Micellar and sub-micellar liquid chromatography of terephthalic acid contaminants using a C18 column coated with Tween 20
The tremendous amounts of terephthalic acid (TPA) produced globally require consistent monitoring of its contaminants during the different stages of production for quality control purposes. In this paper, a simple, robust and green liquid chromatography method has been developed using an isocratic 1...
Uloženo v:
| Vydáno v: | Analytica chimica acta Ročník 1105; s. 214 - 223 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Netherlands
Elsevier B.V
08.04.2020
|
| Témata: | |
| ISSN: | 0003-2670, 1873-4324, 1873-4324 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The tremendous amounts of terephthalic acid (TPA) produced globally require consistent monitoring of its contaminants during the different stages of production for quality control purposes. In this paper, a simple, robust and green liquid chromatography method has been developed using an isocratic 100% aqueous mobile phase at pH 2 (dilute sulfuric acid) to separate TPA contaminants (mono-, di-, and tri-carboxylic aromatic acids) on a C18 stationary phase coated with Tween 20 (polyoxyethylene(20)sorbitan monolaurate). After optimization of all chromatographic conditions, near baseline separation of the nine carboxylic acids under investigation was achieved with a 2.5 mL/min flow rate on a 5 micron C18 silica column (100 x 4.6 mm) in under 20 min. The modified stationary phase showed an excellent capability to separate structural isomers in a reasonable time, markedly better that the bare C18 stationary phase. Plots of ln retention factor versus 1/temperature showed the expected linear relationship for the di- and tri-carboxylic aromatic acids (single retention mechanism likely) but a quadratic fit for the mono-carboxylic aromatic acids (dual retention mechanism likely). Due to the stability of the surfactant modified stationary phase, future potential mass spectrometry compatibility was shown through the alternative use of trifluoroacetic acid in the 100% H2O (no Tween) mobile phase but still with UV detection. The developed method with 0.001% (vol/vol) Tween in the mobile phase was successfully used to analyze two different types of TPA industrial samples for all nine components plus revealing some other impurity peaks. The lowest limit of detection was 0.010 nmoles for o-phthalic acid and p-toluic acid (PTA), while the highest was 0.065 nmoles for 4-carboxybenzaldehyde (CBA). The concentrations of these important contaminants, PTA and CBA, in the mother liquor sample were 3348 mg/L and 1806 mg/L, respectively, while their respective concentrations in the purified TPA powder were 135 mg/kg and 17.7 mg/kg.
[Display omitted]
•Positional aromatic isomers in industrial terephthalic acid samples separated.•“Green” chromatography using Tween 20 surfactant coated column.•Potential for mass spectrometry detection shown. |
|---|---|
| AbstractList | The tremendous amounts of terephthalic acid (TPA) produced globally require consistent monitoring of its contaminants during the different stages of production for quality control purposes. In this paper, a simple, robust and green liquid chromatography method has been developed using an isocratic 100% aqueous mobile phase at pH 2 (dilute sulfuric acid) to separate TPA contaminants (mono-, di-, and tri-carboxylic aromatic acids) on a C18 stationary phase coated with Tween 20 (polyoxyethylene(20)sorbitan monolaurate). After optimization of all chromatographic conditions, near baseline separation of the nine carboxylic acids under investigation was achieved with a 2.5 mL/min flow rate on a 5 micron C18 silica column (100 x 4.6 mm) in under 20 min. The modified stationary phase showed an excellent capability to separate structural isomers in a reasonable time, markedly better that the bare C18 stationary phase. Plots of ln retention factor versus 1/temperature showed the expected linear relationship for the di- and tri-carboxylic aromatic acids (single retention mechanism likely) but a quadratic fit for the mono-carboxylic aromatic acids (dual retention mechanism likely). Due to the stability of the surfactant modified stationary phase, future potential mass spectrometry compatibility was shown through the alternative use of trifluoroacetic acid in the 100% H
O (no Tween) mobile phase but still with UV detection. The developed method with 0.001% (vol/vol) Tween in the mobile phase was successfully used to analyze two different types of TPA industrial samples for all nine components plus revealing some other impurity peaks. The lowest limit of detection was 0.010 nmoles for o-phthalic acid and p-toluic acid (PTA), while the highest was 0.065 nmoles for 4-carboxybenzaldehyde (CBA). The concentrations of these important contaminants, PTA and CBA, in the mother liquor sample were 3348 mg/L and 1806 mg/L, respectively, while their respective concentrations in the purified TPA powder were 135 mg/kg and 17.7 mg/kg. The tremendous amounts of terephthalic acid (TPA) produced globally require consistent monitoring of its contaminants during the different stages of production for quality control purposes. In this paper, a simple, robust and green liquid chromatography method has been developed using an isocratic 100% aqueous mobile phase at pH 2 (dilute sulfuric acid) to separate TPA contaminants (mono-, di-, and tri-carboxylic aromatic acids) on a C18 stationary phase coated with Tween 20 (polyoxyethylene(20)sorbitan monolaurate). After optimization of all chromatographic conditions, near baseline separation of the nine carboxylic acids under investigation was achieved with a 2.5 mL/min flow rate on a 5 micron C18 silica column (100 x 4.6 mm) in under 20 min. The modified stationary phase showed an excellent capability to separate structural isomers in a reasonable time, markedly better that the bare C18 stationary phase. Plots of ln retention factor versus 1/temperature showed the expected linear relationship for the di- and tri-carboxylic aromatic acids (single retention mechanism likely) but a quadratic fit for the mono-carboxylic aromatic acids (dual retention mechanism likely). Due to the stability of the surfactant modified stationary phase, future potential mass spectrometry compatibility was shown through the alternative use of trifluoroacetic acid in the 100% H2O (no Tween) mobile phase but still with UV detection. The developed method with 0.001% (vol/vol) Tween in the mobile phase was successfully used to analyze two different types of TPA industrial samples for all nine components plus revealing some other impurity peaks. The lowest limit of detection was 0.010 nmoles for o-phthalic acid and p-toluic acid (PTA), while the highest was 0.065 nmoles for 4-carboxybenzaldehyde (CBA). The concentrations of these important contaminants, PTA and CBA, in the mother liquor sample were 3348 mg/L and 1806 mg/L, respectively, while their respective concentrations in the purified TPA powder were 135 mg/kg and 17.7 mg/kg.The tremendous amounts of terephthalic acid (TPA) produced globally require consistent monitoring of its contaminants during the different stages of production for quality control purposes. In this paper, a simple, robust and green liquid chromatography method has been developed using an isocratic 100% aqueous mobile phase at pH 2 (dilute sulfuric acid) to separate TPA contaminants (mono-, di-, and tri-carboxylic aromatic acids) on a C18 stationary phase coated with Tween 20 (polyoxyethylene(20)sorbitan monolaurate). After optimization of all chromatographic conditions, near baseline separation of the nine carboxylic acids under investigation was achieved with a 2.5 mL/min flow rate on a 5 micron C18 silica column (100 x 4.6 mm) in under 20 min. The modified stationary phase showed an excellent capability to separate structural isomers in a reasonable time, markedly better that the bare C18 stationary phase. Plots of ln retention factor versus 1/temperature showed the expected linear relationship for the di- and tri-carboxylic aromatic acids (single retention mechanism likely) but a quadratic fit for the mono-carboxylic aromatic acids (dual retention mechanism likely). Due to the stability of the surfactant modified stationary phase, future potential mass spectrometry compatibility was shown through the alternative use of trifluoroacetic acid in the 100% H2O (no Tween) mobile phase but still with UV detection. The developed method with 0.001% (vol/vol) Tween in the mobile phase was successfully used to analyze two different types of TPA industrial samples for all nine components plus revealing some other impurity peaks. The lowest limit of detection was 0.010 nmoles for o-phthalic acid and p-toluic acid (PTA), while the highest was 0.065 nmoles for 4-carboxybenzaldehyde (CBA). The concentrations of these important contaminants, PTA and CBA, in the mother liquor sample were 3348 mg/L and 1806 mg/L, respectively, while their respective concentrations in the purified TPA powder were 135 mg/kg and 17.7 mg/kg. The tremendous amounts of terephthalic acid (TPA) produced globally require consistent monitoring of its contaminants during the different stages of production for quality control purposes. In this paper, a simple, robust and green liquid chromatography method has been developed using an isocratic 100% aqueous mobile phase at pH 2 (dilute sulfuric acid) to separate TPA contaminants (mono-, di-, and tri-carboxylic aromatic acids) on a C18 stationary phase coated with Tween 20 (polyoxyethylene(20)sorbitan monolaurate). After optimization of all chromatographic conditions, near baseline separation of the nine carboxylic acids under investigation was achieved with a 2.5 mL/min flow rate on a 5 micron C18 silica column (100 x 4.6 mm) in under 20 min. The modified stationary phase showed an excellent capability to separate structural isomers in a reasonable time, markedly better that the bare C18 stationary phase. Plots of ln retention factor versus 1/temperature showed the expected linear relationship for the di- and tri-carboxylic aromatic acids (single retention mechanism likely) but a quadratic fit for the mono-carboxylic aromatic acids (dual retention mechanism likely). Due to the stability of the surfactant modified stationary phase, future potential mass spectrometry compatibility was shown through the alternative use of trifluoroacetic acid in the 100% H2O (no Tween) mobile phase but still with UV detection. The developed method with 0.001% (vol/vol) Tween in the mobile phase was successfully used to analyze two different types of TPA industrial samples for all nine components plus revealing some other impurity peaks. The lowest limit of detection was 0.010 nmoles for o-phthalic acid and p-toluic acid (PTA), while the highest was 0.065 nmoles for 4-carboxybenzaldehyde (CBA). The concentrations of these important contaminants, PTA and CBA, in the mother liquor sample were 3348 mg/L and 1806 mg/L, respectively, while their respective concentrations in the purified TPA powder were 135 mg/kg and 17.7 mg/kg. [Display omitted] •Positional aromatic isomers in industrial terephthalic acid samples separated.•“Green” chromatography using Tween 20 surfactant coated column.•Potential for mass spectrometry detection shown. |
| Author | Danielson, Neil D. Ali, Abd al-karim F. |
| Author_xml | – sequence: 1 givenname: Abd al-karim F. surname: Ali fullname: Ali, Abd al-karim F. – sequence: 2 givenname: Neil D. orcidid: 0000-0003-4857-5789 surname: Danielson fullname: Danielson, Neil D. email: danielnd@miamioh.edu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32138921$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUFv1DAQhS1URLeFH8AF-cglYWzHiSNOaFVopSIu5Ww5zqTxKnG2tkO1_x4v271w6Gk0M-970sy7Ihd-8UjIRwYlA1Z_2ZXGmpIDhxJYCaJ-QzZMNaKoBK8uyAYARMHrBi7JVYy73HIG1TtyKTgTquVsQw4_ncVpMoEa39O4dsV8HkzuaXU9tWNYZpOWx2D244EuA00YcD-m0UzOUmOPmsUnMztvfIp0jc4_UkO3TOXFtM4-F5Owp88ujfThGdFTDu_J28FMET-81Gvy-_vNw_a2uP_142777b6wQopUMNZDDY3AzrRSAqquqS0MbOBWNBWiaphsRdeyGmRrpVRGSdkPnVG1VRWz4pp8Pvnuw_K0Ykx6dvHfiR6XNWqebQQoqKos_fQiXbsZe70PbjbhoM_vyoLmJLBhiTHgoK1LJrl8fjBu0gz0MRi90zkYfQxGA9M5mEyy_8iz-WvM1xOD-T1_HAYdrUNvsXcBbdL94l6h_wKbUKTx |
| CitedBy_id | crossref_primary_10_1002_jssc_202000429 crossref_primary_10_1016_j_chroma_2022_463152 crossref_primary_10_1016_j_trac_2021_116418 crossref_primary_10_1080_00958972_2021_1881067 crossref_primary_10_1002_er_5831 crossref_primary_10_1016_j_cogsc_2021_100510 crossref_primary_10_3390_separations9030061 crossref_primary_10_1016_j_chroma_2022_463442 crossref_primary_10_1186_s43094_024_00658_6 crossref_primary_10_3390_separations10020070 |
| Cites_doi | 10.1016/S0021-9673(03)00846-X 10.1016/j.compchemeng.2016.01.017 10.1021/ie0002733 10.1590/S0103-50532004000300010 10.1002/open.201700178 10.1081/JLC-120014387 10.1016/j.cogsc.2017.03.002 10.1016/j.jct.2017.01.020 10.1016/j.jiec.2015.02.015 10.1021/ed066p1007 10.1021/ac00173a018 10.1081/JLC-100101492 10.1016/j.trac.2015.06.012 10.1016/j.aca.2017.12.021 10.1016/j.trac.2012.02.006 10.1039/C5GC00338E 10.1021/ar010065m 10.1021/ac00273a005 10.1016/j.trac.2013.04.010 10.1016/j.chroma.2017.02.039 10.1039/C5GC01771H 10.1021/ac00298a020 10.1016/0165-9936(88)85075-1 10.1007/s00216-001-1199-1 10.1093/chromsci/49.1.27 10.1016/S0021-9673(01)83976-5 10.1016/j.chroma.2016.06.036 10.1021/ac00298a021 10.1016/j.chroma.2016.02.024 10.1016/S0039-9140(01)00395-2 10.1021/cr300298j 10.1021/ac50049a025 10.1016/j.trac.2010.03.008 10.1002/cssc.201600718 10.1016/j.chroma.2009.01.003 10.1016/j.chroma.2013.01.071 10.1016/j.chroma.2013.07.099 10.1039/C5GC00887E 10.1016/S0021-9673(00)91044-6 10.1080/10826076.2017.1348954 10.1016/S0021-9673(01)84040-1 10.1016/S0021-9673(00)00664-6 10.1002/jssc.201401059 10.1016/j.colsurfa.2017.10.044 10.1016/0021-9673(95)01301-6 10.1016/S1004-9541(08)60191-3 10.1021/ac00257a024 10.1093/chromsci/bms018 10.1021/ac00298a019 10.1016/j.chroma.2008.09.053 10.1016/S0021-9673(03)00734-9 10.1021/acs.iecr.6b04586 10.1016/j.ces.2013.09.004 10.1021/acs.iecr.8b01270 10.1016/S0021-9673(00)96150-8 10.1093/chromsci/bmw028 10.1021/ac00264a026 10.1021/ac00150a003 10.1007/s00216-018-1161-0 10.1021/ie200737x 10.1021/acsomega.9b02689 10.1039/b103187m |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier B.V. Copyright © 2020 Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright © 2020 Elsevier B.V. All rights reserved. |
| DBID | AAYXX CITATION NPM 7X8 |
| DOI | 10.1016/j.aca.2020.01.036 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1873-4324 |
| EndPage | 223 |
| ExternalDocumentID | 32138921 10_1016_j_aca_2020_01_036 S0003267020300878 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABFYP ABGSF ABJNI ABLST ABMAC ABUDA ABYKQ ACBEA ACCUC ACDAQ ACGFO ACGFS ACIWK ACNCT ACPRK ACRLP ADBBV ADECG ADEZE ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AJSZI AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DOVZS EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SCH SDF SDG SDP SES SPC SPCBC SSJ SSK SSU SSZ T5K TN5 TWZ UPT WH7 YK3 ZMT ~02 ~G- .GJ 3O- 53G 9DU AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABDPE ABEFU ABWVN ABXDB ACKIV ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AGRDE AI. AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FA8 FEDTE FGOYB HMU HVGLF HZ~ H~9 MVM NHB R2- SCB SEW T9H UQL VH1 WUQ XOL XPP ZCG ZXP ZY4 ~HD AGCQF AGRNS BNPGV NPM SSH 7X8 |
| ID | FETCH-LOGICAL-c353t-11d06073eba9550e8b76c0f1f2c374ee871593b916059c558a855dfba86c841c3 |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000517755300024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0003-2670 1873-4324 |
| IngestDate | Thu Oct 02 10:42:28 EDT 2025 Mon Jul 21 05:45:25 EDT 2025 Tue Nov 18 21:51:12 EST 2025 Sat Nov 29 07:28:14 EST 2025 Fri Feb 23 02:49:08 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Tween 20 Green liquid chromatography Aromatic acid positional isomers Terephthalic acid |
| Language | English |
| License | Copyright © 2020 Elsevier B.V. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c353t-11d06073eba9550e8b76c0f1f2c374ee871593b916059c558a855dfba86c841c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-4857-5789 |
| PMID | 32138921 |
| PQID | 2374308044 |
| PQPubID | 23479 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_2374308044 pubmed_primary_32138921 crossref_citationtrail_10_1016_j_aca_2020_01_036 crossref_primary_10_1016_j_aca_2020_01_036 elsevier_sciencedirect_doi_10_1016_j_aca_2020_01_036 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-04-08 |
| PublicationDateYYYYMMDD | 2020-04-08 |
| PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-08 day: 08 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Analytica chimica acta |
| PublicationTitleAlternate | Anal Chim Acta |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Berthod, Girard, Gonnet (bib31) 1986; 58 Harvianto, Kang, Lee (bib39) 2017; 56 Penmetsa, Reddick, Fink, Kleintop, DiDonato, Volk, Klohr (bib75) 2000; 23 Chester, Coym (bib73) 2003; 1003 Khaledi, Peuler, Ngeh-Ngwainbi (bib22) 1987; 59 Tykodi (bib71) 1989; 66 Richardson, McPherson, Fasciano, Pauls, Danielson (bib12) 2017; 1491 Medford (bib74) 1986; 368 Shen, Chen, Van Beek (bib17) 2015; 17 Pang, Zheng, Sun, Wang, Wang, Zhang (bib41) 2016; 18 Obradović, Poša (bib64) 2017; 110 Ramezani, Absalan, Ahmadi (bib11) 2018; 1010 Dorsey, Khaledi, Landy, Lin (bib21) 1984; 316 Borgerding, Quina, Hinze, Bowermaster, McNair (bib26) 1988; 60 Suresh, Sharma, Sridhar (bib52) 2000; 39 Song, Kim, Hong, Lim, Lee (bib49) 2004; 10 Fasciano, Danielson (bib38) 2016; 1438 Cheng, Peng, Wang, Li (bib51) 2009; 17 Suresh, Sharma, Sridhar (bib50) 2000; 39 bib43 Li, Niu, Zuo, Metelski, Busch, Subramaniam (bib56) 2013; 104 Li, Locke (bib67) 1996; 734 Fasciano, Mansour, Danielson (bib32) 2016; 54 Tanase, Soare, David, Moldoveanu (bib72) 2019; 4 Pramauro, Pelizzetti (bib16) 1988; 7 Ruiz-Ángel, Carda-Broch, Torres-Lapasió, García-Álvarez-Coque (bib25) 2009; 1216 Dorsey, DeEchegaray, Landy (bib23) 1983; 55 Huang, Wei, Lin, Lu (bib55) 2009; 1216 Armstrong, Terrill (bib15) 1979; 51 bib3 Rocha, Nóbrega, Fatibello Filho (bib8) 2001; 3 Armstron, Stine (bib19) 1983; 55 Qian, Tao, Sun, Du (bib54) 2012; 51 Desilets, Rounds, Regnier (bib70) 1991; 544 Rambla-Alegre (bib20) 2012 Neaţu, Culică, Florea, Parvulescu, Cavani (bib40) 2016; 9 Yang, Ding (bib63) 2002; 25 Berthod, Girard, Gonnet (bib29) 1986; 58 Płotka, Tobiszewski, Sulej, Kupska, Górecki, Namieśnik (bib9) 2013; 1307 Tomás, Bordado, Gomes (bib53) 2013; 113 Zhong, Jiang, Peng, Li, Qian (bib58) 2018; 57 Yuan, Qiao, Lian (bib61) 2012; 50 Peris-García, Rodríguez-Martínez, Baeza-Baeza, García-Alvarez-Coque, Ruiz-Angel (bib37) 2018; 410 Gałuszka, Migaszewski, Namieśnik (bib5) 2013; 50 Jongedijk, van der Klis, de Zwart, van Es, Beekwilder (bib42) 2018; 7 Nakao, Halldin (bib65) 2013; 1281 Anastas, Kirchhoff (bib1) 2002; 35 Arunyanart, Cline Love (bib24) 1984; 56 Ortiz-Bolsico, Ruiz-Angel, García-Alvarez-Coque (bib33) 2015; 38 Castelletti, Verzola, Gelfi, Stoyanov, Righetti (bib68) 2000; 894 P.T. Anastas, J.C. Warner, Green Chemistry: Theory and Practice, Oxford University Press, Oxford, UK. Berthod, Tomer, Dorsey (bib27) 2001; 55 Viola, Cao (bib62) 1996; 34 Tobiszewski, Namieśnik (bib7) 2012; 35 Aransiola, Daramola, Ojumu (bib48) 2013 Mirabal, Scholz, Carus (bib44) Armenta, de la Guardia (bib6) 2016; 80 Mori, Hu, Haddad, Fritz, Tanaka, Tsue, Tanaka (bib66) 2002; 372 Armstrong (bib18) 1981; 13 Armstrong, Nome (bib14) 1981 Ruiz-Angel, Peris-García, García-Alvarez-Coque (bib13) 2015; 17 Berthod, Girard, Gonnet (bib28) 1986; 58 Tobiszewski, Namieśnik (bib2) 2017; 5 Ghaemi, Wall (bib69) 1981; 212 Welch, Wu, Biba, Hartman, Brkovic, Gong, Helmy, Schafer, Cuff, Pirzada, Zhou (bib10) 2010; 29 Koneva, Ritter, Anufrikov, Lezov, Klestova, Smirnova, Safonova, Smirnova (bib34) 2018; 538 Hadjmohammadi, Kiasari, Nazari (bib36) 2016; 71 Fadzil, Rahim, Maniam (bib46) 2014; 35 Li, Zhong, Wang, Luo, Qian (bib47) 2016; 88 Tomás, Bordado, Gomes (bib45) 2013; 113 Tourani, Khorasheh, Rashidi, Safekordi (bib57) 2015; 28 Åsberg, Samuelsson, Fornstedt (bib30) 2016; 1457 Wu, Lo, Nian, Lin (bib59) 2003; 1003 Alwera, Bhushan (bib35) 2017; 40 Moraes, Rubim, Realpozo, Tavares (bib60) 2004; 15 Aransiola (10.1016/j.aca.2020.01.036_bib48) 2013 Penmetsa (10.1016/j.aca.2020.01.036_bib75) 2000; 23 Anastas (10.1016/j.aca.2020.01.036_bib1) 2002; 35 Ruiz-Ángel (10.1016/j.aca.2020.01.036_bib25) 2009; 1216 Zhong (10.1016/j.aca.2020.01.036_bib58) 2018; 57 Neaţu (10.1016/j.aca.2020.01.036_bib40) 2016; 9 Pang (10.1016/j.aca.2020.01.036_bib41) 2016; 18 Song (10.1016/j.aca.2020.01.036_bib49) 2004; 10 Huang (10.1016/j.aca.2020.01.036_bib55) 2009; 1216 Borgerding (10.1016/j.aca.2020.01.036_bib26) 1988; 60 Suresh (10.1016/j.aca.2020.01.036_bib52) 2000; 39 Viola (10.1016/j.aca.2020.01.036_bib62) 1996; 34 Castelletti (10.1016/j.aca.2020.01.036_bib68) 2000; 894 Harvianto (10.1016/j.aca.2020.01.036_bib39) 2017; 56 Medford (10.1016/j.aca.2020.01.036_bib74) 1986; 368 Berthod (10.1016/j.aca.2020.01.036_bib29) 1986; 58 Mori (10.1016/j.aca.2020.01.036_bib66) 2002; 372 Chester (10.1016/j.aca.2020.01.036_bib73) 2003; 1003 Armstron (10.1016/j.aca.2020.01.036_bib19) 1983; 55 Berthod (10.1016/j.aca.2020.01.036_bib31) 1986; 58 Armstrong (10.1016/j.aca.2020.01.036_bib18) 1981; 13 Qian (10.1016/j.aca.2020.01.036_bib54) 2012; 51 Li (10.1016/j.aca.2020.01.036_bib56) 2013; 104 Suresh (10.1016/j.aca.2020.01.036_bib50) 2000; 39 Yuan (10.1016/j.aca.2020.01.036_bib61) 2012; 50 Arunyanart (10.1016/j.aca.2020.01.036_bib24) 1984; 56 Rambla-Alegre (10.1016/j.aca.2020.01.036_bib20) 2012 Dorsey (10.1016/j.aca.2020.01.036_bib21) 1984; 316 Ruiz-Angel (10.1016/j.aca.2020.01.036_bib13) 2015; 17 Fasciano (10.1016/j.aca.2020.01.036_bib38) 2016; 1438 Mirabal (10.1016/j.aca.2020.01.036_bib44) Ghaemi (10.1016/j.aca.2020.01.036_bib69) 1981; 212 Yang (10.1016/j.aca.2020.01.036_bib63) 2002; 25 Pramauro (10.1016/j.aca.2020.01.036_bib16) 1988; 7 Berthod (10.1016/j.aca.2020.01.036_bib28) 1986; 58 Hadjmohammadi (10.1016/j.aca.2020.01.036_bib36) 2016; 71 Tobiszewski (10.1016/j.aca.2020.01.036_bib2) 2017; 5 Fadzil (10.1016/j.aca.2020.01.036_bib46) 2014; 35 Tobiszewski (10.1016/j.aca.2020.01.036_bib7) 2012; 35 Welch (10.1016/j.aca.2020.01.036_bib10) 2010; 29 Tanase (10.1016/j.aca.2020.01.036_bib72) 2019; 4 Wu (10.1016/j.aca.2020.01.036_bib59) 2003; 1003 Richardson (10.1016/j.aca.2020.01.036_bib12) 2017; 1491 Cheng (10.1016/j.aca.2020.01.036_bib51) 2009; 17 Ortiz-Bolsico (10.1016/j.aca.2020.01.036_bib33) 2015; 38 Moraes (10.1016/j.aca.2020.01.036_bib60) 2004; 15 Jongedijk (10.1016/j.aca.2020.01.036_bib42) 2018; 7 Khaledi (10.1016/j.aca.2020.01.036_bib22) 1987; 59 Tykodi (10.1016/j.aca.2020.01.036_bib71) 1989; 66 Tomás (10.1016/j.aca.2020.01.036_bib53) 2013; 113 Tourani (10.1016/j.aca.2020.01.036_bib57) 2015; 28 Obradović (10.1016/j.aca.2020.01.036_bib64) 2017; 110 Rocha (10.1016/j.aca.2020.01.036_bib8) 2001; 3 Desilets (10.1016/j.aca.2020.01.036_bib70) 1991; 544 Gałuszka (10.1016/j.aca.2020.01.036_bib5) 2013; 50 Armenta (10.1016/j.aca.2020.01.036_bib6) 2016; 80 Fasciano (10.1016/j.aca.2020.01.036_bib32) 2016; 54 Berthod (10.1016/j.aca.2020.01.036_bib27) 2001; 55 Koneva (10.1016/j.aca.2020.01.036_bib34) 2018; 538 Ramezani (10.1016/j.aca.2020.01.036_bib11) 2018; 1010 Armstrong (10.1016/j.aca.2020.01.036_bib14) 1981 Nakao (10.1016/j.aca.2020.01.036_bib65) 2013; 1281 Li (10.1016/j.aca.2020.01.036_bib67) 1996; 734 10.1016/j.aca.2020.01.036_bib4 Armstrong (10.1016/j.aca.2020.01.036_bib15) 1979; 51 Peris-García (10.1016/j.aca.2020.01.036_bib37) 2018; 410 Płotka (10.1016/j.aca.2020.01.036_bib9) 2013; 1307 Alwera (10.1016/j.aca.2020.01.036_bib35) 2017; 40 Dorsey (10.1016/j.aca.2020.01.036_bib23) 1983; 55 Åsberg (10.1016/j.aca.2020.01.036_bib30) 2016; 1457 Tomás (10.1016/j.aca.2020.01.036_bib45) 2013; 113 Shen (10.1016/j.aca.2020.01.036_bib17) 2015; 17 Li (10.1016/j.aca.2020.01.036_bib47) 2016; 88 |
| References_xml | – volume: 58 start-page: 1356 year: 1986 end-page: 1358 ident: bib31 article-title: Micellar liquid chromatography. Adsorption isotherms of two ionic surfactants on five stationary phases publication-title: Anal. Chem. – volume: 35 start-page: 686 year: 2002 end-page: 694 ident: bib1 article-title: Origins, current status, and future challenges of green chemistry publication-title: Acc. Chem. Res. – volume: 50 start-page: 410 year: 2012 end-page: 413 ident: bib61 article-title: Simultaneous determination of nine related substances in p-phthalic acid residue by RP-HPLC publication-title: J. Chromatogr. Sci. – volume: 23 start-page: 831 year: 2000 end-page: 839 ident: bib75 article-title: Development of Reversed-phase Chiral HPLC Methods Using Mass Spectrometry Compatible Mobile Phases publication-title: J. Liq. Chromatogr. Relat. Technol – volume: 88 start-page: 1 year: 2016 end-page: 12 ident: bib47 article-title: Control structure design of an industrial crude terephthalic acid hydropurification process with catalyst deactivation publication-title: Comput. Chem. Eng. – volume: 1216 start-page: 1798 year: 2009 end-page: 1814 ident: bib25 article-title: Retention mechanisms in micellar liquid chromatography publication-title: J. Chromatogr., A – volume: 56 start-page: 2168 year: 2017 end-page: 2176 ident: bib39 article-title: Process design and optimization of an acetic acid recovery system in terephthalic acid production via hybrid extraction-distillation using a novel mixed solvent publication-title: Ind. Eng. Chem. Res. – volume: 39 start-page: 3958 year: 2000 end-page: 3997 ident: bib52 article-title: Engineering aspects of industrial liquid-phase air oxidation of hydrocarbons publication-title: Ind. Eng. Chem. Res. – volume: 55 start-page: 69 year: 2001 end-page: 83 ident: bib27 article-title: Polyoxyethylene alkyl ether nonionic surfactants: physicochemical properties and use for cholesterol determination in food publication-title: Talanta – year: 2013 ident: bib48 article-title: Xylenes : production technologies and uses publication-title: Chapter in Xylenes: Synthesis, Characterization and Physiochemical Properties, Chemical Engineering Methods and Technology – volume: 1216 start-page: 2560 year: 2009 end-page: 2566 ident: bib55 article-title: Determining organic impurities in mother liquors from oxidative terephthalic acid synthesis by microemulsion electrokinetic chromatography publication-title: J. Chromatogr., A – volume: 372 start-page: 181 year: 2002 end-page: 186 ident: bib66 article-title: Capillary electrophoresis using high ionic strength background electrolytes containing zwitterionic and non-ionic surfactants and its application to direct determination of bromide and nitrate in seawater publication-title: Anal. Bioanal. Chem. – volume: 10 start-page: 77 year: 2004 end-page: 80 ident: bib49 article-title: Uncatalyzed partial oxidation of p-xylene to terephthalic acid in sub-critical water publication-title: Theor. Appl. Chem. Eng. – year: 1981 ident: bib14 article-title: Partitioning Behavior of Solutes Eluted with Micellar Mobile Phases in Liquid Chromatography – volume: 13 start-page: 14 year: 1981 end-page: 20 ident: bib18 article-title: Application of pseudophase liquid chromatography publication-title: Am. Labor. – volume: 60 start-page: 2520 year: 1988 end-page: 2527 ident: bib26 article-title: Investigation of the retention mechanism in nonionic micellar liquid chromatography using an alkylbenzene homologous series publication-title: Anal. Chem. – volume: 56 start-page: 1557 year: 1984 end-page: 1561 ident: bib24 article-title: Model for micellar effects on liquid chromatography capacity factors and for determination of micelle-solute equilibrium constants publication-title: Anal. Chem. – volume: 3 start-page: 216 year: 2001 end-page: 220 ident: bib8 article-title: Flow analysis strategies to greener analytical chemistry. An overview publication-title: Green Chem. – volume: 1003 start-page: 101 year: 2003 end-page: 111 ident: bib73 article-title: Effect of phase ratio on van’t Hoff analysis in reversed- phase liquid chromatography, and phase-ratio-independent estimation of transfer enthalpy publication-title: J. Chromatogr. A – volume: 35 start-page: 1641 year: 2014 end-page: 1652 ident: bib46 article-title: A brief review of para-xylene oxidation to terephthalic acid as a model of primary C-H bond activation publication-title: Cuihua Xuebao/Chinese J. Catal. – volume: 54 start-page: 958 year: 2016 end-page: 970 ident: bib32 article-title: Ion-exclusion high-performance liquid chromatography of aliphatic organic acids using a surfactant-modified C18 column publication-title: J. Chromatogr. Sci. – volume: 538 start-page: 45 year: 2018 end-page: 55 ident: bib34 article-title: Mixed aqueous solutions of nonionic surfactants Brij 35/Triton X-100: micellar properties, solutes’ partitioning from micellar liquid chromatography and modelling with COSMOmic publication-title: Colloids Surf. A Physicochem. Eng. Asp. – volume: 55 start-page: 2317 year: 1983 end-page: 2320 ident: bib19 article-title: Selectivity in pseudophase liquid chromatography publication-title: Anal. Chem. – volume: 38 start-page: 550 year: 2015 end-page: 555 ident: bib33 article-title: Adsorption of the anionic surfactant sodium dodecyl sulfate on a C publication-title: J. Separ. Sci. – volume: 1491 start-page: 67 year: 2017 end-page: 74 ident: bib12 article-title: Micellar liquid chromatography of terephthalic acid impurities publication-title: J. Chromatogr., A – volume: 17 start-page: 4073 year: 2015 end-page: 4081 ident: bib17 article-title: Alternative solvents can make preparative liquid chromatography greener publication-title: Green Chem. – volume: 113 start-page: 7421 year: 2013 end-page: 7469 ident: bib45 article-title: p -xylene oxidation to terephthalic acid: a literature review oriented toward process optimization and development publication-title: Chem. Rev. – volume: 57 start-page: 9604 year: 2018 end-page: 9614 ident: bib58 article-title: Online quality prediction of industrial terephthalic acid hydropurification process using modified regularized slow-feature analysis publication-title: Ind. Eng. Chem. Res. – volume: 7 start-page: 260 year: 1988 end-page: 265 ident: bib16 article-title: Micelles: a new dimension in analytical chemistry publication-title: Trends Anal. Chem. – volume: 29 start-page: 667 year: 2010 end-page: 680 ident: bib10 article-title: Greening analytical chromatography publication-title: TrAC Trends Anal. Chem. (Reference Ed.) – reference: P.T. Anastas, J.C. Warner, Green Chemistry: Theory and Practice, Oxford University Press, Oxford, UK. – volume: 316 start-page: 183 year: 1984 end-page: 191 ident: bib21 article-title: Gradient elution micellar liquid chromatography publication-title: J. Chromatogr., A – volume: 80 start-page: 517 year: 2016 end-page: 530 ident: bib6 article-title: Green chromatography for the analysis of foods of animal origin publication-title: TrAC Trends Anal. Chem. (Reference Ed.) – volume: 1003 start-page: 179 year: 2003 end-page: 187 ident: bib59 article-title: Capillary electrophoretic analysis of the derivatives and isomers of benzoate and phthalate publication-title: J. Chromatogr., A – volume: 1307 start-page: 1 year: 2013 end-page: 20 ident: bib9 article-title: Green chromatography publication-title: J. Chromatogr., A – volume: 17 start-page: 3561 year: 2015 end-page: 3570 ident: bib13 article-title: Reversed-phase liquid chromatography with mixed micellar mobile phases of Brij-35 and sodium dodecyl sulphate: a method for the analysis of basic compounds publication-title: Green Chem. – volume: 51 start-page: 2160 year: 1979 end-page: 2163 ident: bib15 article-title: Thin layer chromatographic separation of pesticides, decachlorobiphenyl, and nucleosides with micellar solutions publication-title: Anal. Chem. – volume: 544 start-page: 25 year: 1991 end-page: 39 ident: bib70 article-title: Semipermeable-surface reversed-phase media for high- performance liquid chromatography publication-title: J. Chromatogr. A – volume: 58 start-page: 1362 year: 1986 end-page: 1367 ident: bib29 article-title: Additive effects on surfactant adsorption and ionic solute retention in micellar liquid chromatography publication-title: Anal. Chem. – volume: 51 start-page: 3229 year: 2012 end-page: 3237 ident: bib54 article-title: Development of a free radical kinetic model for industrial oxidation of p-xylene based on artificial neural network and adaptive immune genetic algorithm publication-title: Ind. Eng. Chem. Res. – volume: 34 start-page: 27 year: 1996 end-page: 33 ident: bib62 article-title: Rapid direct analysis of p-xylene oxidation products by reversed-phase high-performance liquid chromatography publication-title: J. Chromatogr. Sci. – volume: 40 start-page: 707 year: 2017 end-page: 714 ident: bib35 article-title: Micellar liquid chromatography for enantioseparation of β-adrenolytics using (S)-ketoprofen-based reagents publication-title: J. Liq. Chromatogr. Relat. Technol. – volume: 5 start-page: 1 year: 2017 end-page: 4 ident: bib2 article-title: Greener organic solvents in analytical chemistry publication-title: Curr. Opin. Green Sustain. Chem. – volume: 113 start-page: 7421 year: 2013 end-page: 7469 ident: bib53 article-title: p -xylene oxidation to terephthalic acid: a literature review oriented toward process optimization and development publication-title: Chem. Rev. – volume: 212 start-page: 271 year: 1981 end-page: 281 ident: bib69 article-title: Hydrophobic chromatography with dynamically coated stationary phases publication-title: J. Chromatogr. – volume: 15 start-page: 400 year: 2004 end-page: 406 ident: bib60 article-title: Analysis of impurities in crude and highly-purified terephthalic acid by capillary electrophoresis publication-title: J. Braz. Chem. Soc. – volume: 734 start-page: 357 year: 1996 end-page: 365 ident: bib67 article-title: Nonionic surfactants for improving resolution of the priority pollutant phenols by micelle-modified capillary electrophoresis publication-title: J. Chromatogr., A – volume: 894 start-page: 281 year: 2000 end-page: 289 ident: bib68 article-title: Quantitative studies on the adsorption of proteins to the bare silica wall in capillary electrophoresis. III: effects of adsorbed surfactants on quenching the interaction publication-title: J. Chromatogr., A – volume: 55 start-page: 924 year: 1983 end-page: 928 ident: bib23 article-title: Efficiency enhancement in micellar liquid chromatography publication-title: Anal. Chem. – volume: 7 start-page: 201 year: 2018 end-page: 203 ident: bib42 article-title: Methyl perillate as a highly functionalized natural starting material for terephthalic acid publication-title: ChemistryOpen – volume: 410 start-page: 5043 year: 2018 end-page: 5057 ident: bib37 article-title: Search of non-ionic surfactants suitable for micellar liquid chromatography publication-title: Anal. Bioanal. Chem. – volume: 9 start-page: 3102 year: 2016 end-page: 3112 ident: bib40 article-title: Synthesis of terephthalic acid by p-cymene oxidation using oxygen: toward a more sustainable production of bio-polyethylene terephthalate publication-title: ChemSusChem – ident: bib43 article-title: Purified terephthalic acid (PTA) production and market – volume: 1281 start-page: 54 year: 2013 end-page: 59 ident: bib65 article-title: “ Mixed” anionic and non-ionic micellar liquid chromatography for high-speed radiometabolite analysis of positron emission tomography radioligands publication-title: J. Chromatogr., A – volume: 59 start-page: 2738 year: 1987 end-page: 2747 ident: bib22 article-title: Retention behavior of homologous series in reversed-phase liquid chromatography using micellar, hydro-organic, and hybrid mobile phases publication-title: Anal. Chem. – volume: 71 start-page: 639 year: 2016 end-page: 645 ident: bib36 article-title: Separation of some phenolic acids in micellar liquid chromatography using design of experiment-response surface methodology publication-title: J. Anal. Chem. – volume: 18 start-page: 342 year: 2016 end-page: 359 ident: bib41 article-title: Synthesis of ethylene glycol and terephthalic acid from biomass for producing PET publication-title: Green Chem. – volume: 39 start-page: 3958 year: 2000 end-page: 3997 ident: bib50 article-title: Engineering aspects of industrial liquid-phase air oxidation of hydrocarbons publication-title: Ind. Eng. Chem. Res. – volume: 50 start-page: 78 year: 2013 end-page: 84 ident: bib5 article-title: The 12 principles of green analytical chemistry and the significance mnemonic of green analytical practices publication-title: TrAC Trends Anal. Chem. (Reference Ed.) – volume: 35 start-page: 67 year: 2012 end-page: 73 ident: bib7 article-title: Direct chromatographic methods in the context of green analytical chemistry publication-title: TrAC Trends Anal. Chem. (Reference Ed.) – volume: 17 start-page: 181 year: 2009 end-page: 188 ident: bib51 article-title: Kinetics of burning side reaction in the liquid-phase oxidation of p-xylene publication-title: Chin. J. Chem. Eng. – volume: 104 start-page: 93 year: 2013 end-page: 102 ident: bib56 article-title: A spray reactor concept for catalytic oxidation of p-xylene to produce high-purity terephthalic acid publication-title: Chem. Eng. Sci. – volume: 28 start-page: 202 year: 2015 end-page: 210 ident: bib57 article-title: Hydro-purification of crude terephthalic acid using palladium catalyst supported on multi-wall carbon nanotubes publication-title: J. Ind. Eng. Chem. – volume: 110 start-page: 41 year: 2017 end-page: 50 ident: bib64 article-title: The influence of the structure of selected Brij and Tween homologues on the thermodynamic stability of their binary mixed micelles publication-title: J. Chem. Thermodyn. – volume: 66 start-page: 1007 year: 1989 ident: bib71 article-title: Identifying polar and nonpolar molecules publication-title: J. Chem. Educ. – volume: 368 start-page: 31 year: 1986 end-page: 37 ident: bib74 article-title: Modification of reversed-phase separations of small molecules using non-ionic sufactants and mixed ionic-non-ionic surfactants publication-title: J. Chromatogr. – volume: 25 start-page: 2709 year: 2002 end-page: 2715 ident: bib63 article-title: Determination of publication-title: J. Liq. Chromatogr. Relat. Technol. – start-page: 1 year: 2012 end-page: 5 ident: bib20 article-title: Retention behaviour in micellar liquid chromatography publication-title: Chromatogr. Res. Int. – volume: 1438 start-page: 150 year: 2016 end-page: 159 ident: bib38 article-title: Micellar and sub-micellar ultra-high performance liquid chromatography of hydroxybenzoic acid and phthalic acid positional isomers publication-title: J. Chromatogr., A – volume: 4 start-page: 19808 year: 2019 end-page: 19817 ident: bib72 article-title: Sources of nonlinear van’t Hoff temperature dependence in high performance liquid chromatography publication-title: ACS Omega – volume: 1010 start-page: 76 year: 2018 end-page: 85 ident: bib11 article-title: Green-modified micellar liquid chromatography for isocratic isolation of some cardiovascular drugs with different polarities through experimental design approach publication-title: Anal. Chim. Acta – ident: bib3 article-title: Pollution prevention act of 1990 – volume: 1457 start-page: 97 year: 2016 end-page: 106 ident: bib30 article-title: A fundamental study of the impact of pressure on the adsorption mechanism in reversed-phase liquid chromatography publication-title: J. Chromatogr., A – volume: 58 start-page: 1359 year: 1986 end-page: 1362 ident: bib28 article-title: Micellar liquid chromatography. Retention study of solutes of various polarities publication-title: Anal. Chem. – ident: bib44 article-title: Market study on bio-based polymers in the world capacities, production and applications: status quo and trends towards 2020 – volume: 1003 start-page: 101 year: 2003 ident: 10.1016/j.aca.2020.01.036_bib73 article-title: Effect of phase ratio on van’t Hoff analysis in reversed- phase liquid chromatography, and phase-ratio-independent estimation of transfer enthalpy publication-title: J. Chromatogr. A doi: 10.1016/S0021-9673(03)00846-X – volume: 35 start-page: 1641 year: 2014 ident: 10.1016/j.aca.2020.01.036_bib46 article-title: A brief review of para-xylene oxidation to terephthalic acid as a model of primary C-H bond activation publication-title: Cuihua Xuebao/Chinese J. Catal. – volume: 88 start-page: 1 year: 2016 ident: 10.1016/j.aca.2020.01.036_bib47 article-title: Control structure design of an industrial crude terephthalic acid hydropurification process with catalyst deactivation publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2016.01.017 – volume: 13 start-page: 14 year: 1981 ident: 10.1016/j.aca.2020.01.036_bib18 article-title: Application of pseudophase liquid chromatography publication-title: Am. Labor. – volume: 39 start-page: 3958 year: 2000 ident: 10.1016/j.aca.2020.01.036_bib50 article-title: Engineering aspects of industrial liquid-phase air oxidation of hydrocarbons publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie0002733 – volume: 15 start-page: 400 year: 2004 ident: 10.1016/j.aca.2020.01.036_bib60 article-title: Analysis of impurities in crude and highly-purified terephthalic acid by capillary electrophoresis publication-title: J. Braz. Chem. Soc. doi: 10.1590/S0103-50532004000300010 – volume: 7 start-page: 201 year: 2018 ident: 10.1016/j.aca.2020.01.036_bib42 article-title: Methyl perillate as a highly functionalized natural starting material for terephthalic acid publication-title: ChemistryOpen doi: 10.1002/open.201700178 – volume: 25 start-page: 2709 year: 2002 ident: 10.1016/j.aca.2020.01.036_bib63 article-title: Determination of o -toluic acid and its micro amounts of impurities in industrial products by HPLC publication-title: J. Liq. Chromatogr. Relat. Technol. doi: 10.1081/JLC-120014387 – volume: 5 start-page: 1 year: 2017 ident: 10.1016/j.aca.2020.01.036_bib2 article-title: Greener organic solvents in analytical chemistry publication-title: Curr. Opin. Green Sustain. Chem. doi: 10.1016/j.cogsc.2017.03.002 – volume: 110 start-page: 41 year: 2017 ident: 10.1016/j.aca.2020.01.036_bib64 article-title: The influence of the structure of selected Brij and Tween homologues on the thermodynamic stability of their binary mixed micelles publication-title: J. Chem. Thermodyn. doi: 10.1016/j.jct.2017.01.020 – volume: 28 start-page: 202 year: 2015 ident: 10.1016/j.aca.2020.01.036_bib57 article-title: Hydro-purification of crude terephthalic acid using palladium catalyst supported on multi-wall carbon nanotubes publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2015.02.015 – volume: 66 start-page: 1007 year: 1989 ident: 10.1016/j.aca.2020.01.036_bib71 article-title: Identifying polar and nonpolar molecules publication-title: J. Chem. Educ. doi: 10.1021/ed066p1007 – volume: 60 start-page: 2520 year: 1988 ident: 10.1016/j.aca.2020.01.036_bib26 article-title: Investigation of the retention mechanism in nonionic micellar liquid chromatography using an alkylbenzene homologous series publication-title: Anal. Chem. doi: 10.1021/ac00173a018 – volume: 23 start-page: 831 year: 2000 ident: 10.1016/j.aca.2020.01.036_bib75 article-title: Development of Reversed-phase Chiral HPLC Methods Using Mass Spectrometry Compatible Mobile Phases publication-title: J. Liq. Chromatogr. Relat. Technol doi: 10.1081/JLC-100101492 – volume: 80 start-page: 517 year: 2016 ident: 10.1016/j.aca.2020.01.036_bib6 article-title: Green chromatography for the analysis of foods of animal origin publication-title: TrAC Trends Anal. Chem. (Reference Ed.) doi: 10.1016/j.trac.2015.06.012 – volume: 1010 start-page: 76 year: 2018 ident: 10.1016/j.aca.2020.01.036_bib11 article-title: Green-modified micellar liquid chromatography for isocratic isolation of some cardiovascular drugs with different polarities through experimental design approach publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2017.12.021 – volume: 35 start-page: 67 year: 2012 ident: 10.1016/j.aca.2020.01.036_bib7 article-title: Direct chromatographic methods in the context of green analytical chemistry publication-title: TrAC Trends Anal. Chem. (Reference Ed.) doi: 10.1016/j.trac.2012.02.006 – volume: 17 start-page: 3561 year: 2015 ident: 10.1016/j.aca.2020.01.036_bib13 article-title: Reversed-phase liquid chromatography with mixed micellar mobile phases of Brij-35 and sodium dodecyl sulphate: a method for the analysis of basic compounds publication-title: Green Chem. doi: 10.1039/C5GC00338E – volume: 35 start-page: 686 year: 2002 ident: 10.1016/j.aca.2020.01.036_bib1 article-title: Origins, current status, and future challenges of green chemistry publication-title: Acc. Chem. Res. doi: 10.1021/ar010065m – volume: 56 start-page: 1557 year: 1984 ident: 10.1016/j.aca.2020.01.036_bib24 article-title: Model for micellar effects on liquid chromatography capacity factors and for determination of micelle-solute equilibrium constants publication-title: Anal. Chem. doi: 10.1021/ac00273a005 – volume: 50 start-page: 78 year: 2013 ident: 10.1016/j.aca.2020.01.036_bib5 article-title: The 12 principles of green analytical chemistry and the significance mnemonic of green analytical practices publication-title: TrAC Trends Anal. Chem. (Reference Ed.) doi: 10.1016/j.trac.2013.04.010 – volume: 1491 start-page: 67 year: 2017 ident: 10.1016/j.aca.2020.01.036_bib12 article-title: Micellar liquid chromatography of terephthalic acid impurities publication-title: J. Chromatogr., A doi: 10.1016/j.chroma.2017.02.039 – volume: 18 start-page: 342 year: 2016 ident: 10.1016/j.aca.2020.01.036_bib41 article-title: Synthesis of ethylene glycol and terephthalic acid from biomass for producing PET publication-title: Green Chem. doi: 10.1039/C5GC01771H – volume: 58 start-page: 1359 year: 1986 ident: 10.1016/j.aca.2020.01.036_bib28 article-title: Micellar liquid chromatography. Retention study of solutes of various polarities publication-title: Anal. Chem. doi: 10.1021/ac00298a020 – volume: 7 start-page: 260 year: 1988 ident: 10.1016/j.aca.2020.01.036_bib16 article-title: Micelles: a new dimension in analytical chemistry publication-title: Trends Anal. Chem. doi: 10.1016/0165-9936(88)85075-1 – volume: 372 start-page: 181 year: 2002 ident: 10.1016/j.aca.2020.01.036_bib66 article-title: Capillary electrophoresis using high ionic strength background electrolytes containing zwitterionic and non-ionic surfactants and its application to direct determination of bromide and nitrate in seawater publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-001-1199-1 – volume: 34 start-page: 27 year: 1996 ident: 10.1016/j.aca.2020.01.036_bib62 article-title: Rapid direct analysis of p-xylene oxidation products by reversed-phase high-performance liquid chromatography publication-title: J. Chromatogr. Sci. doi: 10.1093/chromsci/49.1.27 – volume: 544 start-page: 25 year: 1991 ident: 10.1016/j.aca.2020.01.036_bib70 article-title: Semipermeable-surface reversed-phase media for high- performance liquid chromatography publication-title: J. Chromatogr. A doi: 10.1016/S0021-9673(01)83976-5 – volume: 1457 start-page: 97 year: 2016 ident: 10.1016/j.aca.2020.01.036_bib30 article-title: A fundamental study of the impact of pressure on the adsorption mechanism in reversed-phase liquid chromatography publication-title: J. Chromatogr., A doi: 10.1016/j.chroma.2016.06.036 – volume: 39 start-page: 3958 year: 2000 ident: 10.1016/j.aca.2020.01.036_bib52 article-title: Engineering aspects of industrial liquid-phase air oxidation of hydrocarbons publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie0002733 – year: 2013 ident: 10.1016/j.aca.2020.01.036_bib48 article-title: Xylenes : production technologies and uses – volume: 58 start-page: 1362 year: 1986 ident: 10.1016/j.aca.2020.01.036_bib29 article-title: Additive effects on surfactant adsorption and ionic solute retention in micellar liquid chromatography publication-title: Anal. Chem. doi: 10.1021/ac00298a021 – volume: 1438 start-page: 150 year: 2016 ident: 10.1016/j.aca.2020.01.036_bib38 article-title: Micellar and sub-micellar ultra-high performance liquid chromatography of hydroxybenzoic acid and phthalic acid positional isomers publication-title: J. Chromatogr., A doi: 10.1016/j.chroma.2016.02.024 – volume: 55 start-page: 69 year: 2001 ident: 10.1016/j.aca.2020.01.036_bib27 article-title: Polyoxyethylene alkyl ether nonionic surfactants: physicochemical properties and use for cholesterol determination in food publication-title: Talanta doi: 10.1016/S0039-9140(01)00395-2 – volume: 113 start-page: 7421 year: 2013 ident: 10.1016/j.aca.2020.01.036_bib53 article-title: p -xylene oxidation to terephthalic acid: a literature review oriented toward process optimization and development publication-title: Chem. Rev. doi: 10.1021/cr300298j – volume: 113 start-page: 7421 year: 2013 ident: 10.1016/j.aca.2020.01.036_bib45 article-title: p -xylene oxidation to terephthalic acid: a literature review oriented toward process optimization and development publication-title: Chem. Rev. doi: 10.1021/cr300298j – ident: 10.1016/j.aca.2020.01.036_bib4 – volume: 51 start-page: 2160 year: 1979 ident: 10.1016/j.aca.2020.01.036_bib15 article-title: Thin layer chromatographic separation of pesticides, decachlorobiphenyl, and nucleosides with micellar solutions publication-title: Anal. Chem. doi: 10.1021/ac50049a025 – volume: 29 start-page: 667 year: 2010 ident: 10.1016/j.aca.2020.01.036_bib10 article-title: Greening analytical chromatography publication-title: TrAC Trends Anal. Chem. (Reference Ed.) doi: 10.1016/j.trac.2010.03.008 – volume: 9 start-page: 3102 year: 2016 ident: 10.1016/j.aca.2020.01.036_bib40 article-title: Synthesis of terephthalic acid by p-cymene oxidation using oxygen: toward a more sustainable production of bio-polyethylene terephthalate publication-title: ChemSusChem doi: 10.1002/cssc.201600718 – volume: 1216 start-page: 2560 year: 2009 ident: 10.1016/j.aca.2020.01.036_bib55 article-title: Determining organic impurities in mother liquors from oxidative terephthalic acid synthesis by microemulsion electrokinetic chromatography publication-title: J. Chromatogr., A doi: 10.1016/j.chroma.2009.01.003 – start-page: 1 year: 2012 ident: 10.1016/j.aca.2020.01.036_bib20 article-title: Retention behaviour in micellar liquid chromatography publication-title: Chromatogr. Res. Int. – volume: 1281 start-page: 54 year: 2013 ident: 10.1016/j.aca.2020.01.036_bib65 article-title: “ Mixed” anionic and non-ionic micellar liquid chromatography for high-speed radiometabolite analysis of positron emission tomography radioligands publication-title: J. Chromatogr., A doi: 10.1016/j.chroma.2013.01.071 – volume: 1307 start-page: 1 year: 2013 ident: 10.1016/j.aca.2020.01.036_bib9 article-title: Green chromatography publication-title: J. Chromatogr., A doi: 10.1016/j.chroma.2013.07.099 – ident: 10.1016/j.aca.2020.01.036_bib44 – volume: 17 start-page: 4073 year: 2015 ident: 10.1016/j.aca.2020.01.036_bib17 article-title: Alternative solvents can make preparative liquid chromatography greener publication-title: Green Chem. doi: 10.1039/C5GC00887E – volume: 368 start-page: 31 year: 1986 ident: 10.1016/j.aca.2020.01.036_bib74 article-title: Modification of reversed-phase separations of small molecules using non-ionic sufactants and mixed ionic-non-ionic surfactants publication-title: J. Chromatogr. doi: 10.1016/S0021-9673(00)91044-6 – volume: 40 start-page: 707 year: 2017 ident: 10.1016/j.aca.2020.01.036_bib35 article-title: Micellar liquid chromatography for enantioseparation of β-adrenolytics using (S)-ketoprofen-based reagents publication-title: J. Liq. Chromatogr. Relat. Technol. doi: 10.1080/10826076.2017.1348954 – volume: 212 start-page: 271 year: 1981 ident: 10.1016/j.aca.2020.01.036_bib69 article-title: Hydrophobic chromatography with dynamically coated stationary phases publication-title: J. Chromatogr. doi: 10.1016/S0021-9673(01)84040-1 – volume: 894 start-page: 281 year: 2000 ident: 10.1016/j.aca.2020.01.036_bib68 article-title: Quantitative studies on the adsorption of proteins to the bare silica wall in capillary electrophoresis. III: effects of adsorbed surfactants on quenching the interaction publication-title: J. Chromatogr., A doi: 10.1016/S0021-9673(00)00664-6 – volume: 38 start-page: 550 year: 2015 ident: 10.1016/j.aca.2020.01.036_bib33 article-title: Adsorption of the anionic surfactant sodium dodecyl sulfate on a C 18 column under micellar and high submicellar conditions in reversed-phase liquid chromatography publication-title: J. Separ. Sci. doi: 10.1002/jssc.201401059 – volume: 538 start-page: 45 year: 2018 ident: 10.1016/j.aca.2020.01.036_bib34 article-title: Mixed aqueous solutions of nonionic surfactants Brij 35/Triton X-100: micellar properties, solutes’ partitioning from micellar liquid chromatography and modelling with COSMOmic publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2017.10.044 – volume: 734 start-page: 357 year: 1996 ident: 10.1016/j.aca.2020.01.036_bib67 article-title: Nonionic surfactants for improving resolution of the priority pollutant phenols by micelle-modified capillary electrophoresis publication-title: J. Chromatogr., A doi: 10.1016/0021-9673(95)01301-6 – volume: 17 start-page: 181 year: 2009 ident: 10.1016/j.aca.2020.01.036_bib51 article-title: Kinetics of burning side reaction in the liquid-phase oxidation of p-xylene publication-title: Chin. J. Chem. Eng. doi: 10.1016/S1004-9541(08)60191-3 – volume: 55 start-page: 924 year: 1983 ident: 10.1016/j.aca.2020.01.036_bib23 article-title: Efficiency enhancement in micellar liquid chromatography publication-title: Anal. Chem. doi: 10.1021/ac00257a024 – year: 1981 ident: 10.1016/j.aca.2020.01.036_bib14 – volume: 71 start-page: 639 year: 2016 ident: 10.1016/j.aca.2020.01.036_bib36 article-title: Separation of some phenolic acids in micellar liquid chromatography using design of experiment-response surface methodology publication-title: J. Anal. Chem. – volume: 50 start-page: 410 year: 2012 ident: 10.1016/j.aca.2020.01.036_bib61 article-title: Simultaneous determination of nine related substances in p-phthalic acid residue by RP-HPLC publication-title: J. Chromatogr. Sci. doi: 10.1093/chromsci/bms018 – volume: 58 start-page: 1356 year: 1986 ident: 10.1016/j.aca.2020.01.036_bib31 article-title: Micellar liquid chromatography. Adsorption isotherms of two ionic surfactants on five stationary phases publication-title: Anal. Chem. doi: 10.1021/ac00298a019 – volume: 1216 start-page: 1798 year: 2009 ident: 10.1016/j.aca.2020.01.036_bib25 article-title: Retention mechanisms in micellar liquid chromatography publication-title: J. Chromatogr., A doi: 10.1016/j.chroma.2008.09.053 – volume: 1003 start-page: 179 year: 2003 ident: 10.1016/j.aca.2020.01.036_bib59 article-title: Capillary electrophoretic analysis of the derivatives and isomers of benzoate and phthalate publication-title: J. Chromatogr., A doi: 10.1016/S0021-9673(03)00734-9 – volume: 56 start-page: 2168 year: 2017 ident: 10.1016/j.aca.2020.01.036_bib39 article-title: Process design and optimization of an acetic acid recovery system in terephthalic acid production via hybrid extraction-distillation using a novel mixed solvent publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.6b04586 – volume: 104 start-page: 93 year: 2013 ident: 10.1016/j.aca.2020.01.036_bib56 article-title: A spray reactor concept for catalytic oxidation of p-xylene to produce high-purity terephthalic acid publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2013.09.004 – volume: 57 start-page: 9604 year: 2018 ident: 10.1016/j.aca.2020.01.036_bib58 article-title: Online quality prediction of industrial terephthalic acid hydropurification process using modified regularized slow-feature analysis publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.8b01270 – volume: 316 start-page: 183 year: 1984 ident: 10.1016/j.aca.2020.01.036_bib21 article-title: Gradient elution micellar liquid chromatography publication-title: J. Chromatogr., A doi: 10.1016/S0021-9673(00)96150-8 – volume: 54 start-page: 958 year: 2016 ident: 10.1016/j.aca.2020.01.036_bib32 article-title: Ion-exclusion high-performance liquid chromatography of aliphatic organic acids using a surfactant-modified C18 column publication-title: J. Chromatogr. Sci. doi: 10.1093/chromsci/bmw028 – volume: 55 start-page: 2317 year: 1983 ident: 10.1016/j.aca.2020.01.036_bib19 article-title: Selectivity in pseudophase liquid chromatography publication-title: Anal. Chem. doi: 10.1021/ac00264a026 – volume: 59 start-page: 2738 year: 1987 ident: 10.1016/j.aca.2020.01.036_bib22 article-title: Retention behavior of homologous series in reversed-phase liquid chromatography using micellar, hydro-organic, and hybrid mobile phases publication-title: Anal. Chem. doi: 10.1021/ac00150a003 – volume: 410 start-page: 5043 year: 2018 ident: 10.1016/j.aca.2020.01.036_bib37 article-title: Search of non-ionic surfactants suitable for micellar liquid chromatography publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-018-1161-0 – volume: 10 start-page: 77 issue: 1 year: 2004 ident: 10.1016/j.aca.2020.01.036_bib49 article-title: Uncatalyzed partial oxidation of p-xylene to terephthalic acid in sub-critical water publication-title: Theor. Appl. Chem. Eng. – volume: 51 start-page: 3229 year: 2012 ident: 10.1016/j.aca.2020.01.036_bib54 article-title: Development of a free radical kinetic model for industrial oxidation of p-xylene based on artificial neural network and adaptive immune genetic algorithm publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie200737x – volume: 4 start-page: 19808 year: 2019 ident: 10.1016/j.aca.2020.01.036_bib72 article-title: Sources of nonlinear van’t Hoff temperature dependence in high performance liquid chromatography publication-title: ACS Omega doi: 10.1021/acsomega.9b02689 – volume: 3 start-page: 216 year: 2001 ident: 10.1016/j.aca.2020.01.036_bib8 article-title: Flow analysis strategies to greener analytical chemistry. An overview publication-title: Green Chem. doi: 10.1039/b103187m |
| SSID | ssj0002104 |
| Score | 2.3934834 |
| Snippet | The tremendous amounts of terephthalic acid (TPA) produced globally require consistent monitoring of its contaminants during the different stages of production... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 214 |
| SubjectTerms | Aromatic acid positional isomers Green liquid chromatography Terephthalic acid Tween 20 |
| Title | Micellar and sub-micellar liquid chromatography of terephthalic acid contaminants using a C18 column coated with Tween 20 |
| URI | https://dx.doi.org/10.1016/j.aca.2020.01.036 https://www.ncbi.nlm.nih.gov/pubmed/32138921 https://www.proquest.com/docview/2374308044 |
| Volume | 1105 |
| WOSCitedRecordID | wos000517755300024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-4324 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002104 issn: 0003-2670 databaseCode: AIEXJ dateStart: 19950110 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxoxELaapFJ7qfpM00fkSlUPRVt57X3YR4SI-qC0ByJxs2xjBBFZCCxV-u87tteEVCRKD72skFmDtd-39oz9zQxC70eGKiuKPNGUsCQzRCQiH40TYhVX2miaj32e2V7Z7_PhUPxsjmJWvpxAWVX88lIs_ivU0AZgu9DZf4B786PQAJ8BdLgC7HC9E_Dfp24zXgVt5Gqtk_PYMJterKejlpks52CnNrmqvUjALu1iUk-Uy3itjLtnXtUqqmTWfj9BtTophy9gNnPSdVVH4frAC70o2bZzfa4Tt03uosVdRgKXtGOzArRDTHZbj1rtWfIN3PXzK4VxCHqPgWB2OmtEyc3WBCVe0bI9m_IS8GchSPqT3dEWp-CU5Ndm0Wzn7B42Gs6AaS5jFCU-4SrbkUm7_0OenPZ6ctAdDj4sLhJXZMwdxjcVV_bQAS1zAZPgQftLd_h1s3SD_-tlCHGM8RjcCwL_-tebDJmbHBVvsAweo0eNp4HbgSFP0D1bPUUPOrHA3zP0OzIFA1PwNlNwYAq-zhQ8H-NtpmDHFLzNFOyZghUGpuDAFByYgh1TsGcKpuQ5Oj3pDjqfk6YSR2JYzuokTUekgMXAaiXApbVcl4Uh43RMDSsza8HrzgXT4GqAtW7ynCuewxuvFS8Mz1LDXqD9al7ZlwjnWVYaIZQtNDjnVGjGWFEIQ7nNiGbZESLxsUrTpKl31VJmMuoRzyQgIR0SkqQSkDhCHzddFiFHy203ZxEr2RiZwXiUwLLbur2LuEqAyaNR2fl6JSk8AQZ-VwZDPwyAb0bBqNMB0PTVHXq_Rg-v3qE3aL9eru1bdN_8qqer5THaK4f8uOHrH9y1r6g |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Micellar+and+sub-micellar+liquid+chromatography+of+terephthalic+acid+contaminants+using+a+C18+column+coated+with+Tween+20&rft.jtitle=Analytica+chimica+acta&rft.au=Ali%2C+Abd+Al-Karim+F&rft.au=Danielson%2C+Neil+D&rft.date=2020-04-08&rft.issn=1873-4324&rft.eissn=1873-4324&rft.volume=1105&rft.spage=214&rft_id=info:doi/10.1016%2Fj.aca.2020.01.036&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2670&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2670&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2670&client=summon |