Genetic Determined Iron Starvation Signature in Friedreich's Ataxia

Background Early studies in cellular models suggested an iron accumulation in Friedreich's ataxia (FA), yet findings from patients are lacking. Objectives The objective is to characterize systemic iron metabolism, body iron storages, and intracellular iron regulation in FA patients. Methods In...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Movement disorders Ročník 39; číslo 7; s. 1088 - 1098
Hlavní autori: Grander, Manuel, Haschka, David, Indelicato, Elisabetta, Kremser, Christian, Amprosi, Matthias, Nachbauer, Wolfgang, Henninger, Benjamin, Stefani, Ambra, Högl, Birgit, Fischer, Christine, Seifert, Markus, Kiechl, Stefan, Weiss, Günter, Boesch, Sylvia
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Hoboken, USA John Wiley & Sons, Inc 01.07.2024
Wiley Subscription Services, Inc
Predmet:
ISSN:0885-3185, 1531-8257, 1531-8257
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Background Early studies in cellular models suggested an iron accumulation in Friedreich's ataxia (FA), yet findings from patients are lacking. Objectives The objective is to characterize systemic iron metabolism, body iron storages, and intracellular iron regulation in FA patients. Methods In FA patients and matched healthy controls, we assessed serum iron parameters, regulatory hormones as well as the expression of regulatory proteins and iron distribution in peripheral blood mononuclear cells (PBMCs). We applied magnetic resonance imaging with R2*‐relaxometry to quantify iron storages in the liver, spleen, and pancreas. Across all evaluations, we assessed the influence of the genetic severity as expressed by the length of the shorter GAA‐expansion (GAA1). Results We recruited 40 FA patients (19 women). Compared to controls, FA patients displayed lower serum iron and transferrin saturation. Serum ferritin, hepcidin, mean corpuscular hemoglobin and mean corpuscular volume in FA inversely correlated with the GAA1‐repeat length, indicating iron deficiency and restricted availability for erythropoiesis with increasing genetic severity. R2*‐relaxometry revealed a reduction of splenic and hepatic iron stores in FA. Liver and spleen R2* values inversely correlated with the GAA1‐repeat length. FA PBMCs displayed downregulation of ferritin and upregulation of transferrin receptor and divalent metal transporter‐1 mRNA, particularly in patients with >500 GAA1‐repeats. In FA PBMCs, intracellular iron was not increased, but shifted toward mitochondria. Conclusions We provide evidence for a previously unrecognized iron starvation signature at systemic and cellular levels in FA patients, which is related to the underlying genetic severity. These findings challenge the use of systemic iron lowering therapies in FA. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
AbstractList Early studies in cellular models suggested an iron accumulation in Friedreich's ataxia (FA), yet findings from patients are lacking.BACKGROUNDEarly studies in cellular models suggested an iron accumulation in Friedreich's ataxia (FA), yet findings from patients are lacking.The objective is to characterize systemic iron metabolism, body iron storages, and intracellular iron regulation in FA patients.OBJECTIVESThe objective is to characterize systemic iron metabolism, body iron storages, and intracellular iron regulation in FA patients.In FA patients and matched healthy controls, we assessed serum iron parameters, regulatory hormones as well as the expression of regulatory proteins and iron distribution in peripheral blood mononuclear cells (PBMCs). We applied magnetic resonance imaging with R2*-relaxometry to quantify iron storages in the liver, spleen, and pancreas. Across all evaluations, we assessed the influence of the genetic severity as expressed by the length of the shorter GAA-expansion (GAA1).METHODSIn FA patients and matched healthy controls, we assessed serum iron parameters, regulatory hormones as well as the expression of regulatory proteins and iron distribution in peripheral blood mononuclear cells (PBMCs). We applied magnetic resonance imaging with R2*-relaxometry to quantify iron storages in the liver, spleen, and pancreas. Across all evaluations, we assessed the influence of the genetic severity as expressed by the length of the shorter GAA-expansion (GAA1).We recruited 40 FA patients (19 women). Compared to controls, FA patients displayed lower serum iron and transferrin saturation. Serum ferritin, hepcidin, mean corpuscular hemoglobin and mean corpuscular volume in FA inversely correlated with the GAA1-repeat length, indicating iron deficiency and restricted availability for erythropoiesis with increasing genetic severity. R2*-relaxometry revealed a reduction of splenic and hepatic iron stores in FA. Liver and spleen R2* values inversely correlated with the GAA1-repeat length. FA PBMCs displayed downregulation of ferritin and upregulation of transferrin receptor and divalent metal transporter-1 mRNA, particularly in patients with >500 GAA1-repeats. In FA PBMCs, intracellular iron was not increased, but shifted toward mitochondria.RESULTSWe recruited 40 FA patients (19 women). Compared to controls, FA patients displayed lower serum iron and transferrin saturation. Serum ferritin, hepcidin, mean corpuscular hemoglobin and mean corpuscular volume in FA inversely correlated with the GAA1-repeat length, indicating iron deficiency and restricted availability for erythropoiesis with increasing genetic severity. R2*-relaxometry revealed a reduction of splenic and hepatic iron stores in FA. Liver and spleen R2* values inversely correlated with the GAA1-repeat length. FA PBMCs displayed downregulation of ferritin and upregulation of transferrin receptor and divalent metal transporter-1 mRNA, particularly in patients with >500 GAA1-repeats. In FA PBMCs, intracellular iron was not increased, but shifted toward mitochondria.We provide evidence for a previously unrecognized iron starvation signature at systemic and cellular levels in FA patients, which is related to the underlying genetic severity. These findings challenge the use of systemic iron lowering therapies in FA. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.CONCLUSIONSWe provide evidence for a previously unrecognized iron starvation signature at systemic and cellular levels in FA patients, which is related to the underlying genetic severity. These findings challenge the use of systemic iron lowering therapies in FA. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Early studies in cellular models suggested an iron accumulation in Friedreich's ataxia (FA), yet findings from patients are lacking. The objective is to characterize systemic iron metabolism, body iron storages, and intracellular iron regulation in FA patients. In FA patients and matched healthy controls, we assessed serum iron parameters, regulatory hormones as well as the expression of regulatory proteins and iron distribution in peripheral blood mononuclear cells (PBMCs). We applied magnetic resonance imaging with R *-relaxometry to quantify iron storages in the liver, spleen, and pancreas. Across all evaluations, we assessed the influence of the genetic severity as expressed by the length of the shorter GAA-expansion (GAA1). We recruited 40 FA patients (19 women). Compared to controls, FA patients displayed lower serum iron and transferrin saturation. Serum ferritin, hepcidin, mean corpuscular hemoglobin and mean corpuscular volume in FA inversely correlated with the GAA1-repeat length, indicating iron deficiency and restricted availability for erythropoiesis with increasing genetic severity. R *-relaxometry revealed a reduction of splenic and hepatic iron stores in FA. Liver and spleen R * values inversely correlated with the GAA1-repeat length. FA PBMCs displayed downregulation of ferritin and upregulation of transferrin receptor and divalent metal transporter-1 mRNA, particularly in patients with >500 GAA1-repeats. In FA PBMCs, intracellular iron was not increased, but shifted toward mitochondria. We provide evidence for a previously unrecognized iron starvation signature at systemic and cellular levels in FA patients, which is related to the underlying genetic severity. These findings challenge the use of systemic iron lowering therapies in FA. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
BackgroundEarly studies in cellular models suggested an iron accumulation in Friedreich's ataxia (FA), yet findings from patients are lacking.ObjectivesThe objective is to characterize systemic iron metabolism, body iron storages, and intracellular iron regulation in FA patients.MethodsIn FA patients and matched healthy controls, we assessed serum iron parameters, regulatory hormones as well as the expression of regulatory proteins and iron distribution in peripheral blood mononuclear cells (PBMCs). We applied magnetic resonance imaging with R2*‐relaxometry to quantify iron storages in the liver, spleen, and pancreas. Across all evaluations, we assessed the influence of the genetic severity as expressed by the length of the shorter GAA‐expansion (GAA1).ResultsWe recruited 40 FA patients (19 women). Compared to controls, FA patients displayed lower serum iron and transferrin saturation. Serum ferritin, hepcidin, mean corpuscular hemoglobin and mean corpuscular volume in FA inversely correlated with the GAA1‐repeat length, indicating iron deficiency and restricted availability for erythropoiesis with increasing genetic severity. R2*‐relaxometry revealed a reduction of splenic and hepatic iron stores in FA. Liver and spleen R2* values inversely correlated with the GAA1‐repeat length. FA PBMCs displayed downregulation of ferritin and upregulation of transferrin receptor and divalent metal transporter‐1 mRNA, particularly in patients with >500 GAA1‐repeats. In FA PBMCs, intracellular iron was not increased, but shifted toward mitochondria.ConclusionsWe provide evidence for a previously unrecognized iron starvation signature at systemic and cellular levels in FA patients, which is related to the underlying genetic severity. These findings challenge the use of systemic iron lowering therapies in FA. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Background Early studies in cellular models suggested an iron accumulation in Friedreich's ataxia (FA), yet findings from patients are lacking. Objectives The objective is to characterize systemic iron metabolism, body iron storages, and intracellular iron regulation in FA patients. Methods In FA patients and matched healthy controls, we assessed serum iron parameters, regulatory hormones as well as the expression of regulatory proteins and iron distribution in peripheral blood mononuclear cells (PBMCs). We applied magnetic resonance imaging with R2*‐relaxometry to quantify iron storages in the liver, spleen, and pancreas. Across all evaluations, we assessed the influence of the genetic severity as expressed by the length of the shorter GAA‐expansion (GAA1). Results We recruited 40 FA patients (19 women). Compared to controls, FA patients displayed lower serum iron and transferrin saturation. Serum ferritin, hepcidin, mean corpuscular hemoglobin and mean corpuscular volume in FA inversely correlated with the GAA1‐repeat length, indicating iron deficiency and restricted availability for erythropoiesis with increasing genetic severity. R2*‐relaxometry revealed a reduction of splenic and hepatic iron stores in FA. Liver and spleen R2* values inversely correlated with the GAA1‐repeat length. FA PBMCs displayed downregulation of ferritin and upregulation of transferrin receptor and divalent metal transporter‐1 mRNA, particularly in patients with >500 GAA1‐repeats. In FA PBMCs, intracellular iron was not increased, but shifted toward mitochondria. Conclusions We provide evidence for a previously unrecognized iron starvation signature at systemic and cellular levels in FA patients, which is related to the underlying genetic severity. These findings challenge the use of systemic iron lowering therapies in FA. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Author Kiechl, Stefan
Amprosi, Matthias
Boesch, Sylvia
Grander, Manuel
Haschka, David
Henninger, Benjamin
Weiss, Günter
Seifert, Markus
Kremser, Christian
Högl, Birgit
Indelicato, Elisabetta
Fischer, Christine
Nachbauer, Wolfgang
Stefani, Ambra
Author_xml – sequence: 1
  givenname: Manuel
  surname: Grander
  fullname: Grander, Manuel
  organization: Medical University of Innsbruck
– sequence: 2
  givenname: David
  surname: Haschka
  fullname: Haschka, David
  organization: Medical University of Innsbruck
– sequence: 3
  givenname: Elisabetta
  orcidid: 0000-0003-0217-8630
  surname: Indelicato
  fullname: Indelicato, Elisabetta
  email: elisabetta.indelicato@i-med.ac.at
  organization: Medical University of Innsbruck
– sequence: 4
  givenname: Christian
  surname: Kremser
  fullname: Kremser, Christian
  organization: Medical University of Innsbruck
– sequence: 5
  givenname: Matthias
  surname: Amprosi
  fullname: Amprosi, Matthias
  organization: Medical University of Innsbruck
– sequence: 6
  givenname: Wolfgang
  surname: Nachbauer
  fullname: Nachbauer, Wolfgang
  organization: Medical University of Innsbruck
– sequence: 7
  givenname: Benjamin
  surname: Henninger
  fullname: Henninger, Benjamin
  organization: Medical University of Innsbruck
– sequence: 8
  givenname: Ambra
  orcidid: 0000-0003-4259-8824
  surname: Stefani
  fullname: Stefani, Ambra
  organization: Medical University of Innsbruck
– sequence: 9
  givenname: Birgit
  surname: Högl
  fullname: Högl, Birgit
  organization: Medical University of Innsbruck
– sequence: 10
  givenname: Christine
  surname: Fischer
  fullname: Fischer, Christine
  organization: Medical University of Innsbruck
– sequence: 11
  givenname: Markus
  surname: Seifert
  fullname: Seifert, Markus
  organization: Medical University of Innsbruck
– sequence: 12
  givenname: Stefan
  surname: Kiechl
  fullname: Kiechl, Stefan
  organization: VASCage, Centre on Clinical Stroke Research
– sequence: 13
  givenname: Günter
  surname: Weiss
  fullname: Weiss, Günter
  organization: Medical University of Innsbruck
– sequence: 14
  givenname: Sylvia
  surname: Boesch
  fullname: Boesch, Sylvia
  organization: Medical University of Innsbruck
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38686449$$D View this record in MEDLINE/PubMed
BookMark eNp90E1P3DAQgGELUZUFeuAPoEg9tD0Exl-JfUTLp0TFgfYcee1xa5Q41Hba8u_JstADEj15Ds-MrHeXbMcxIiEHFI4oADseXD5iWlG9RRZUclorJtttsgClZM2pkjtkN-c7AEolbd6THa4a1QihF2R5gRFLsNUpFkxDiOiqqzTG6raY9NuUsB7Dj2jKlLAKsTpPAV3CYH9-ytVJMX-D2SfvvOkzfnh-98j387Nvy8v6-ubianlyXVsuua6dAK2984DSg7Dag1xRa5x3TDC7alqBrnEKVtyhBK6Fd1S0LWPguYMW-B75vLl7n8ZfE-bSDSFb7HsTcZxyx0HollFFxUw_vqJ345Ti_LtZzXUkZc364OGzmlYDuu4-hcGkh-4lzwy-bIBNY84J_T9CoVun7-b03VP62R6_sjaUp4AlmdD_b-NP6PHh7dPd19PbzcYjIJmS7w
CitedBy_id crossref_primary_10_1038_s41582_025_01065_y
crossref_primary_10_1080_14737175_2024_2376840
crossref_primary_10_3389_fnmol_2025_1511388
crossref_primary_10_3390_ijms252111615
Cites_doi 10.1002/ana.24248
10.1146/annurev.nutr.26.061505.111303
10.1371/journal.pone.0116396
10.1016/j.freeradbiomed.2013.09.001
10.1016/j.bcp.2011.06.045
10.1016/j.mri.2021.03.015
10.1016/j.cell.2016.12.034
10.1152/ajprenal.00174.2010
10.3324/haematol.2022.281149
10.1007/s00330-020-07291-w
10.3390/ijms23126789
10.1007/s00330-012-2506-2
10.1093/hmg/9.2.275
10.1016/j.neuroimage.2020.117080
10.1002/acn3.660
10.1182/blood-2008-12-195651
10.1056/NEJMra1401038
10.1039/C4MT00328D
10.1038/nprot.2009.151
10.1371/journal.pone.0192779
10.1002/jmri.24479
10.1007/s10534-019-00186-4
10.1002/1531-8249(199905)45:5<673::AID-ANA20>3.0.CO;2-Q
10.1038/ng.2996
10.1080/14734220600913246
10.1182/blood-2014-05-516252
10.1126/science.276.5319.1709
10.1016/j.ejrad.2021.109789
10.3389/fgeed.2022.903139
10.1111/jnc.12317
10.1038/84818
10.1080/21678707.2018.1409109
10.1002/mds.22769
10.1186/2051-5960-1-26
10.1126/science.271.5254.1423
10.1124/jpet.118.252759
10.1016/j.cmet.2015.01.010
10.1080/13543784.2023.2276758
10.1093/hmg/ddad051
10.1182/blood-2006-12-065433
10.1182/blood.2020006987
10.1038/ng1097-215
10.1002/mrm.10735
10.1007/s00330-019-06380-9
10.1007/s00234-017-1813-3
10.1111/jnc.12303
10.1093/hmg/ddaa267
10.1002/ana.410440121
10.1002/mds.27482
10.1002/1531-8249(199907)46:1<123::AID-ANA19>3.0.CO;2-H
10.1073/pnas.0906784106
10.1016/j.sleep.2014.03.025
10.1186/s13023-020-01475-9
10.1007/s12311-012-0383-5
10.1097/RLI.0b013e3181862413
ContentType Journal Article
Copyright 2024 The Authors. published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
– notice: 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
7TK
8FD
FR3
K9.
NAPCQ
P64
RC3
7X8
DOI 10.1002/mds.29819
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Nursing & Allied Health Premium
Genetics Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Nursing & Allied Health Premium

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1531-8257
EndPage 1098
ExternalDocumentID 38686449
10_1002_mds_29819
MDS29819
Genre article
Journal Article
GrantInformation_xml – fundername: FARA Ireland
– fundername: FARA Australia
– fundername: Friedreich's Ataxia Research Alliance
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
123
1CY
1L6
1OB
1OC
1ZS
24P
31~
33P
3PY
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
FYBCS
G-S
G.N
GNP
GODZA
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWD
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TWZ
UB1
V2E
V9Y
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
XV2
YCJ
ZGI
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
NPM
7TK
8FD
FR3
K9.
NAPCQ
P64
RC3
7X8
ID FETCH-LOGICAL-c3539-d4099fdf0e5f04c9f05b1cadfd242cb674ed6d80b3de50394fd1477220f3d0703
IEDL.DBID DRFUL
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001209605400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-3185
1531-8257
IngestDate Thu Jul 10 19:19:52 EDT 2025
Sat Nov 29 14:48:38 EST 2025
Mon Jul 21 05:57:52 EDT 2025
Sat Nov 29 07:10:22 EST 2025
Tue Nov 18 22:02:24 EST 2025
Wed Jan 22 17:17:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Friedreich's ataxia
iron
hepcidin
MRI relaxometry
liver
Language English
License Attribution-NonCommercial-NoDerivs
2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3539-d4099fdf0e5f04c9f05b1cadfd242cb674ed6d80b3de50394fd1477220f3d0703
Notes Manuel Grander and David Haschka contributed equally as first authors. Günter Weiss and Sylvia Boesch contributed equally as last authors.
The authors declare that there are no conflicts of interest to report related to this work.
Friedreich's Ataxia Research Alliance (FARA), FARA Ireland and FARA Australia.
Funding agencies
Relevant Conflicts of interst/financial disclosures
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4259-8824
0000-0003-0217-8630
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmds.29819
PMID 38686449
PQID 3082551260
PQPubID 1016421
PageCount 11
ParticipantIDs proquest_miscellaneous_3049721814
proquest_journals_3082551260
pubmed_primary_38686449
crossref_primary_10_1002_mds_29819
crossref_citationtrail_10_1002_mds_29819
wiley_primary_10_1002_mds_29819_MDS29819
PublicationCentury 2000
PublicationDate July 2024
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: July 2024
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Hoboken
PublicationTitle Movement disorders
PublicationTitleAlternate Mov Disord
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2023; 32
2013; 1
2013; 65
2021; 29
2013; 126
2000; 9
1997; 276
1999; 46
2022; 23
2019; 369
1999; 45
2020; 15
2009; 113
2023; 108
2012; 11
1998; 44
2015; 372
2018; 6
2021; 31
2006; 26
2014; 15
1997; 17
2011; 26
2017; 168
2012; 22
2021; 80
2014; 124
2019; 6
2020; 220
2019; 32
2011; 82
2019; 34
2015; 10
2006; 5
2014; 46
2001; 27
2021; 141
2014; 40
2015; 7
2004; 51
2017; 59
2020; 30
2022; 4
2021; 137
2007; 110
2010; 299
2015; 21
1996; 271
2008; 43
2009; 4
2014; 76
2009; 106
2018; 13
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 113
  start-page: 5277
  issue: 21
  year: 2009
  end-page: 5286
  article-title: Regulation of iron homeostasis in anemia of chronic disease and iron deficiency anemia: diagnostic and therapeutic implications
  publication-title: Blood
– volume: 271
  start-page: 1423
  issue: 5254
  year: 1996
  end-page: 1427
  article-title: Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion
  publication-title: Science
– volume: 126
  start-page: 103
  issue: Suppl 1
  year: 2013
  end-page: 117
  article-title: Clinical features of Friedreich's ataxia: classical and atypical phenotypes
  publication-title: J Neurochem
– volume: 26
  start-page: 323
  year: 2006
  end-page: 342
  article-title: Regulation of iron metabolism by hepcidin
  publication-title: Annu Rev Nutr
– volume: 46
  start-page: 123
  issue: 1
  year: 1999
  end-page: 125
  article-title: Increased iron in the dentate nucleus of patients with Friedrich's ataxia
  publication-title: Ann Neurol
– volume: 32
  start-page: 2241
  issue: 13
  year: 2023
  end-page: 2250
  article-title: Skeletal muscle transcriptomics dissects the pathogenesis of Friedreich's ataxia
  publication-title: Hum Mol Genet
– volume: 124
  start-page: 479
  issue: 4
  year: 2014
  end-page: 482
  article-title: Molecular liaisons between erythropoiesis and iron metabolism
  publication-title: Blood
– volume: 137
  start-page: 2090
  issue: 15
  year: 2021
  end-page: 2102
  article-title: Defective palmitoylation of transferrin receptor triggers iron overload in Friedreich ataxia fibroblasts
  publication-title: Blood
– volume: 59
  start-page: 403
  issue: 4
  year: 2017
  end-page: 409
  article-title: MR imaging differentiation of Fe(2+) and Fe(3+) based on relaxation and magnetic susceptibility properties
  publication-title: Neuroradiology
– volume: 7
  start-page: 1036
  issue: 6
  year: 2015
  end-page: 1045
  article-title: Contrasting regulation of macrophage iron homeostasis in response to infection with Listeria monocytogenes depending on localization of bacteria
  publication-title: Metallomics
– volume: 126
  start-page: 53
  issue: Suppl 1
  year: 2013
  end-page: 64
  article-title: Mitochondrial pathophysiology in Friedreich's ataxia
  publication-title: J Neurochem
– volume: 220
  year: 2020
  article-title: The influence of iron oxidation state on quantitative MRI parameters in post mortem human brain
  publication-title: Neuroimage
– volume: 168
  start-page: 344
  issue: 3
  year: 2017
  end-page: 361
  article-title: A red carpet for iron metabolism
  publication-title: Cell
– volume: 10
  issue: 3
  year: 2015
  article-title: The pathogenesis of cardiomyopathy in Friedreich ataxia
  publication-title: PLoS One
– volume: 23
  issue: 12
  year: 2022
  article-title: DMT1 protects macrophages from salmonella infection by controlling cellular iron turnover and lipocalin 2 expression
  publication-title: Int J Mol Sci
– volume: 51
  start-page: 607
  issue: 3
  year: 2004
  end-page: 611
  article-title: Mimicking liver iron overload using liposomal ferritin preparations
  publication-title: Magn Reson Med
– volume: 76
  start-page: 509
  issue: 4
  year: 2014
  end-page: 521
  article-title: Deferiprone in Friedreich ataxia: a 6‐month randomized controlled trial
  publication-title: Ann Neurol
– volume: 82
  start-page: 1291
  issue: 10
  year: 2011
  end-page: 1303
  article-title: Erythropoietin, erythropoiesis and beyond
  publication-title: Biochem Pharmacol
– volume: 65
  start-page: 1174
  year: 2013
  end-page: 1194
  article-title: The complex interplay of iron metabolism, reactive oxygen species, and reactive nitrogen species: insights into the potential of various iron therapies to induce oxidative and nitrosative stress
  publication-title: Free Radic Biol Med
– volume: 6
  start-page: 57
  issue: 1
  year: 2018
  end-page: 67
  article-title: Emerging therapeutics for the treatment of Friedreich's ataxia
  publication-title: Expert Opin Orphan Drugs
– volume: 30
  start-page: 383
  issue: 1
  year: 2020
  end-page: 393
  article-title: Practical guide to quantification of hepatic iron with MRI
  publication-title: Eur Radiol
– volume: 80
  start-page: 1
  year: 2021
  end-page: 8
  article-title: Effect of hepatic steatosis on native T1 mapping of 3T magnetic resonance imaging in the assessment of T1 values for patients with non‐alcoholic fatty liver disease
  publication-title: Magn Reson Imaging
– volume: 9
  start-page: 275
  issue: 2
  year: 2000
  end-page: 282
  article-title: Clinical, biochemical and molecular genetic correlations in Friedreich's ataxia
  publication-title: Hum Mol Genet
– volume: 26
  start-page: 302
  issue: 2
  year: 2011
  end-page: 306
  article-title: Restless legs syndrome in Friedreich ataxia: a polysomnographic study
  publication-title: Mov Disord
– volume: 13
  issue: 2
  year: 2018
  article-title: Low apolipoprotein A‐I levels in Friedreich's ataxia and in frataxin‐deficient cells: implications for therapy
  publication-title: PLoS One
– volume: 141
  year: 2021
  article-title: Evaluation of liver fibrosis and cirrhosis on the basis of quantitative T1 mapping: are acute inflammation, age and liver volume confounding factors?
  publication-title: Eur J Radiol
– volume: 17
  start-page: 215
  issue: 2
  year: 1997
  end-page: 217
  article-title: Aconitase and mitochondrial iron‐sulphur protein deficiency in Friedreich ataxia
  publication-title: Nat Genet
– volume: 1
  start-page: 26
  year: 2013
  article-title: Friedreich ataxia: metal dysmetabolism in dorsal root ganglia
  publication-title: Acta Neuropathol Commun
– volume: 4
  start-page: 1582
  issue: 11
  year: 2009
  end-page: 1590
  article-title: Isolation of mitochondria‐associated membranes and mitochondria from animal tissues and cells
  publication-title: Nat Protoc
– volume: 32
  start-page: 307
  issue: 2
  year: 2019
  end-page: 315
  article-title: Assessment of cell‐free levels of iron and copper in patients with Friedreich's ataxia
  publication-title: Biometals
– volume: 29
  start-page: 3818
  issue: 23
  year: 2021
  end-page: 3829
  article-title: Methylated and unmethylated epialleles support variegated epigenetic silencing in Friedreich ataxia
  publication-title: Hum Mol Genet
– volume: 21
  start-page: 311
  issue: 2
  year: 2015
  end-page: 323
  article-title: Iron regulatory protein 1 sustains mitochondrial iron loading and function in frataxin deficiency
  publication-title: Cell Metab
– volume: 108
  start-page: 135
  issue: 1
  year: 2023
  end-page: 149
  article-title: Comparative analysis of oral and intravenous iron therapy in rat models of inflammatory anemia and iron deficiency
  publication-title: Haematologica
– volume: 4
  year: 2022
  article-title: Advantages and limitations of gene therapy and gene editing for Friedreich's ataxia
  publication-title: Front Genome Ed
– volume: 11
  start-page: 845
  issue: 4
  year: 2012
  end-page: 860
  article-title: Friedreich's ataxia causes redistribution of iron, copper, and zinc in the dentate nucleus
  publication-title: Cerebellum
– volume: 22
  start-page: 2478
  issue: 11
  year: 2012
  end-page: 2486
  article-title: Evaluation of MR imaging with T1 and T2* mapping for the determination of hepatic iron overload
  publication-title: Eur Radiol
– volume: 45
  start-page: 673
  issue: 5
  year: 1999
  end-page: 675
  article-title: Direct evidence that mitochondrial iron accumulation occurs in Friedreich ataxia
  publication-title: Ann Neurol
– volume: 110
  start-page: 401
  issue: 1
  year: 2007
  end-page: 408
  article-title: Selective iron chelation in Friedreich ataxia: biologic and clinical implications
  publication-title: Blood
– volume: 15
  start-page: 198
  issue: 1
  year: 2020
  article-title: Onset features and time to diagnosis in Friedreich's ataxia
  publication-title: Orphanet J Rare Dis
– volume: 46
  start-page: 678
  issue: 7
  year: 2014
  end-page: 684
  article-title: Identification of erythroferrone as an erythroid regulator of iron metabolism
  publication-title: Nat Genet
– volume: 44
  start-page: 132
  issue: 1
  year: 1998
  end-page: 134
  article-title: Normal serum iron and ferritin concentrations in patients with Friedreich's ataxia
  publication-title: Ann Neurol
– volume: 40
  start-page: 1230
  issue: 5
  year: 2014
  end-page: 1237
  article-title: Estimation of the absolute shear stiffness of human lung parenchyma using (1) H spin echo, echo planar MR elastography
  publication-title: J Magn Reson Imaging
– volume: 32
  start-page: 967
  issue: 11
  year: 2023
  end-page: 969
  article-title: Experimental drugs for Friedrich's ataxia: progress and setbacks in clinical trials
  publication-title: Expert Opin Investig Drugs
– volume: 369
  start-page: 47
  issue: 1
  year: 2019
  end-page: 54
  article-title: Ferroptosis as a novel therapeutic target for Friedreich's ataxia
  publication-title: J Pharmacol Exp Ther
– volume: 276
  start-page: 1709
  issue: 5319
  year: 1997
  end-page: 1712
  article-title: Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin
  publication-title: Science
– volume: 43
  start-page: 854
  issue: 12
  year: 2008
  end-page: 860
  article-title: T2* relaxometry in liver, pancreas, and spleen in a healthy cohort of one hundred twenty‐nine subjects‐correlation with age, gender, and serum ferritin
  publication-title: Invest Radiol
– volume: 27
  start-page: 181
  issue: 2
  year: 2001
  end-page: 186
  article-title: Mouse models for Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect and Fe‐S enzyme deficiency followed by intramitochondrial iron deposits
  publication-title: Nat Genet
– volume: 299
  start-page: F1
  issue: 1
  year: 2010
  end-page: F13
  article-title: Hypoxic regulation of erythropoiesis and iron metabolism
  publication-title: Am J Physiol Renal Physiol
– volume: 5
  start-page: 257
  issue: 4
  year: 2006
  end-page: 267
  article-title: Iron and iron‐responsive proteins in the cardiomyopathy of Friedreich's ataxia
  publication-title: Cerebellum
– volume: 15
  start-page: 860
  issue: 8
  year: 2014
  end-page: 873
  article-title: Restless legs syndrome/Willis‐Ekbom disease diagnostic criteria: updated International Restless Legs Syndrome Study Group (IRLSSG) consensus criteria–history, rationale, description, and significance
  publication-title: Sleep Med
– volume: 6
  start-page: 15
  issue: 1
  year: 2019
  end-page: 26
  article-title: Safety, pharmacodynamics, and potential benefit of omaveloxolone in Friedreich ataxia
  publication-title: Ann Clin Transl Neurol
– volume: 31
  start-page: 2252
  issue: 4
  year: 2021
  end-page: 2262
  article-title: Performance of different Dixon‐based methods for MR liver iron assessment in comparison to a biopsy‐validated * relaxometry method
  publication-title: Eur Radiol
– volume: 106
  start-page: 16381
  issue: 38
  year: 2009
  end-page: 16386
  article-title: Elucidation of the mechanism of mitochondrial iron loading in Friedreich's ataxia by analysis of a mouse mutant
  publication-title: Proc Natl Acad Sci U S A
– volume: 34
  start-page: 114
  issue: 1
  year: 2019
  end-page: 123
  article-title: Association of mitochondrial iron deficiency and dysfunction with idiopathic restless legs syndrome
  publication-title: Mov Disord
– volume: 372
  start-page: 1832
  issue: 19
  year: 2015
  end-page: 1843
  article-title: Iron‐deficiency anemia
  publication-title: N Engl J Med
– ident: e_1_2_9_17_1
  doi: 10.1002/ana.24248
– ident: e_1_2_9_23_1
  doi: 10.1146/annurev.nutr.26.061505.111303
– ident: e_1_2_9_29_1
  doi: 10.1371/journal.pone.0116396
– ident: e_1_2_9_15_1
  doi: 10.1016/j.freeradbiomed.2013.09.001
– ident: e_1_2_9_28_1
  doi: 10.1016/j.bcp.2011.06.045
– ident: e_1_2_9_40_1
  doi: 10.1016/j.mri.2021.03.015
– ident: e_1_2_9_24_1
  doi: 10.1016/j.cell.2016.12.034
– ident: e_1_2_9_26_1
  doi: 10.1152/ajprenal.00174.2010
– ident: e_1_2_9_33_1
  doi: 10.3324/haematol.2022.281149
– ident: e_1_2_9_37_1
  doi: 10.1007/s00330-020-07291-w
– ident: e_1_2_9_34_1
  doi: 10.3390/ijms23126789
– ident: e_1_2_9_39_1
  doi: 10.1007/s00330-012-2506-2
– ident: e_1_2_9_45_1
  doi: 10.1093/hmg/9.2.275
– ident: e_1_2_9_52_1
  doi: 10.1016/j.neuroimage.2020.117080
– ident: e_1_2_9_18_1
  doi: 10.1002/acn3.660
– ident: e_1_2_9_25_1
  doi: 10.1182/blood-2008-12-195651
– ident: e_1_2_9_42_1
  doi: 10.1056/NEJMra1401038
– ident: e_1_2_9_32_1
  doi: 10.1039/C4MT00328D
– ident: e_1_2_9_35_1
  doi: 10.1038/nprot.2009.151
– ident: e_1_2_9_31_1
  doi: 10.1371/journal.pone.0192779
– ident: e_1_2_9_38_1
  doi: 10.1002/jmri.24479
– ident: e_1_2_9_48_1
  doi: 10.1007/s10534-019-00186-4
– ident: e_1_2_9_50_1
  doi: 10.1002/1531-8249(199905)45:5<673::AID-ANA20>3.0.CO;2-Q
– ident: e_1_2_9_27_1
  doi: 10.1038/ng.2996
– ident: e_1_2_9_11_1
  doi: 10.1080/14734220600913246
– ident: e_1_2_9_41_1
  doi: 10.1182/blood-2014-05-516252
– ident: e_1_2_9_12_1
  doi: 10.1126/science.276.5319.1709
– ident: e_1_2_9_44_1
  doi: 10.1016/j.ejrad.2021.109789
– ident: e_1_2_9_51_1
  doi: 10.3389/fgeed.2022.903139
– ident: e_1_2_9_8_1
  doi: 10.1111/jnc.12317
– ident: e_1_2_9_13_1
  doi: 10.1038/84818
– ident: e_1_2_9_55_1
  doi: 10.1080/21678707.2018.1409109
– ident: e_1_2_9_22_1
  doi: 10.1002/mds.22769
– ident: e_1_2_9_46_1
  doi: 10.1186/2051-5960-1-26
– ident: e_1_2_9_3_1
  doi: 10.1126/science.271.5254.1423
– ident: e_1_2_9_16_1
  doi: 10.1124/jpet.118.252759
– ident: e_1_2_9_49_1
  doi: 10.1016/j.cmet.2015.01.010
– ident: e_1_2_9_56_1
  doi: 10.1080/13543784.2023.2276758
– ident: e_1_2_9_6_1
  doi: 10.1093/hmg/ddad051
– ident: e_1_2_9_19_1
  doi: 10.1182/blood-2006-12-065433
– ident: e_1_2_9_47_1
  doi: 10.1182/blood.2020006987
– ident: e_1_2_9_5_1
  doi: 10.1038/ng1097-215
– ident: e_1_2_9_53_1
  doi: 10.1002/mrm.10735
– ident: e_1_2_9_36_1
  doi: 10.1007/s00330-019-06380-9
– ident: e_1_2_9_54_1
  doi: 10.1007/s00234-017-1813-3
– ident: e_1_2_9_7_1
  doi: 10.1111/jnc.12303
– ident: e_1_2_9_4_1
  doi: 10.1093/hmg/ddaa267
– ident: e_1_2_9_20_1
  doi: 10.1002/ana.410440121
– ident: e_1_2_9_21_1
  doi: 10.1002/mds.27482
– ident: e_1_2_9_9_1
  doi: 10.1002/1531-8249(199907)46:1<123::AID-ANA19>3.0.CO;2-H
– ident: e_1_2_9_14_1
  doi: 10.1073/pnas.0906784106
– ident: e_1_2_9_30_1
  doi: 10.1016/j.sleep.2014.03.025
– ident: e_1_2_9_2_1
  doi: 10.1186/s13023-020-01475-9
– ident: e_1_2_9_10_1
  doi: 10.1007/s12311-012-0383-5
– ident: e_1_2_9_43_1
  doi: 10.1097/RLI.0b013e3181862413
SSID ssj0011516
Score 2.4734445
Snippet Background Early studies in cellular models suggested an iron accumulation in Friedreich's ataxia (FA), yet findings from patients are lacking. Objectives The...
Early studies in cellular models suggested an iron accumulation in Friedreich's ataxia (FA), yet findings from patients are lacking. The objective is to...
BackgroundEarly studies in cellular models suggested an iron accumulation in Friedreich's ataxia (FA), yet findings from patients are lacking.ObjectivesThe...
Early studies in cellular models suggested an iron accumulation in Friedreich's ataxia (FA), yet findings from patients are lacking.BACKGROUNDEarly studies in...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1088
SubjectTerms Ataxia
Divalent metal transporter-1
Down-regulation
Erythropoiesis
Ferritin
Friedreich's ataxia
Hemoglobin
Hepatocytes
Hepcidin
Intracellular
Iron
Iron deficiency
Leukocytes (mononuclear)
Liver
Magnetic resonance imaging
Movement disorders
MRI relaxometry
mRNA
Peripheral blood mononuclear cells
Regulatory proteins
Spleen
Transferrins
Title Genetic Determined Iron Starvation Signature in Friedreich's Ataxia
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmds.29819
https://www.ncbi.nlm.nih.gov/pubmed/38686449
https://www.proquest.com/docview/3082551260
https://www.proquest.com/docview/3049721814
Volume 39
WOSCitedRecordID wos001209605400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1531-8257
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011516
  issn: 0885-3185
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEB68EF-8j3qxiqAvsZuzu_hUrEVBS_GAvoXtHhrQVJoq_nxnkzRSVBB8CYGdZMPOzs737fEF4EgZirxHaEe5oXQChpxVWJYijaeZEpRpnavrXzc6Hdbr8e4UnI3PwhT6ENWEm42MfLy2AS76Wf1LNPRFZaceZ1byc9YeqkLmNdu6bT9cV4sImMyiAkSG-SHhsbAQ9erVw5Pp6BvGnISsec5pL_3ra5dhsYSapFn0jRWY0ukqzN-Ui-lrcG4lp7GMtMotMVqRq-EgJQhAy5lacpc8FtKfJElJG2m1GupEPh1npDkSH4lYh4f2xf35pVP-U8GRfuhzRyGf4wY9pENDA8kNDfuuFMoozNWyHzUCrSLFaN9XOqQ-D4xyA0TgHjW-ssPDBsykg1RvATEi4pFGeqIxxWthuKsQG0YI-UJGufBqcDJu2liWguP2vxfPcSGV7MXYKHHeKDU4rExfC5WNn4x2x_6Jy0DLYqu2g6APWVkNDqpiDBG77iFSPXizNoHVKGJuUIPNwq9VLT6LGEJCfPlJ7r7fq49vWnf5zfbfTXdgwUMQVGzv3YWZ0fBN78GcfB8l2XAfpr2gi9dGj-2XffcTVont4A
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD6Iivri_TKvUQR9qaZt2iXgi6hDcRuCCr6VLBctaCfbFH--J21XGSoIvhVy2pScnJzvy-ULwL62FHmPNJ72I-UxjpxVOpaibGC4lpQbk6vrN-vtNn94EDdjcDI8C1PoQ1QTbi4y8vHaBbibkD7-Ug190f2jQHCn-TnBMCu5DX0Bu6nWEDCXxQWGjPIzwkNdIRocV6-OZqNvEHMUseYppzH3v5-dh9kSapLTom8swJjJFmGqVS6mL8GZk5zGMnJebokxmlz1uhlBAFrO1JLb9LGQ_iRpRhpIq3XPpOrpoE9OB_Ijlctw37i4O7v0yjsVPBVGofA08jlh0UMmspQpYWnU8ZXUVmOuVp24zoyONaedUJuIhoJZ7TNE4AG1oXbDwwqMZ93MrAGxMhaxQXpiMMUbaYWvERvGCPkiToUManA4bNtElYLj7t6L56SQSg4SbJQkb5Qa7FWmr4XKxk9Gm0MHJWWg9ROntoOgD1lZDXarYgwRt-4hM9N9czbMaRRxn9VgtXBsVUvIY46QED9-mPvv9-qT1vlt_rD-d9MdmL68azWT5lX7egNmAgRExVbfTRgf9N7MFkyq90Ha723nXfcTBXvudg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bSxwxFD6ILeJLL17qtts2LYK-TM3MZGYT6Iu4XSrqsqCCb0M2OdEBOyt7Kf58TzKzU8QWCr4N5MxkyMnJ-b5cvgDsWseJ92iMbJyZSEjirNqzFOMSlFZziRjU9U97w6G8ulKjFfi-PAtT60O0E24-MsJ47QMc76w7-KMa-svOviVKes3PFyLrhbBMxKhdQ6BcltcYMgtnhJe6Qjw5aF99nI2eQMzHiDWknMHr5_3sG3jVQE12WPeNt7CC1QasnTWL6Ztw5CWnqYz1my0xaNnxdFIxAqDNTC07L69r6U9WVmxAtNpOsTQ3ezN2ONf3pd6Cy8GPi6OfUXOnQmTSLFWRJT6nHHkIM8eFUY5n49ho6yzlajPOewJtbiUfpxYznirhbCwIgSfcpdYPD9uwWk0q3AHmdK5yJHqClOJROxVbwoY5Qb5McqWTDuwv27YwjeC4v_fitqilkpOCGqUIjdKBr63pXa2y8Tej7tJBRRNos8Kr7RDoI1bWgS9tMYWIX_fQFU4W3kZ4jSIZiw68qx3b1pLKXBIkpI_vB__9u_rirH8eHt7_v-lnWBv1B8Xp8fDkA6wnhIfqnb5dWJ1PF_gRXprf83I2_RR67gOpne3x
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+Determined+Iron+Starvation+Signature+in+Friedreich%27s+Ataxia&rft.jtitle=Movement+disorders&rft.au=Grander%2C+Manuel&rft.au=Haschka%2C+David&rft.au=Indelicato%2C+Elisabetta&rft.au=Kremser%2C+Christian&rft.date=2024-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0885-3185&rft.eissn=1531-8257&rft.volume=39&rft.issue=7&rft.spage=1088&rft.epage=1098&rft_id=info:doi/10.1002%2Fmds.29819&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-3185&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-3185&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-3185&client=summon