solutions of nonionic surfactants Brij 35/Triton X-100: micellar properties, solutes’ partitioning from micellar liquid chromatography and modelling with COSMOmic
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2017.10.044
– volume: 734
  start-page: 357
  year: 1996
  ident: 10.1016/j.aca.2020.01.036_bib67
  article-title: Nonionic surfactants for improving resolution of the priority pollutant phenols by micelle-modified capillary electrophoresis
  publication-title: J. Chromatogr., A
  doi: 10.1016/0021-9673(95)01301-6
– volume: 17
  start-page: 181
  year: 2009
  ident: 10.1016/j.aca.2020.01.036_bib51
  article-title: Kinetics of burning side reaction in the liquid-phase oxidation of p-xylene
  publication-title: Chin. J. Chem. Eng.
  doi: 10.1016/S1004-9541(08)60191-3
– volume: 55
  start-page: 924
  year: 1983
  ident: 10.1016/j.aca.2020.01.036_bib23
  article-title: Efficiency enhancement in micellar liquid chromatography
  publication-title: Anal. Chem.
  doi: 10.1021/ac00257a024
– year: 1981
  ident: 10.1016/j.aca.2020.01.036_bib14
– volume: 71
  start-page: 639
  year: 2016
  ident: 10.1016/j.aca.2020.01.036_bib36
  article-title: Separation of some phenolic acids in micellar liquid chromatography using design of experiment-response surface methodology
  publication-title: J. Anal. Chem.
– volume: 50
  start-page: 410
  year: 2012
  ident: 10.1016/j.aca.2020.01.036_bib61
  article-title: Simultaneous determination of nine related substances in p-phthalic acid residue by RP-HPLC
  publication-title: J. Chromatogr. Sci.
  doi: 10.1093/chromsci/bms018
– volume: 58
  start-page: 1356
  year: 1986
  ident: 10.1016/j.aca.2020.01.036_bib31
  article-title: Micellar liquid chromatography. Adsorption isotherms of two ionic surfactants on five stationary phases
  publication-title: Anal. Chem.
  doi: 10.1021/ac00298a019
– volume: 1216
  start-page: 1798
  year: 2009
  ident: 10.1016/j.aca.2020.01.036_bib25
  article-title: Retention mechanisms in micellar liquid chromatography
  publication-title: J. Chromatogr., A
  doi: 10.1016/j.chroma.2008.09.053
– volume: 1003
  start-page: 179
  year: 2003
  ident: 10.1016/j.aca.2020.01.036_bib59
  article-title: Capillary electrophoretic analysis of the derivatives and isomers of benzoate and phthalate
  publication-title: J. Chromatogr., A
  doi: 10.1016/S0021-9673(03)00734-9
– volume: 56
  start-page: 2168
  year: 2017
  ident: 10.1016/j.aca.2020.01.036_bib39
  article-title: Process design and optimization of an acetic acid recovery system in terephthalic acid production via hybrid extraction-distillation using a novel mixed solvent
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.6b04586
– volume: 104
  start-page: 93
  year: 2013
  ident: 10.1016/j.aca.2020.01.036_bib56
  article-title: A spray reactor concept for catalytic oxidation of p-xylene to produce high-purity terephthalic acid
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2013.09.004
– volume: 57
  start-page: 9604
  year: 2018
  ident: 10.1016/j.aca.2020.01.036_bib58
  article-title: Online quality prediction of industrial terephthalic acid hydropurification process using modified regularized slow-feature analysis
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.8b01270
– volume: 316
  start-page: 183
  year: 1984
  ident: 10.1016/j.aca.2020.01.036_bib21
  article-title: Gradient elution micellar liquid chromatography
  publication-title: J. Chromatogr., A
  doi: 10.1016/S0021-9673(00)96150-8
– volume: 54
  start-page: 958
  year: 2016
  ident: 10.1016/j.aca.2020.01.036_bib32
  article-title: Ion-exclusion high-performance liquid chromatography of aliphatic organic acids using a surfactant-modified C18 column
  publication-title: J. Chromatogr. Sci.
  doi: 10.1093/chromsci/bmw028
– volume: 55
  start-page: 2317
  year: 1983
  ident: 10.1016/j.aca.2020.01.036_bib19
  article-title: Selectivity in pseudophase liquid chromatography
  publication-title: Anal. Chem.
  doi: 10.1021/ac00264a026
– volume: 59
  start-page: 2738
  year: 1987
  ident: 10.1016/j.aca.2020.01.036_bib22
  article-title: Retention behavior of homologous series in reversed-phase liquid chromatography using micellar, hydro-organic, and hybrid mobile phases
  publication-title: Anal. Chem.
  doi: 10.1021/ac00150a003
– volume: 410
  start-page: 5043
  year: 2018
  ident: 10.1016/j.aca.2020.01.036_bib37
  article-title: Search of non-ionic surfactants suitable for micellar liquid chromatography
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-018-1161-0
– volume: 10
  start-page: 77
  issue: 1
  year: 2004
  ident: 10.1016/j.aca.2020.01.036_bib49
  article-title: Uncatalyzed partial oxidation of p-xylene to terephthalic acid in sub-critical water
  publication-title: Theor. Appl. Chem. Eng.
– volume: 51
  start-page: 3229
  year: 2012
  ident: 10.1016/j.aca.2020.01.036_bib54
  article-title: Development of a free radical kinetic model for industrial oxidation of p-xylene based on artificial neural network and adaptive immune genetic algorithm
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie200737x
– volume: 4
  start-page: 19808
  year: 2019
  ident: 10.1016/j.aca.2020.01.036_bib72
  article-title: Sources of nonlinear van’t Hoff temperature dependence in high performance liquid chromatography
  publication-title: ACS Omega
  doi: 10.1021/acsomega.9b02689
– volume: 3
  start-page: 216
  year: 2001
  ident: 10.1016/j.aca.2020.01.036_bib8
  article-title: Flow analysis strategies to greener analytical chemistry. An overview
  publication-title: Green Chem.
  doi: 10.1039/b103187m
SSID ssj0002104
Score 2.3934834
Snippet The tremendous amounts of terephthalic acid (TPA) produced globally require consistent monitoring of its contaminants during the different stages of production...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 214
SubjectTerms Aromatic acid positional isomers
Green liquid chromatography
Terephthalic acid
Tween 20
Title Micellar and sub-micellar liquid chromatography of terephthalic acid contaminants using a C18 column coated with Tween 20
URI https://dx.doi.org/10.1016/j.aca.2020.01.036
https://www.ncbi.nlm.nih.gov/pubmed/32138921
https://www.proquest.com/docview/2374308044
Volume 1105
WOSCitedRecordID wos000517755300024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-4324
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002104
  issn: 0003-2670
  databaseCode: AIEXJ
  dateStart: 19950110
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxoxELaapFJ7qfpM00fkSlUPRVt57X3YR4SI-qC0ByJxs2xjBBFZCCxV-u87tteEVCRKD72skFmDtd-39oz9zQxC70eGKiuKPNGUsCQzRCQiH40TYhVX2miaj32e2V7Z7_PhUPxsjmJWvpxAWVX88lIs_ivU0AZgu9DZf4B786PQAJ8BdLgC7HC9E_Dfp24zXgVt5Gqtk_PYMJterKejlpks52CnNrmqvUjALu1iUk-Uy3itjLtnXtUqqmTWfj9BtTophy9gNnPSdVVH4frAC70o2bZzfa4Tt03uosVdRgKXtGOzArRDTHZbj1rtWfIN3PXzK4VxCHqPgWB2OmtEyc3WBCVe0bI9m_IS8GchSPqT3dEWp-CU5Ndm0Wzn7B42Gs6AaS5jFCU-4SrbkUm7_0OenPZ6ctAdDj4sLhJXZMwdxjcVV_bQAS1zAZPgQftLd_h1s3SD_-tlCHGM8RjcCwL_-tebDJmbHBVvsAweo0eNp4HbgSFP0D1bPUUPOrHA3zP0OzIFA1PwNlNwYAq-zhQ8H-NtpmDHFLzNFOyZghUGpuDAFByYgh1TsGcKpuQ5Oj3pDjqfk6YSR2JYzuokTUekgMXAaiXApbVcl4Uh43RMDSsza8HrzgXT4GqAtW7ynCuewxuvFS8Mz1LDXqD9al7ZlwjnWVYaIZQtNDjnVGjGWFEIQ7nNiGbZESLxsUrTpKl31VJmMuoRzyQgIR0SkqQSkDhCHzddFiFHy203ZxEr2RiZwXiUwLLbur2LuEqAyaNR2fl6JSk8AQZ-VwZDPwyAb0bBqNMB0PTVHXq_Rg-v3qE3aL9eru1bdN_8qqer5THaK4f8uOHrH9y1r6g
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Micellar+and+sub-micellar+liquid+chromatography+of+terephthalic+acid+contaminants+using+a+C18+column+coated+with+Tween+20&rft.jtitle=Analytica+chimica+acta&rft.au=Ali%2C+Abd+Al-Karim+F&rft.au=Danielson%2C+Neil+D&rft.date=2020-04-08&rft.issn=1873-4324&rft.eissn=1873-4324&rft.volume=1105&rft.spage=214&rft_id=info:doi/10.1016%2Fj.aca.2020.01.036&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2670&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2670&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2670&client=summon