Genetic Determined Iron Starvation Signature in Friedreich's Ataxia
Background Early studies in cellular models suggested an iron accumulation in Friedreich's ataxia (FA), yet findings from patients are lacking. Objectives The objective is to characterize systemic iron metabolism, body iron storages, and intracellular iron regulation in FA patients. Methods In...
Uložené v:
| Vydané v: | Movement disorders Ročník 39; číslo 7; s. 1088 - 1098 |
|---|---|
| Hlavní autori: | , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Hoboken, USA
John Wiley & Sons, Inc
01.07.2024
Wiley Subscription Services, Inc |
| Predmet: | |
| ISSN: | 0885-3185, 1531-8257, 1531-8257 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Background
Early studies in cellular models suggested an iron accumulation in Friedreich's ataxia (FA), yet findings from patients are lacking.
Objectives
The objective is to characterize systemic iron metabolism, body iron storages, and intracellular iron regulation in FA patients.
Methods
In FA patients and matched healthy controls, we assessed serum iron parameters, regulatory hormones as well as the expression of regulatory proteins and iron distribution in peripheral blood mononuclear cells (PBMCs). We applied magnetic resonance imaging with R2*‐relaxometry to quantify iron storages in the liver, spleen, and pancreas. Across all evaluations, we assessed the influence of the genetic severity as expressed by the length of the shorter GAA‐expansion (GAA1).
Results
We recruited 40 FA patients (19 women). Compared to controls, FA patients displayed lower serum iron and transferrin saturation. Serum ferritin, hepcidin, mean corpuscular hemoglobin and mean corpuscular volume in FA inversely correlated with the GAA1‐repeat length, indicating iron deficiency and restricted availability for erythropoiesis with increasing genetic severity. R2*‐relaxometry revealed a reduction of splenic and hepatic iron stores in FA. Liver and spleen R2* values inversely correlated with the GAA1‐repeat length. FA PBMCs displayed downregulation of ferritin and upregulation of transferrin receptor and divalent metal transporter‐1 mRNA, particularly in patients with >500 GAA1‐repeats. In FA PBMCs, intracellular iron was not increased, but shifted toward mitochondria.
Conclusions
We provide evidence for a previously unrecognized iron starvation signature at systemic and cellular levels in FA patients, which is related to the underlying genetic severity. These findings challenge the use of systemic iron lowering therapies in FA. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. |
|---|---|
| AbstractList | Early studies in cellular models suggested an iron accumulation in Friedreich's ataxia (FA), yet findings from patients are lacking.BACKGROUNDEarly studies in cellular models suggested an iron accumulation in Friedreich's ataxia (FA), yet findings from patients are lacking.The objective is to characterize systemic iron metabolism, body iron storages, and intracellular iron regulation in FA patients.OBJECTIVESThe objective is to characterize systemic iron metabolism, body iron storages, and intracellular iron regulation in FA patients.In FA patients and matched healthy controls, we assessed serum iron parameters, regulatory hormones as well as the expression of regulatory proteins and iron distribution in peripheral blood mononuclear cells (PBMCs). We applied magnetic resonance imaging with R2*-relaxometry to quantify iron storages in the liver, spleen, and pancreas. Across all evaluations, we assessed the influence of the genetic severity as expressed by the length of the shorter GAA-expansion (GAA1).METHODSIn FA patients and matched healthy controls, we assessed serum iron parameters, regulatory hormones as well as the expression of regulatory proteins and iron distribution in peripheral blood mononuclear cells (PBMCs). We applied magnetic resonance imaging with R2*-relaxometry to quantify iron storages in the liver, spleen, and pancreas. Across all evaluations, we assessed the influence of the genetic severity as expressed by the length of the shorter GAA-expansion (GAA1).We recruited 40 FA patients (19 women). Compared to controls, FA patients displayed lower serum iron and transferrin saturation. Serum ferritin, hepcidin, mean corpuscular hemoglobin and mean corpuscular volume in FA inversely correlated with the GAA1-repeat length, indicating iron deficiency and restricted availability for erythropoiesis with increasing genetic severity. R2*-relaxometry revealed a reduction of splenic and hepatic iron stores in FA. Liver and spleen R2* values inversely correlated with the GAA1-repeat length. FA PBMCs displayed downregulation of ferritin and upregulation of transferrin receptor and divalent metal transporter-1 mRNA, particularly in patients with >500 GAA1-repeats. In FA PBMCs, intracellular iron was not increased, but shifted toward mitochondria.RESULTSWe recruited 40 FA patients (19 women). Compared to controls, FA patients displayed lower serum iron and transferrin saturation. Serum ferritin, hepcidin, mean corpuscular hemoglobin and mean corpuscular volume in FA inversely correlated with the GAA1-repeat length, indicating iron deficiency and restricted availability for erythropoiesis with increasing genetic severity. R2*-relaxometry revealed a reduction of splenic and hepatic iron stores in FA. Liver and spleen R2* values inversely correlated with the GAA1-repeat length. FA PBMCs displayed downregulation of ferritin and upregulation of transferrin receptor and divalent metal transporter-1 mRNA, particularly in patients with >500 GAA1-repeats. In FA PBMCs, intracellular iron was not increased, but shifted toward mitochondria.We provide evidence for a previously unrecognized iron starvation signature at systemic and cellular levels in FA patients, which is related to the underlying genetic severity. These findings challenge the use of systemic iron lowering therapies in FA. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.CONCLUSIONSWe provide evidence for a previously unrecognized iron starvation signature at systemic and cellular levels in FA patients, which is related to the underlying genetic severity. These findings challenge the use of systemic iron lowering therapies in FA. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. Early studies in cellular models suggested an iron accumulation in Friedreich's ataxia (FA), yet findings from patients are lacking. The objective is to characterize systemic iron metabolism, body iron storages, and intracellular iron regulation in FA patients. In FA patients and matched healthy controls, we assessed serum iron parameters, regulatory hormones as well as the expression of regulatory proteins and iron distribution in peripheral blood mononuclear cells (PBMCs). We applied magnetic resonance imaging with R *-relaxometry to quantify iron storages in the liver, spleen, and pancreas. Across all evaluations, we assessed the influence of the genetic severity as expressed by the length of the shorter GAA-expansion (GAA1). We recruited 40 FA patients (19 women). Compared to controls, FA patients displayed lower serum iron and transferrin saturation. Serum ferritin, hepcidin, mean corpuscular hemoglobin and mean corpuscular volume in FA inversely correlated with the GAA1-repeat length, indicating iron deficiency and restricted availability for erythropoiesis with increasing genetic severity. R *-relaxometry revealed a reduction of splenic and hepatic iron stores in FA. Liver and spleen R * values inversely correlated with the GAA1-repeat length. FA PBMCs displayed downregulation of ferritin and upregulation of transferrin receptor and divalent metal transporter-1 mRNA, particularly in patients with >500 GAA1-repeats. In FA PBMCs, intracellular iron was not increased, but shifted toward mitochondria. We provide evidence for a previously unrecognized iron starvation signature at systemic and cellular levels in FA patients, which is related to the underlying genetic severity. These findings challenge the use of systemic iron lowering therapies in FA. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. BackgroundEarly studies in cellular models suggested an iron accumulation in Friedreich's ataxia (FA), yet findings from patients are lacking.ObjectivesThe objective is to characterize systemic iron metabolism, body iron storages, and intracellular iron regulation in FA patients.MethodsIn FA patients and matched healthy controls, we assessed serum iron parameters, regulatory hormones as well as the expression of regulatory proteins and iron distribution in peripheral blood mononuclear cells (PBMCs). We applied magnetic resonance imaging with R2*‐relaxometry to quantify iron storages in the liver, spleen, and pancreas. Across all evaluations, we assessed the influence of the genetic severity as expressed by the length of the shorter GAA‐expansion (GAA1).ResultsWe recruited 40 FA patients (19 women). Compared to controls, FA patients displayed lower serum iron and transferrin saturation. Serum ferritin, hepcidin, mean corpuscular hemoglobin and mean corpuscular volume in FA inversely correlated with the GAA1‐repeat length, indicating iron deficiency and restricted availability for erythropoiesis with increasing genetic severity. R2*‐relaxometry revealed a reduction of splenic and hepatic iron stores in FA. Liver and spleen R2* values inversely correlated with the GAA1‐repeat length. FA PBMCs displayed downregulation of ferritin and upregulation of transferrin receptor and divalent metal transporter‐1 mRNA, particularly in patients with >500 GAA1‐repeats. In FA PBMCs, intracellular iron was not increased, but shifted toward mitochondria.ConclusionsWe provide evidence for a previously unrecognized iron starvation signature at systemic and cellular levels in FA patients, which is related to the underlying genetic severity. These findings challenge the use of systemic iron lowering therapies in FA. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. Background Early studies in cellular models suggested an iron accumulation in Friedreich's ataxia (FA), yet findings from patients are lacking. Objectives The objective is to characterize systemic iron metabolism, body iron storages, and intracellular iron regulation in FA patients. Methods In FA patients and matched healthy controls, we assessed serum iron parameters, regulatory hormones as well as the expression of regulatory proteins and iron distribution in peripheral blood mononuclear cells (PBMCs). We applied magnetic resonance imaging with R2*‐relaxometry to quantify iron storages in the liver, spleen, and pancreas. Across all evaluations, we assessed the influence of the genetic severity as expressed by the length of the shorter GAA‐expansion (GAA1). Results We recruited 40 FA patients (19 women). Compared to controls, FA patients displayed lower serum iron and transferrin saturation. Serum ferritin, hepcidin, mean corpuscular hemoglobin and mean corpuscular volume in FA inversely correlated with the GAA1‐repeat length, indicating iron deficiency and restricted availability for erythropoiesis with increasing genetic severity. R2*‐relaxometry revealed a reduction of splenic and hepatic iron stores in FA. Liver and spleen R2* values inversely correlated with the GAA1‐repeat length. FA PBMCs displayed downregulation of ferritin and upregulation of transferrin receptor and divalent metal transporter‐1 mRNA, particularly in patients with >500 GAA1‐repeats. In FA PBMCs, intracellular iron was not increased, but shifted toward mitochondria. Conclusions We provide evidence for a previously unrecognized iron starvation signature at systemic and cellular levels in FA patients, which is related to the underlying genetic severity. These findings challenge the use of systemic iron lowering therapies in FA. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. |
| Author | Kiechl, Stefan Amprosi, Matthias Boesch, Sylvia Grander, Manuel Haschka, David Henninger, Benjamin Weiss, Günter Seifert, Markus Kremser, Christian Högl, Birgit Indelicato, Elisabetta Fischer, Christine Nachbauer, Wolfgang Stefani, Ambra |
| Author_xml | – sequence: 1 givenname: Manuel surname: Grander fullname: Grander, Manuel organization: Medical University of Innsbruck – sequence: 2 givenname: David surname: Haschka fullname: Haschka, David organization: Medical University of Innsbruck – sequence: 3 givenname: Elisabetta orcidid: 0000-0003-0217-8630 surname: Indelicato fullname: Indelicato, Elisabetta email: elisabetta.indelicato@i-med.ac.at organization: Medical University of Innsbruck – sequence: 4 givenname: Christian surname: Kremser fullname: Kremser, Christian organization: Medical University of Innsbruck – sequence: 5 givenname: Matthias surname: Amprosi fullname: Amprosi, Matthias organization: Medical University of Innsbruck – sequence: 6 givenname: Wolfgang surname: Nachbauer fullname: Nachbauer, Wolfgang organization: Medical University of Innsbruck – sequence: 7 givenname: Benjamin surname: Henninger fullname: Henninger, Benjamin organization: Medical University of Innsbruck – sequence: 8 givenname: Ambra orcidid: 0000-0003-4259-8824 surname: Stefani fullname: Stefani, Ambra organization: Medical University of Innsbruck – sequence: 9 givenname: Birgit surname: Högl fullname: Högl, Birgit organization: Medical University of Innsbruck – sequence: 10 givenname: Christine surname: Fischer fullname: Fischer, Christine organization: Medical University of Innsbruck – sequence: 11 givenname: Markus surname: Seifert fullname: Seifert, Markus organization: Medical University of Innsbruck – sequence: 12 givenname: Stefan surname: Kiechl fullname: Kiechl, Stefan organization: VASCage, Centre on Clinical Stroke Research – sequence: 13 givenname: Günter surname: Weiss fullname: Weiss, Günter organization: Medical University of Innsbruck – sequence: 14 givenname: Sylvia surname: Boesch fullname: Boesch, Sylvia organization: Medical University of Innsbruck |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38686449$$D View this record in MEDLINE/PubMed |
| BookMark | eNp90E1P3DAQgGELUZUFeuAPoEg9tD0Exl-JfUTLp0TFgfYcee1xa5Q41Hba8u_JstADEj15Ds-MrHeXbMcxIiEHFI4oADseXD5iWlG9RRZUclorJtttsgClZM2pkjtkN-c7AEolbd6THa4a1QihF2R5gRFLsNUpFkxDiOiqqzTG6raY9NuUsB7Dj2jKlLAKsTpPAV3CYH9-ytVJMX-D2SfvvOkzfnh-98j387Nvy8v6-ubianlyXVsuua6dAK2984DSg7Dag1xRa5x3TDC7alqBrnEKVtyhBK6Fd1S0LWPguYMW-B75vLl7n8ZfE-bSDSFb7HsTcZxyx0HollFFxUw_vqJ345Ti_LtZzXUkZc364OGzmlYDuu4-hcGkh-4lzwy-bIBNY84J_T9CoVun7-b03VP62R6_sjaUp4AlmdD_b-NP6PHh7dPd19PbzcYjIJmS7w |
| CitedBy_id | crossref_primary_10_1038_s41582_025_01065_y crossref_primary_10_1080_14737175_2024_2376840 crossref_primary_10_3389_fnmol_2025_1511388 crossref_primary_10_3390_ijms252111615 |
| Cites_doi | 10.1002/ana.24248 10.1146/annurev.nutr.26.061505.111303 10.1371/journal.pone.0116396 10.1016/j.freeradbiomed.2013.09.001 10.1016/j.bcp.2011.06.045 10.1016/j.mri.2021.03.015 10.1016/j.cell.2016.12.034 10.1152/ajprenal.00174.2010 10.3324/haematol.2022.281149 10.1007/s00330-020-07291-w 10.3390/ijms23126789 10.1007/s00330-012-2506-2 10.1093/hmg/9.2.275 10.1016/j.neuroimage.2020.117080 10.1002/acn3.660 10.1182/blood-2008-12-195651 10.1056/NEJMra1401038 10.1039/C4MT00328D 10.1038/nprot.2009.151 10.1371/journal.pone.0192779 10.1002/jmri.24479 10.1007/s10534-019-00186-4 10.1002/1531-8249(199905)45:5<673::AID-ANA20>3.0.CO;2-Q 10.1038/ng.2996 10.1080/14734220600913246 10.1182/blood-2014-05-516252 10.1126/science.276.5319.1709 10.1016/j.ejrad.2021.109789 10.3389/fgeed.2022.903139 10.1111/jnc.12317 10.1038/84818 10.1080/21678707.2018.1409109 10.1002/mds.22769 10.1186/2051-5960-1-26 10.1126/science.271.5254.1423 10.1124/jpet.118.252759 10.1016/j.cmet.2015.01.010 10.1080/13543784.2023.2276758 10.1093/hmg/ddad051 10.1182/blood-2006-12-065433 10.1182/blood.2020006987 10.1038/ng1097-215 10.1002/mrm.10735 10.1007/s00330-019-06380-9 10.1007/s00234-017-1813-3 10.1111/jnc.12303 10.1093/hmg/ddaa267 10.1002/ana.410440121 10.1002/mds.27482 10.1002/1531-8249(199907)46:1<123::AID-ANA19>3.0.CO;2-H 10.1073/pnas.0906784106 10.1016/j.sleep.2014.03.025 10.1186/s13023-020-01475-9 10.1007/s12311-012-0383-5 10.1097/RLI.0b013e3181862413 |
| ContentType | Journal Article |
| Copyright | 2024 The Authors. published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024 The Authors. published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. – notice: 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. – notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION NPM 7TK 8FD FR3 K9. NAPCQ P64 RC3 7X8 |
| DOI | 10.1002/mds.29819 |
| DatabaseName | Wiley Online Library Open Access CrossRef PubMed Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Nursing & Allied Health Premium Genetics Abstracts Technology Research Database ProQuest Health & Medical Complete (Alumni) Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Nursing & Allied Health Premium |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1531-8257 |
| EndPage | 1098 |
| ExternalDocumentID | 38686449 10_1002_mds_29819 MDS29819 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: FARA Ireland – fundername: FARA Australia – fundername: Friedreich's Ataxia Research Alliance |
| GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 123 1CY 1L6 1OB 1OC 1ZS 24P 31~ 33P 3PY 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOF ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHMBA AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC FYBCS G-S G.N GNP GODZA H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWD RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TWZ UB1 V2E V9Y W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR XG1 XV2 YCJ ZGI ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X NPM 7TK 8FD FR3 K9. NAPCQ P64 RC3 7X8 |
| ID | FETCH-LOGICAL-c3539-d4099fdf0e5f04c9f05b1cadfd242cb674ed6d80b3de50394fd1477220f3d0703 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001209605400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0885-3185 1531-8257 |
| IngestDate | Thu Jul 10 19:19:52 EDT 2025 Sat Nov 29 14:48:38 EST 2025 Mon Jul 21 05:57:52 EDT 2025 Sat Nov 29 07:10:22 EST 2025 Tue Nov 18 22:02:24 EST 2025 Wed Jan 22 17:17:40 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | Friedreich's ataxia iron hepcidin MRI relaxometry liver |
| Language | English |
| License | Attribution-NonCommercial-NoDerivs 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3539-d4099fdf0e5f04c9f05b1cadfd242cb674ed6d80b3de50394fd1477220f3d0703 |
| Notes | Manuel Grander and David Haschka contributed equally as first authors. Günter Weiss and Sylvia Boesch contributed equally as last authors. The authors declare that there are no conflicts of interest to report related to this work. Friedreich's Ataxia Research Alliance (FARA), FARA Ireland and FARA Australia. Funding agencies Relevant Conflicts of interst/financial disclosures ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-4259-8824 0000-0003-0217-8630 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmds.29819 |
| PMID | 38686449 |
| PQID | 3082551260 |
| PQPubID | 1016421 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_3049721814 proquest_journals_3082551260 pubmed_primary_38686449 crossref_primary_10_1002_mds_29819 crossref_citationtrail_10_1002_mds_29819 wiley_primary_10_1002_mds_29819_MDS29819 |
| PublicationCentury | 2000 |
| PublicationDate | July 2024 |
| PublicationDateYYYYMMDD | 2024-07-01 |
| PublicationDate_xml | – month: 07 year: 2024 text: July 2024 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: Hoboken |
| PublicationTitle | Movement disorders |
| PublicationTitleAlternate | Mov Disord |
| PublicationYear | 2024 |
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
| References | 2023; 32 2013; 1 2013; 65 2021; 29 2013; 126 2000; 9 1997; 276 1999; 46 2022; 23 2019; 369 1999; 45 2020; 15 2009; 113 2023; 108 2012; 11 1998; 44 2015; 372 2018; 6 2021; 31 2006; 26 2014; 15 1997; 17 2011; 26 2017; 168 2012; 22 2021; 80 2014; 124 2019; 6 2020; 220 2019; 32 2011; 82 2019; 34 2015; 10 2006; 5 2014; 46 2001; 27 2021; 141 2014; 40 2015; 7 2004; 51 2017; 59 2020; 30 2022; 4 2021; 137 2007; 110 2010; 299 2015; 21 1996; 271 2008; 43 2009; 4 2014; 76 2009; 106 2018; 13 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
| References_xml | – volume: 113 start-page: 5277 issue: 21 year: 2009 end-page: 5286 article-title: Regulation of iron homeostasis in anemia of chronic disease and iron deficiency anemia: diagnostic and therapeutic implications publication-title: Blood – volume: 271 start-page: 1423 issue: 5254 year: 1996 end-page: 1427 article-title: Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion publication-title: Science – volume: 126 start-page: 103 issue: Suppl 1 year: 2013 end-page: 117 article-title: Clinical features of Friedreich's ataxia: classical and atypical phenotypes publication-title: J Neurochem – volume: 26 start-page: 323 year: 2006 end-page: 342 article-title: Regulation of iron metabolism by hepcidin publication-title: Annu Rev Nutr – volume: 46 start-page: 123 issue: 1 year: 1999 end-page: 125 article-title: Increased iron in the dentate nucleus of patients with Friedrich's ataxia publication-title: Ann Neurol – volume: 32 start-page: 2241 issue: 13 year: 2023 end-page: 2250 article-title: Skeletal muscle transcriptomics dissects the pathogenesis of Friedreich's ataxia publication-title: Hum Mol Genet – volume: 124 start-page: 479 issue: 4 year: 2014 end-page: 482 article-title: Molecular liaisons between erythropoiesis and iron metabolism publication-title: Blood – volume: 137 start-page: 2090 issue: 15 year: 2021 end-page: 2102 article-title: Defective palmitoylation of transferrin receptor triggers iron overload in Friedreich ataxia fibroblasts publication-title: Blood – volume: 59 start-page: 403 issue: 4 year: 2017 end-page: 409 article-title: MR imaging differentiation of Fe(2+) and Fe(3+) based on relaxation and magnetic susceptibility properties publication-title: Neuroradiology – volume: 7 start-page: 1036 issue: 6 year: 2015 end-page: 1045 article-title: Contrasting regulation of macrophage iron homeostasis in response to infection with Listeria monocytogenes depending on localization of bacteria publication-title: Metallomics – volume: 126 start-page: 53 issue: Suppl 1 year: 2013 end-page: 64 article-title: Mitochondrial pathophysiology in Friedreich's ataxia publication-title: J Neurochem – volume: 220 year: 2020 article-title: The influence of iron oxidation state on quantitative MRI parameters in post mortem human brain publication-title: Neuroimage – volume: 168 start-page: 344 issue: 3 year: 2017 end-page: 361 article-title: A red carpet for iron metabolism publication-title: Cell – volume: 10 issue: 3 year: 2015 article-title: The pathogenesis of cardiomyopathy in Friedreich ataxia publication-title: PLoS One – volume: 23 issue: 12 year: 2022 article-title: DMT1 protects macrophages from salmonella infection by controlling cellular iron turnover and lipocalin 2 expression publication-title: Int J Mol Sci – volume: 51 start-page: 607 issue: 3 year: 2004 end-page: 611 article-title: Mimicking liver iron overload using liposomal ferritin preparations publication-title: Magn Reson Med – volume: 76 start-page: 509 issue: 4 year: 2014 end-page: 521 article-title: Deferiprone in Friedreich ataxia: a 6‐month randomized controlled trial publication-title: Ann Neurol – volume: 82 start-page: 1291 issue: 10 year: 2011 end-page: 1303 article-title: Erythropoietin, erythropoiesis and beyond publication-title: Biochem Pharmacol – volume: 65 start-page: 1174 year: 2013 end-page: 1194 article-title: The complex interplay of iron metabolism, reactive oxygen species, and reactive nitrogen species: insights into the potential of various iron therapies to induce oxidative and nitrosative stress publication-title: Free Radic Biol Med – volume: 6 start-page: 57 issue: 1 year: 2018 end-page: 67 article-title: Emerging therapeutics for the treatment of Friedreich's ataxia publication-title: Expert Opin Orphan Drugs – volume: 30 start-page: 383 issue: 1 year: 2020 end-page: 393 article-title: Practical guide to quantification of hepatic iron with MRI publication-title: Eur Radiol – volume: 80 start-page: 1 year: 2021 end-page: 8 article-title: Effect of hepatic steatosis on native T1 mapping of 3T magnetic resonance imaging in the assessment of T1 values for patients with non‐alcoholic fatty liver disease publication-title: Magn Reson Imaging – volume: 9 start-page: 275 issue: 2 year: 2000 end-page: 282 article-title: Clinical, biochemical and molecular genetic correlations in Friedreich's ataxia publication-title: Hum Mol Genet – volume: 26 start-page: 302 issue: 2 year: 2011 end-page: 306 article-title: Restless legs syndrome in Friedreich ataxia: a polysomnographic study publication-title: Mov Disord – volume: 13 issue: 2 year: 2018 article-title: Low apolipoprotein A‐I levels in Friedreich's ataxia and in frataxin‐deficient cells: implications for therapy publication-title: PLoS One – volume: 141 year: 2021 article-title: Evaluation of liver fibrosis and cirrhosis on the basis of quantitative T1 mapping: are acute inflammation, age and liver volume confounding factors? publication-title: Eur J Radiol – volume: 17 start-page: 215 issue: 2 year: 1997 end-page: 217 article-title: Aconitase and mitochondrial iron‐sulphur protein deficiency in Friedreich ataxia publication-title: Nat Genet – volume: 1 start-page: 26 year: 2013 article-title: Friedreich ataxia: metal dysmetabolism in dorsal root ganglia publication-title: Acta Neuropathol Commun – volume: 4 start-page: 1582 issue: 11 year: 2009 end-page: 1590 article-title: Isolation of mitochondria‐associated membranes and mitochondria from animal tissues and cells publication-title: Nat Protoc – volume: 32 start-page: 307 issue: 2 year: 2019 end-page: 315 article-title: Assessment of cell‐free levels of iron and copper in patients with Friedreich's ataxia publication-title: Biometals – volume: 29 start-page: 3818 issue: 23 year: 2021 end-page: 3829 article-title: Methylated and unmethylated epialleles support variegated epigenetic silencing in Friedreich ataxia publication-title: Hum Mol Genet – volume: 21 start-page: 311 issue: 2 year: 2015 end-page: 323 article-title: Iron regulatory protein 1 sustains mitochondrial iron loading and function in frataxin deficiency publication-title: Cell Metab – volume: 108 start-page: 135 issue: 1 year: 2023 end-page: 149 article-title: Comparative analysis of oral and intravenous iron therapy in rat models of inflammatory anemia and iron deficiency publication-title: Haematologica – volume: 4 year: 2022 article-title: Advantages and limitations of gene therapy and gene editing for Friedreich's ataxia publication-title: Front Genome Ed – volume: 11 start-page: 845 issue: 4 year: 2012 end-page: 860 article-title: Friedreich's ataxia causes redistribution of iron, copper, and zinc in the dentate nucleus publication-title: Cerebellum – volume: 22 start-page: 2478 issue: 11 year: 2012 end-page: 2486 article-title: Evaluation of MR imaging with T1 and T2* mapping for the determination of hepatic iron overload publication-title: Eur Radiol – volume: 45 start-page: 673 issue: 5 year: 1999 end-page: 675 article-title: Direct evidence that mitochondrial iron accumulation occurs in Friedreich ataxia publication-title: Ann Neurol – volume: 110 start-page: 401 issue: 1 year: 2007 end-page: 408 article-title: Selective iron chelation in Friedreich ataxia: biologic and clinical implications publication-title: Blood – volume: 15 start-page: 198 issue: 1 year: 2020 article-title: Onset features and time to diagnosis in Friedreich's ataxia publication-title: Orphanet J Rare Dis – volume: 46 start-page: 678 issue: 7 year: 2014 end-page: 684 article-title: Identification of erythroferrone as an erythroid regulator of iron metabolism publication-title: Nat Genet – volume: 44 start-page: 132 issue: 1 year: 1998 end-page: 134 article-title: Normal serum iron and ferritin concentrations in patients with Friedreich's ataxia publication-title: Ann Neurol – volume: 40 start-page: 1230 issue: 5 year: 2014 end-page: 1237 article-title: Estimation of the absolute shear stiffness of human lung parenchyma using (1) H spin echo, echo planar MR elastography publication-title: J Magn Reson Imaging – volume: 32 start-page: 967 issue: 11 year: 2023 end-page: 969 article-title: Experimental drugs for Friedrich's ataxia: progress and setbacks in clinical trials publication-title: Expert Opin Investig Drugs – volume: 369 start-page: 47 issue: 1 year: 2019 end-page: 54 article-title: Ferroptosis as a novel therapeutic target for Friedreich's ataxia publication-title: J Pharmacol Exp Ther – volume: 276 start-page: 1709 issue: 5319 year: 1997 end-page: 1712 article-title: Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin publication-title: Science – volume: 43 start-page: 854 issue: 12 year: 2008 end-page: 860 article-title: T2* relaxometry in liver, pancreas, and spleen in a healthy cohort of one hundred twenty‐nine subjects‐correlation with age, gender, and serum ferritin publication-title: Invest Radiol – volume: 27 start-page: 181 issue: 2 year: 2001 end-page: 186 article-title: Mouse models for Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect and Fe‐S enzyme deficiency followed by intramitochondrial iron deposits publication-title: Nat Genet – volume: 299 start-page: F1 issue: 1 year: 2010 end-page: F13 article-title: Hypoxic regulation of erythropoiesis and iron metabolism publication-title: Am J Physiol Renal Physiol – volume: 5 start-page: 257 issue: 4 year: 2006 end-page: 267 article-title: Iron and iron‐responsive proteins in the cardiomyopathy of Friedreich's ataxia publication-title: Cerebellum – volume: 15 start-page: 860 issue: 8 year: 2014 end-page: 873 article-title: Restless legs syndrome/Willis‐Ekbom disease diagnostic criteria: updated International Restless Legs Syndrome Study Group (IRLSSG) consensus criteria–history, rationale, description, and significance publication-title: Sleep Med – volume: 6 start-page: 15 issue: 1 year: 2019 end-page: 26 article-title: Safety, pharmacodynamics, and potential benefit of omaveloxolone in Friedreich ataxia publication-title: Ann Clin Transl Neurol – volume: 31 start-page: 2252 issue: 4 year: 2021 end-page: 2262 article-title: Performance of different Dixon‐based methods for MR liver iron assessment in comparison to a biopsy‐validated * relaxometry method publication-title: Eur Radiol – volume: 106 start-page: 16381 issue: 38 year: 2009 end-page: 16386 article-title: Elucidation of the mechanism of mitochondrial iron loading in Friedreich's ataxia by analysis of a mouse mutant publication-title: Proc Natl Acad Sci U S A – volume: 34 start-page: 114 issue: 1 year: 2019 end-page: 123 article-title: Association of mitochondrial iron deficiency and dysfunction with idiopathic restless legs syndrome publication-title: Mov Disord – volume: 372 start-page: 1832 issue: 19 year: 2015 end-page: 1843 article-title: Iron‐deficiency anemia publication-title: N Engl J Med – ident: e_1_2_9_17_1 doi: 10.1002/ana.24248 – ident: e_1_2_9_23_1 doi: 10.1146/annurev.nutr.26.061505.111303 – ident: e_1_2_9_29_1 doi: 10.1371/journal.pone.0116396 – ident: e_1_2_9_15_1 doi: 10.1016/j.freeradbiomed.2013.09.001 – ident: e_1_2_9_28_1 doi: 10.1016/j.bcp.2011.06.045 – ident: e_1_2_9_40_1 doi: 10.1016/j.mri.2021.03.015 – ident: e_1_2_9_24_1 doi: 10.1016/j.cell.2016.12.034 – ident: e_1_2_9_26_1 doi: 10.1152/ajprenal.00174.2010 – ident: e_1_2_9_33_1 doi: 10.3324/haematol.2022.281149 – ident: e_1_2_9_37_1 doi: 10.1007/s00330-020-07291-w – ident: e_1_2_9_34_1 doi: 10.3390/ijms23126789 – ident: e_1_2_9_39_1 doi: 10.1007/s00330-012-2506-2 – ident: e_1_2_9_45_1 doi: 10.1093/hmg/9.2.275 – ident: e_1_2_9_52_1 doi: 10.1016/j.neuroimage.2020.117080 – ident: e_1_2_9_18_1 doi: 10.1002/acn3.660 – ident: e_1_2_9_25_1 doi: 10.1182/blood-2008-12-195651 – ident: e_1_2_9_42_1 doi: 10.1056/NEJMra1401038 – ident: e_1_2_9_32_1 doi: 10.1039/C4MT00328D – ident: e_1_2_9_35_1 doi: 10.1038/nprot.2009.151 – ident: e_1_2_9_31_1 doi: 10.1371/journal.pone.0192779 – ident: e_1_2_9_38_1 doi: 10.1002/jmri.24479 – ident: e_1_2_9_48_1 doi: 10.1007/s10534-019-00186-4 – ident: e_1_2_9_50_1 doi: 10.1002/1531-8249(199905)45:5<673::AID-ANA20>3.0.CO;2-Q – ident: e_1_2_9_27_1 doi: 10.1038/ng.2996 – ident: e_1_2_9_11_1 doi: 10.1080/14734220600913246 – ident: e_1_2_9_41_1 doi: 10.1182/blood-2014-05-516252 – ident: e_1_2_9_12_1 doi: 10.1126/science.276.5319.1709 – ident: e_1_2_9_44_1 doi: 10.1016/j.ejrad.2021.109789 – ident: e_1_2_9_51_1 doi: 10.3389/fgeed.2022.903139 – ident: e_1_2_9_8_1 doi: 10.1111/jnc.12317 – ident: e_1_2_9_13_1 doi: 10.1038/84818 – ident: e_1_2_9_55_1 doi: 10.1080/21678707.2018.1409109 – ident: e_1_2_9_22_1 doi: 10.1002/mds.22769 – ident: e_1_2_9_46_1 doi: 10.1186/2051-5960-1-26 – ident: e_1_2_9_3_1 doi: 10.1126/science.271.5254.1423 – ident: e_1_2_9_16_1 doi: 10.1124/jpet.118.252759 – ident: e_1_2_9_49_1 doi: 10.1016/j.cmet.2015.01.010 – ident: e_1_2_9_56_1 doi: 10.1080/13543784.2023.2276758 – ident: e_1_2_9_6_1 doi: 10.1093/hmg/ddad051 – ident: e_1_2_9_19_1 doi: 10.1182/blood-2006-12-065433 – ident: e_1_2_9_47_1 doi: 10.1182/blood.2020006987 – ident: e_1_2_9_5_1 doi: 10.1038/ng1097-215 – ident: e_1_2_9_53_1 doi: 10.1002/mrm.10735 – ident: e_1_2_9_36_1 doi: 10.1007/s00330-019-06380-9 – ident: e_1_2_9_54_1 doi: 10.1007/s00234-017-1813-3 – ident: e_1_2_9_7_1 doi: 10.1111/jnc.12303 – ident: e_1_2_9_4_1 doi: 10.1093/hmg/ddaa267 – ident: e_1_2_9_20_1 doi: 10.1002/ana.410440121 – ident: e_1_2_9_21_1 doi: 10.1002/mds.27482 – ident: e_1_2_9_9_1 doi: 10.1002/1531-8249(199907)46:1<123::AID-ANA19>3.0.CO;2-H – ident: e_1_2_9_14_1 doi: 10.1073/pnas.0906784106 – ident: e_1_2_9_30_1 doi: 10.1016/j.sleep.2014.03.025 – ident: e_1_2_9_2_1 doi: 10.1186/s13023-020-01475-9 – ident: e_1_2_9_10_1 doi: 10.1007/s12311-012-0383-5 – ident: e_1_2_9_43_1 doi: 10.1097/RLI.0b013e3181862413 |
| SSID | ssj0011516 |
| Score | 2.4734445 |
| Snippet | Background
Early studies in cellular models suggested an iron accumulation in Friedreich's ataxia (FA), yet findings from patients are lacking.
Objectives
The... Early studies in cellular models suggested an iron accumulation in Friedreich's ataxia (FA), yet findings from patients are lacking. The objective is to... BackgroundEarly studies in cellular models suggested an iron accumulation in Friedreich's ataxia (FA), yet findings from patients are lacking.ObjectivesThe... Early studies in cellular models suggested an iron accumulation in Friedreich's ataxia (FA), yet findings from patients are lacking.BACKGROUNDEarly studies in... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1088 |
| SubjectTerms | Ataxia Divalent metal transporter-1 Down-regulation Erythropoiesis Ferritin Friedreich's ataxia Hemoglobin Hepatocytes Hepcidin Intracellular Iron Iron deficiency Leukocytes (mononuclear) Liver Magnetic resonance imaging Movement disorders MRI relaxometry mRNA Peripheral blood mononuclear cells Regulatory proteins Spleen Transferrins |
| Title | Genetic Determined Iron Starvation Signature in Friedreich's Ataxia |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmds.29819 https://www.ncbi.nlm.nih.gov/pubmed/38686449 https://www.proquest.com/docview/3082551260 https://www.proquest.com/docview/3049721814 |
| Volume | 39 |
| WOSCitedRecordID | wos001209605400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1531-8257 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011516 issn: 0885-3185 databaseCode: DRFUL dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEB68EF-8j3qxiqAvsZuzu_hUrEVBS_GAvoXtHhrQVJoq_nxnkzRSVBB8CYGdZMPOzs737fEF4EgZirxHaEe5oXQChpxVWJYijaeZEpRpnavrXzc6Hdbr8e4UnI3PwhT6ENWEm42MfLy2AS76Wf1LNPRFZaceZ1byc9YeqkLmNdu6bT9cV4sImMyiAkSG-SHhsbAQ9erVw5Pp6BvGnISsec5pL_3ra5dhsYSapFn0jRWY0ukqzN-Ui-lrcG4lp7GMtMotMVqRq-EgJQhAy5lacpc8FtKfJElJG2m1GupEPh1npDkSH4lYh4f2xf35pVP-U8GRfuhzRyGf4wY9pENDA8kNDfuuFMoozNWyHzUCrSLFaN9XOqQ-D4xyA0TgHjW-ssPDBsykg1RvATEi4pFGeqIxxWthuKsQG0YI-UJGufBqcDJu2liWguP2vxfPcSGV7MXYKHHeKDU4rExfC5WNn4x2x_6Jy0DLYqu2g6APWVkNDqpiDBG77iFSPXizNoHVKGJuUIPNwq9VLT6LGEJCfPlJ7r7fq49vWnf5zfbfTXdgwUMQVGzv3YWZ0fBN78GcfB8l2XAfpr2gi9dGj-2XffcTVont4A |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD6Iivri_TKvUQR9qaZt2iXgi6hDcRuCCr6VLBctaCfbFH--J21XGSoIvhVy2pScnJzvy-ULwL62FHmPNJ72I-UxjpxVOpaibGC4lpQbk6vrN-vtNn94EDdjcDI8C1PoQ1QTbi4y8vHaBbibkD7-Ug190f2jQHCn-TnBMCu5DX0Bu6nWEDCXxQWGjPIzwkNdIRocV6-OZqNvEHMUseYppzH3v5-dh9kSapLTom8swJjJFmGqVS6mL8GZk5zGMnJebokxmlz1uhlBAFrO1JLb9LGQ_iRpRhpIq3XPpOrpoE9OB_Ijlctw37i4O7v0yjsVPBVGofA08jlh0UMmspQpYWnU8ZXUVmOuVp24zoyONaedUJuIhoJZ7TNE4AG1oXbDwwqMZ93MrAGxMhaxQXpiMMUbaYWvERvGCPkiToUManA4bNtElYLj7t6L56SQSg4SbJQkb5Qa7FWmr4XKxk9Gm0MHJWWg9ROntoOgD1lZDXarYgwRt-4hM9N9czbMaRRxn9VgtXBsVUvIY46QED9-mPvv9-qT1vlt_rD-d9MdmL68azWT5lX7egNmAgRExVbfTRgf9N7MFkyq90Ha723nXfcTBXvudg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bSxwxFD6ILeJLL17qtts2LYK-TM3MZGYT6Iu4XSrqsqCCb0M2OdEBOyt7Kf58TzKzU8QWCr4N5MxkyMnJ-b5cvgDsWseJ92iMbJyZSEjirNqzFOMSlFZziRjU9U97w6G8ulKjFfi-PAtT60O0E24-MsJ47QMc76w7-KMa-svOviVKes3PFyLrhbBMxKhdQ6BcltcYMgtnhJe6Qjw5aF99nI2eQMzHiDWknMHr5_3sG3jVQE12WPeNt7CC1QasnTWL6Ztw5CWnqYz1my0xaNnxdFIxAqDNTC07L69r6U9WVmxAtNpOsTQ3ezN2ONf3pd6Cy8GPi6OfUXOnQmTSLFWRJT6nHHkIM8eFUY5n49ho6yzlajPOewJtbiUfpxYznirhbCwIgSfcpdYPD9uwWk0q3AHmdK5yJHqClOJROxVbwoY5Qb5McqWTDuwv27YwjeC4v_fitqilkpOCGqUIjdKBr63pXa2y8Tej7tJBRRNos8Kr7RDoI1bWgS9tMYWIX_fQFU4W3kZ4jSIZiw68qx3b1pLKXBIkpI_vB__9u_rirH8eHt7_v-lnWBv1B8Xp8fDkA6wnhIfqnb5dWJ1PF_gRXprf83I2_RR67gOpne3x |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+Determined+Iron+Starvation+Signature+in+Friedreich%27s+Ataxia&rft.jtitle=Movement+disorders&rft.au=Grander%2C+Manuel&rft.au=Haschka%2C+David&rft.au=Indelicato%2C+Elisabetta&rft.au=Kremser%2C+Christian&rft.date=2024-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0885-3185&rft.eissn=1531-8257&rft.volume=39&rft.issue=7&rft.spage=1088&rft.epage=1098&rft_id=info:doi/10.1002%2Fmds.29819&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-3185&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-3185&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-3185&client=summon |