Improving ligand‐ranking of AutoDock Vina by changing the empirical parameters

AutoDock Vina (Vina) achieved a very high docking‐success rate, p^, but give a rather low correlation coefficient, R, for binding affinity with respect to experiments. This low correlation can be an obstacle for ranking of ligand‐binding affinity, which is the main objective of docking simulations....

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of computational chemistry Ročník 43; číslo 3; s. 160 - 169
Hlavní autori: Pham, T. Ngoc Han, Nguyen, Trung Hai, Tam, Nguyen Minh, Y. Vu, Thien, Pham, Nhat Truong, Huy, Nguyen Truong, Mai, Binh Khanh, Tung, Nguyen Thanh, Pham, Minh Quan, V. Vu, Van, Ngo, Son Tung
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Hoboken, USA John Wiley & Sons, Inc 30.01.2022
Wiley Subscription Services, Inc
Predmet:
ISSN:0192-8651, 1096-987X, 1096-987X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract AutoDock Vina (Vina) achieved a very high docking‐success rate, p^, but give a rather low correlation coefficient, R, for binding affinity with respect to experiments. This low correlation can be an obstacle for ranking of ligand‐binding affinity, which is the main objective of docking simulations. In this context, we evaluated the dependence of Vina R coefficient upon its empirical parameters. R is affected more by changing the gauss2 and rotation than other terms. The docking‐success rate p^ is sensitive to the alterations of the gauss1, gauss2, repulsion, and hydrogen bond parameters. Based on our benchmarks, the parameter set1 has been suggested to be the most optimal. The testing study over 800 complexes indicated that the modified Vina provided higher correlation with experiment Rset1=0.556±0.025 compared with RDefault=0.493±0.028 obtained by the original Vina and RVina1.2=0.503±0.029 by Vina version 1.2. Besides, the modified Vina can be also applied more widely, giving R≥0.500 for 32/48 targets, compared with the default package, giving R≥0.500 for 31/48 targets. In addition, validation calculations for 1036 complexes obtained from version 2019 of PDBbind refined structures showed that the set1 of parameters gave higher correlation coefficient (Rset1=0.617±0.017) than the default package (RDefault=0.543±0.020) and Vina version 1.2 (RVina1.2=0.540±0.020). The version of Vina with set1 of parameters can be downloaded at https://github.com/sontungngo/mvina. The outcomes would enhance the ranking of ligand‐binding affinity using Autodock Vina. A new set of empirical parameters of AutoDock Vina was proposed. The accuracy of affinity prediction was significantly increased from RDefault=0.493±0.028 to Rset1=0.556±0.025 over 800 testing complexes. Over 1036 validating complexes, the proposed parameter formed Rset1=0.617±0.017, which is rigidly larger than the default package (RDefault=0.543±0.020) and Vina version 1.2 (RVina1.2=0.540±0.020).
AbstractList AutoDock Vina (Vina) achieved a very high docking-success rate, p^ , but give a rather low correlation coefficient, R , for binding affinity with respect to experiments. This low correlation can be an obstacle for ranking of ligand-binding affinity, which is the main objective of docking simulations. In this context, we evaluated the dependence of Vina R coefficient upon its empirical parameters. R is affected more by changing the gauss2 and rotation than other terms. The docking-success rate p^ is sensitive to the alterations of the gauss1, gauss2, repulsion, and hydrogen bond parameters. Based on our benchmarks, the parameter set1 has been suggested to be the most optimal. The testing study over 800 complexes indicated that the modified Vina provided higher correlation with experiment Rset1=0.556±0.025 compared with RDefault=0.493±0.028 obtained by the original Vina and RVina1.2=0.503±0.029 by Vina version 1.2. Besides, the modified Vina can be also applied more widely, giving R≥0.500 for 32/48 targets, compared with the default package, giving R≥0.500 for 31/48 targets. In addition, validation calculations for 1036 complexes obtained from version 2019 of PDBbind refined structures showed that the set1 of parameters gave higher correlation coefficient ( Rset1=0.617±0.017 ) than the default package ( RDefault=0.543±0.020 ) and Vina version 1.2 ( RVina1.2=0.540±0.020 ). The version of Vina with set1 of parameters can be downloaded at https://github.com/sontungngo/mvina. The outcomes would enhance the ranking of ligand-binding affinity using Autodock Vina.AutoDock Vina (Vina) achieved a very high docking-success rate, p^ , but give a rather low correlation coefficient, R , for binding affinity with respect to experiments. This low correlation can be an obstacle for ranking of ligand-binding affinity, which is the main objective of docking simulations. In this context, we evaluated the dependence of Vina R coefficient upon its empirical parameters. R is affected more by changing the gauss2 and rotation than other terms. The docking-success rate p^ is sensitive to the alterations of the gauss1, gauss2, repulsion, and hydrogen bond parameters. Based on our benchmarks, the parameter set1 has been suggested to be the most optimal. The testing study over 800 complexes indicated that the modified Vina provided higher correlation with experiment Rset1=0.556±0.025 compared with RDefault=0.493±0.028 obtained by the original Vina and RVina1.2=0.503±0.029 by Vina version 1.2. Besides, the modified Vina can be also applied more widely, giving R≥0.500 for 32/48 targets, compared with the default package, giving R≥0.500 for 31/48 targets. In addition, validation calculations for 1036 complexes obtained from version 2019 of PDBbind refined structures showed that the set1 of parameters gave higher correlation coefficient ( Rset1=0.617±0.017 ) than the default package ( RDefault=0.543±0.020 ) and Vina version 1.2 ( RVina1.2=0.540±0.020 ). The version of Vina with set1 of parameters can be downloaded at https://github.com/sontungngo/mvina. The outcomes would enhance the ranking of ligand-binding affinity using Autodock Vina.
AutoDock Vina (Vina) achieved a very high docking‐success rate, , but give a rather low correlation coefficient, , for binding affinity with respect to experiments. This low correlation can be an obstacle for ranking of ligand‐binding affinity, which is the main objective of docking simulations. In this context, we evaluated the dependence of Vina R coefficient upon its empirical parameters. is affected more by changing the gauss2 and rotation than other terms. The docking‐success rate is sensitive to the alterations of the gauss1, gauss2, repulsion, and hydrogen bond parameters. Based on our benchmarks, the parameter set1 has been suggested to be the most optimal. The testing study over 800 complexes indicated that the modified Vina provided higher correlation with experiment compared with obtained by the original Vina and by Vina version 1.2. Besides, the modified Vina can be also applied more widely, giving for 32/48 targets, compared with the default package, giving for 31/48 targets. In addition, validation calculations for 1036 complexes obtained from version 2019 of PDBbind refined structures showed that the set1 of parameters gave higher correlation coefficient ( ) than the default package ( ) and Vina version 1.2 ( ). The version of Vina with set1 of parameters can be downloaded at https://github.com/sontungngo/mvina . The outcomes would enhance the ranking of ligand‐binding affinity using Autodock Vina.
AutoDock Vina (Vina) achieved a very high docking‐success rate, p^, but give a rather low correlation coefficient, R, for binding affinity with respect to experiments. This low correlation can be an obstacle for ranking of ligand‐binding affinity, which is the main objective of docking simulations. In this context, we evaluated the dependence of Vina R coefficient upon its empirical parameters. R is affected more by changing the gauss2 and rotation than other terms. The docking‐success rate p^ is sensitive to the alterations of the gauss1, gauss2, repulsion, and hydrogen bond parameters. Based on our benchmarks, the parameter set1 has been suggested to be the most optimal. The testing study over 800 complexes indicated that the modified Vina provided higher correlation with experiment Rset1=0.556±0.025 compared with RDefault=0.493±0.028 obtained by the original Vina and RVina1.2=0.503±0.029 by Vina version 1.2. Besides, the modified Vina can be also applied more widely, giving R≥0.500 for 32/48 targets, compared with the default package, giving R≥0.500 for 31/48 targets. In addition, validation calculations for 1036 complexes obtained from version 2019 of PDBbind refined structures showed that the set1 of parameters gave higher correlation coefficient (Rset1=0.617±0.017) than the default package (RDefault=0.543±0.020) and Vina version 1.2 (RVina1.2=0.540±0.020). The version of Vina with set1 of parameters can be downloaded at https://github.com/sontungngo/mvina. The outcomes would enhance the ranking of ligand‐binding affinity using Autodock Vina. A new set of empirical parameters of AutoDock Vina was proposed. The accuracy of affinity prediction was significantly increased from RDefault=0.493±0.028 to Rset1=0.556±0.025 over 800 testing complexes. Over 1036 validating complexes, the proposed parameter formed Rset1=0.617±0.017, which is rigidly larger than the default package (RDefault=0.543±0.020) and Vina version 1.2 (RVina1.2=0.540±0.020).
AutoDock Vina (Vina) achieved a very high docking-success rate, , but give a rather low correlation coefficient, , for binding affinity with respect to experiments. This low correlation can be an obstacle for ranking of ligand-binding affinity, which is the main objective of docking simulations. In this context, we evaluated the dependence of Vina R coefficient upon its empirical parameters. is affected more by changing the gauss2 and rotation than other terms. The docking-success rate is sensitive to the alterations of the gauss1, gauss2, repulsion, and hydrogen bond parameters. Based on our benchmarks, the parameter set1 has been suggested to be the most optimal. The testing study over 800 complexes indicated that the modified Vina provided higher correlation with experiment compared with obtained by the original Vina and by Vina version 1.2. Besides, the modified Vina can be also applied more widely, giving for 32/48 targets, compared with the default package, giving for 31/48 targets. In addition, validation calculations for 1036 complexes obtained from version 2019 of PDBbind refined structures showed that the set1 of parameters gave higher correlation coefficient ( ) than the default package ( ) and Vina version 1.2 ( ). The version of Vina with set1 of parameters can be downloaded at https://github.com/sontungngo/mvina. The outcomes would enhance the ranking of ligand-binding affinity using Autodock Vina.
AutoDock Vina (Vina) achieved a very high docking‐success rate, p^, but give a rather low correlation coefficient, R, for binding affinity with respect to experiments. This low correlation can be an obstacle for ranking of ligand‐binding affinity, which is the main objective of docking simulations. In this context, we evaluated the dependence of Vina R coefficient upon its empirical parameters. R is affected more by changing the gauss2 and rotation than other terms. The docking‐success rate p^ is sensitive to the alterations of the gauss1, gauss2, repulsion, and hydrogen bond parameters. Based on our benchmarks, the parameter set1 has been suggested to be the most optimal. The testing study over 800 complexes indicated that the modified Vina provided higher correlation with experiment Rset1=0.556±0.025 compared with RDefault=0.493±0.028 obtained by the original Vina and RVina1.2=0.503±0.029 by Vina version 1.2. Besides, the modified Vina can be also applied more widely, giving R≥0.500 for 32/48 targets, compared with the default package, giving R≥0.500 for 31/48 targets. In addition, validation calculations for 1036 complexes obtained from version 2019 of PDBbind refined structures showed that the set1 of parameters gave higher correlation coefficient (Rset1=0.617±0.017) than the default package (RDefault=0.543±0.020) and Vina version 1.2 (RVina1.2=0.540±0.020). The version of Vina with set1 of parameters can be downloaded at https://github.com/sontungngo/mvina. The outcomes would enhance the ranking of ligand‐binding affinity using Autodock Vina.
Author V. Vu, Van
Nguyen, Trung Hai
Huy, Nguyen Truong
Mai, Binh Khanh
Pham, Minh Quan
Ngo, Son Tung
Tam, Nguyen Minh
Pham, Nhat Truong
Pham, T. Ngoc Han
Tung, Nguyen Thanh
Y. Vu, Thien
Author_xml – sequence: 1
  givenname: T. Ngoc Han
  surname: Pham
  fullname: Pham, T. Ngoc Han
  organization: Ton Duc Thang University
– sequence: 2
  givenname: Trung Hai
  orcidid: 0000-0003-1848-3963
  surname: Nguyen
  fullname: Nguyen, Trung Hai
  organization: Ton Duc Thang University
– sequence: 3
  givenname: Nguyen Minh
  orcidid: 0000-0003-3153-4606
  surname: Tam
  fullname: Tam, Nguyen Minh
  organization: Ton Duc Thang University
– sequence: 4
  givenname: Thien
  surname: Y. Vu
  fullname: Y. Vu, Thien
  organization: Ton Duc Thang University
– sequence: 5
  givenname: Nhat Truong
  orcidid: 0000-0002-8086-6722
  surname: Pham
  fullname: Pham, Nhat Truong
  organization: Ton Duc Thang University
– sequence: 6
  givenname: Nguyen Truong
  surname: Huy
  fullname: Huy, Nguyen Truong
  organization: Ton Duc Thang University
– sequence: 7
  givenname: Binh Khanh
  orcidid: 0000-0001-8487-1417
  surname: Mai
  fullname: Mai, Binh Khanh
  organization: University of Pittsburgh
– sequence: 8
  givenname: Nguyen Thanh
  orcidid: 0000-0003-0232-7261
  surname: Tung
  fullname: Tung, Nguyen Thanh
  organization: Vietnam Academy of Science and Technology
– sequence: 9
  givenname: Minh Quan
  orcidid: 0000-0001-6922-1627
  surname: Pham
  fullname: Pham, Minh Quan
  organization: Vietnam Academy of Science and Technology
– sequence: 10
  givenname: Van
  orcidid: 0000-0003-0009-6703
  surname: V. Vu
  fullname: V. Vu, Van
  organization: Nguyen Tat Thanh University
– sequence: 11
  givenname: Son Tung
  orcidid: 0000-0003-1034-1768
  surname: Ngo
  fullname: Ngo, Son Tung
  email: ngosontung@tdtu.edu.vn
  organization: Ton Duc Thang University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34716930$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1u1DAUhS3Uik4LC14ARWJDF2n9F8deVgOlRZVgAYiddce5mXqa2IOdgGbHI_CMPEkzzHRTldWVzv3O0dU9x-QgxICEvGL0jFHKz1fOnXFV1-YZmTFqVGl0_f2AzCgzvNSqYkfkOOcVpVRUSj4nR0LWTBlBZ-Tzdb9O8acPy6LzSwjN399_EoS7rRDb4mIc4rvo7opvPkCx2BTuFsJyuxxuscB-7ZN30BVrSNDjgCm_IIctdBlf7ucJ-Xr5_sv8qrz59OF6fnFTOlEJU2poAVFVgkkNctE0rtWicbrhnGsASU29kA1tqZ4EVJrJqq5QIzPY1pxKcULe7nKn83-MmAfb--yw6yBgHLPllaFMqEqKCX3zCF3FMYXpOssVramRhm0DX--pcdFjY9fJ95A29uFXE3C-A1yKOSdsrfMDDD6GIYHvLKN224ad2rD_2pgcp48cD6FPsfv0X77Dzf9B-3E-3znuAfyRmH8
CitedBy_id crossref_primary_10_1007_s44371_025_00246_4
crossref_primary_10_1039_D5RA00709G
crossref_primary_10_1016_j_jep_2022_115138
crossref_primary_10_3390_molecules27217241
crossref_primary_10_1016_j_molstruc_2025_143099
crossref_primary_10_1080_07391102_2023_2175382
crossref_primary_10_1080_14786419_2025_2528973
crossref_primary_10_1002_slct_202400404
crossref_primary_10_1016_j_cplett_2024_141553
crossref_primary_10_1016_j_bpc_2024_107357
crossref_primary_10_1098_rsos_240546
crossref_primary_10_3390_ph17050637
crossref_primary_10_1039_D4RA00692E
crossref_primary_10_1080_14786419_2024_2425045
crossref_primary_10_1007_s11030_023_10601_1
crossref_primary_10_1016_j_ecoenv_2022_113323
crossref_primary_10_1016_j_jep_2022_115624
crossref_primary_10_1039_D5RA00488H
crossref_primary_10_1039_D5RA02615F
crossref_primary_10_1039_D4RA02661F
crossref_primary_10_1007_s11030_025_11174_x
crossref_primary_10_1007_s00044_025_03447_9
crossref_primary_10_1080_07391102_2022_2118830
crossref_primary_10_1016_j_biopha_2025_118252
crossref_primary_10_1016_j_biopha_2024_116974
crossref_primary_10_1007_s12272_025_01550_4
crossref_primary_10_3390_ijms24021280
crossref_primary_10_1002_cbdv_202500907
crossref_primary_10_1109_TBCAS_2024_3388323
crossref_primary_10_1002_cbdv_202501571
crossref_primary_10_1080_07391102_2024_2321509
crossref_primary_10_1039_D5CP01353D
crossref_primary_10_3390_ijms25147724
crossref_primary_10_1080_14786419_2024_2305659
crossref_primary_10_1016_j_molstruc_2024_141104
crossref_primary_10_1016_j_jmgm_2024_108906
crossref_primary_10_1080_10942912_2023_2185178
crossref_primary_10_1002_aoc_70215
Cites_doi 10.1038/s41467-019-08646-8
10.1016/S0040-4039(01)94977-9
10.1016/j.softx.2015.06.001
10.1039/D1RA02529E
10.1093/nar/gkv951
10.1039/D0RA10529E
10.1063/1.5017136
10.1021/ar000033j
10.1021/acs.jctc.0c00634
10.1038/nprot.2016.051
10.1002/jcc.21334
10.1016/j.jmgm.2019.06.008
10.1021/jm030644s
10.1006/jmbi.1996.0897
10.1039/C9RA09583G
10.1039/D0RA09858B
10.1021/acs.chemrev.5b00630
10.1074/jbc.RA119.009509
10.1063/1.1749657
10.1021/acs.jpcb.8b03277
10.1021/acsomega.8b03258
10.1214/aos/1176344552
10.1002/jcc.26439
10.1002/wcms.1455
10.1073/pnas.1805020115
10.1002/jcc.21256
10.1007/978-1-61779-465-0_20
10.1007/s11030-016-9717-4
10.1021/acs.jcim.1c00203
10.1063/1.1740409
10.1088/2399-6528/abcbac
10.1021/acs.jcim.5b00559
10.1002/qsar.19950140602
10.1063/1.3119261
10.1146/annurev.pa.27.040187.001205
10.1038/s41598-020-57781-6
10.1103/PhysRevE.56.5018
10.1021/ct1001768
10.3390/ijms140612157
10.1021/acs.jcim.1c00159
10.1021/ci500301s
10.1007/978-1-4939-6634-9_5
10.1023/A:1007930623000
10.1124/pr.112.007336
10.1038/nchembio.1697
10.1002/prot.22543
10.1038/s12276-019-0205-7
10.1021/ja9738539
10.1016/j.cplett.2017.03.034
10.1021/jm0306430
10.1002/jcc.24502
10.1016/0040-4020(80)80168-2
10.1021/cr00023a004
10.1021/acs.chemrev.0c00534
10.1016/j.jmgm.2019.107441
10.1021/acs.jcim.8b00312
10.1021/acs.jcim.9b00778
10.1002/jcc.25139
10.1002/pro.3784
10.1002/jcc.26130
10.1021/jm000241h
10.1021/acs.jcim.0c00491
10.1039/C9RA01981B
ContentType Journal Article
Copyright 2021 Wiley Periodicals LLC.
2022 Wiley Periodicals LLC.
Copyright_xml – notice: 2021 Wiley Periodicals LLC.
– notice: 2022 Wiley Periodicals LLC.
DBID AAYXX
CITATION
NPM
JQ2
7X8
DOI 10.1002/jcc.26779
DatabaseName CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

PubMed
ProQuest Computer Science Collection
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1096-987X
EndPage 169
ExternalDocumentID 34716930
10_1002_jcc_26779
JCC26779
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
36B
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
ESX
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWK
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YQT
ZZTAW
~IA
~KM
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
O8X
NPM
JQ2
7X8
ID FETCH-LOGICAL-c3539-8afaee653148a4bddcf83dc8d2228aa4097b4d0f08222e6814575e8e19ef72043
IEDL.DBID DRFUL
ISICitedReferencesCount 55
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000712877900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0192-8651
1096-987X
IngestDate Fri Jul 11 15:10:34 EDT 2025
Fri Jul 25 18:56:51 EDT 2025
Mon Jul 21 05:25:47 EDT 2025
Sat Nov 29 03:23:43 EST 2025
Tue Nov 18 21:48:58 EST 2025
Wed Jan 22 16:28:13 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords binding affinity
screening
empirical parameter
AutoDock Vina
modified Vina
Language English
License 2021 Wiley Periodicals LLC.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3539-8afaee653148a4bddcf83dc8d2228aa4097b4d0f08222e6814575e8e19ef72043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8086-6722
0000-0003-0009-6703
0000-0003-1848-3963
0000-0003-3153-4606
0000-0003-1034-1768
0000-0003-0232-7261
0000-0001-8487-1417
0000-0001-6922-1627
PMID 34716930
PQID 2607094914
PQPubID 48816
PageCount 10
ParticipantIDs proquest_miscellaneous_2590136543
proquest_journals_2607094914
pubmed_primary_34716930
crossref_citationtrail_10_1002_jcc_26779
crossref_primary_10_1002_jcc_26779
wiley_primary_10_1002_jcc_26779_JCC26779
PublicationCentury 2000
PublicationDate January 30, 2022
PublicationDateYYYYMMDD 2022-01-30
PublicationDate_xml – month: 01
  year: 2022
  text: January 30, 2022
  day: 30
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: New York
PublicationTitle Journal of computational chemistry
PublicationTitleAlternate J Comput Chem
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2018; 122
2019; 91
2015; 1–2
2019; 93
2019; 51
2020; 120
2019; 10
2000; 43
2020; 60
2020; 16
2020; 10
2016; 37
2017; 676
2014; 66
2018; 47
1997; 267
2018; 39
1980; 36
2020; 4
2013; 14
1997; 56
2016; 116
1998; 12
2010; 6
2014; 11
2014; 54
1998; 120
2001; 98
2016; 44
1979; 7
2010; 78
2010; 31
2019; 9
2019; 4
2021; 42
2012
1954; 22
2020; 41
1995; 14
2004; 47
2017; 21
2018; 148
2015; 55
1978; 19
2009; 130
2016; 18
2016; 11
2009; 30
2021; 11
1993; 93
2000; 33
2018; 115
2017
2019; 294
2021; 61
1935; 3
2018; 58
1987; 27
2020; 29
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
Ngo S. T. (e_1_2_6_40_1) 2020; 10
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
Wang W. (e_1_2_6_29_1) 2001; 98
e_1_2_6_9_1
Wang Z. (e_1_2_6_68_1) 2016; 18
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
Yu W. (e_1_2_6_6_1) 2017
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
Mendez D. (e_1_2_6_47_1) 2018; 47
e_1_2_6_61_1
Pham M. Q. (e_1_2_6_43_1) 2020; 10
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
References_xml – volume: 56
  start-page: 5018
  issue: 5
  year: 1997
  publication-title: Phys. Rev. E
– volume: 6
  start-page: 2559
  issue: 9
  year: 2010
  publication-title: J. Chem. Theory Comput.
– volume: 27
  start-page: 193
  year: 1987
  publication-title: Annu. Rev. Pharmacol. Toxicol.
– volume: 42
  start-page: 117
  year: 2021
  publication-title: J. Comput. Chem.
– volume: 47
  start-page: 1750
  issue: 7
  year: 2004
  publication-title: J. Med. Chem.
– volume: 55
  start-page: 2324
  issue: 11
  year: 2015
  publication-title: J. Chem. Inf. Model.
– volume: 115
  start-page: 7786
  issue: 33
  year: 2018
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 66
  start-page: 334
  issue: 1
  year: 2014
  publication-title: Pharmacol. Rev.
– volume: 1–2
  start-page: 19
  year: 2015
  publication-title: SoftwareX
– volume: 37
  start-page: 2734
  issue: 31
  year: 2016
  publication-title: J. Comput. Chem.
– volume: 93
  year: 2019
  publication-title: J. Mol. Graph. Model.
– volume: 60
  start-page: 5771
  issue: 12
  year: 2020
  publication-title: J. Chem. Inf. Model.
– volume: 78
  start-page: 162
  issue: 1
  year: 2010
  publication-title: Proteins
– volume: 93
  start-page: 2395
  issue: 7
  year: 1993
  publication-title: Chem. Rev.
– volume: 7
  start-page: 1
  year: 1979
  publication-title: Ann. Stat.
– volume: 44
  start-page: 1202
  issue: 1
  year: 2016
  publication-title: Nucleic Acids Res.
– volume: 294
  start-page: 157
  year: 2019
  publication-title: J. Biol. Chem.
– volume: 51
  start-page: 12
  issue: 2
  year: 2019
  publication-title: Exp. Mol. Med.
– volume: 30
  start-page: 2785
  issue: 16
  year: 2009
  publication-title: J. Comput. Chem.
– volume: 10
  start-page: 991
  issue: 53
  year: 2020
  publication-title: RSC Adv.
– volume: 61
  start-page: 2302
  issue: 5
  year: 2021
  publication-title: J. Chem. Inf. Model.
– volume: 61
  start-page: 3891
  year: 2021
  publication-title: J. Chem. Inf. Model.
– volume: 36
  start-page: 3219
  issue: 22
  year: 1980
  publication-title: Tetrahedron
– volume: 11
  start-page: 2926
  year: 2021
  publication-title: RSC Adv.
– volume: 41
  start-page: 611
  issue: 7
  year: 2020
  publication-title: J. Comput. Chem.
– volume: 14
  start-page: 501
  issue: 6
  year: 1995
  publication-title: Quant. Struct.‐Act. Rel.
– volume: 4
  issue: 11
  year: 2020
  publication-title: J. Phys. Commun.
– volume: 676
  start-page: 12
  year: 2017
  publication-title: Chem. Phys. Lett.
– volume: 11
  start-page: 5065
  issue: 9
  year: 2021
  publication-title: RSC Adv.
– volume: 9
  start-page: 833
  issue: 43
  year: 2019
  publication-title: RSC Adv.
– volume: 19
  start-page: 19
  year: 1978
  publication-title: Tetrahedron Lett.
– volume: 16
  start-page: 7160
  issue: 11
  year: 2020
  publication-title: J. Chem. Theor. Comput.
– volume: 29
  start-page: 298
  issue: 1
  year: 2020
  publication-title: Protein Sci.
– volume: 11
  start-page: 478
  issue: 28
  year: 2021
  publication-title: RSC Adv.
– volume: 39
  start-page: 621
  issue: 11
  year: 2018
  publication-title: J. Comput. Chem.
– volume: 47
  start-page: 930
  issue: 1
  year: 2018
  publication-title: Nucleic Acids Res.
– volume: 10
  start-page: 284
  year: 2020
  publication-title: RSC Adv.
– volume: 11
  start-page: 71
  year: 2014
  publication-title: Nat. Chem. Biol.
– volume: 31
  start-page: 455
  year: 2010
  publication-title: J. Comput. Chem.
– start-page: 85
  year: 2017
– volume: 14
  start-page: 157
  issue: 6
  year: 2013
  publication-title: Int. J. Mol. Sci.
– volume: 98
  start-page: 937
  issue: 26
  year: 2001
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 54
  start-page: 2309
  issue: 8
  year: 2014
  publication-title: J. Chem. Inf. Model.
– volume: 122
  start-page: 9435
  issue: 41
  year: 2018
  publication-title: J. Phys. Chem. B
– volume: 11
  start-page: 905
  year: 2016
  publication-title: Nat. Protoc.
– volume: 91
  start-page: 91
  year: 2019
  publication-title: J. Mol. Graph. Model.
– volume: 148
  issue: 10
  year: 2018
  publication-title: J. Chem. Phys.
– volume: 3
  start-page: 300
  issue: 5
  year: 1935
  publication-title: J. Chem. Phys.
– volume: 10
  start-page: 986
  issue: 1
  year: 2020
  publication-title: Sci. Rep.
– volume: 120
  start-page: 2788
  year: 2020
  publication-title: Chem. Rev.
– volume: 33
  start-page: 889
  issue: 12
  year: 2000
  publication-title: Acc. Chem. Res.
– volume: 120
  start-page: 2710
  issue: 12
  year: 1998
  publication-title: J. Am. Chem. Soc.
– volume: 10
  issue: 4
  year: 2020
  publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci.
– volume: 60
  start-page: 204
  issue: 1
  year: 2020
  publication-title: J. Chem. Inf. Model.
– volume: 18
  start-page: 964
  issue: 18
  year: 2016
  publication-title: Phys. Chem. Chem. Phys.
– volume: 10
  start-page: 824
  issue: 1
  year: 2019
  publication-title: Nat. Commun.
– volume: 130
  issue: 16
  year: 2009
  publication-title: J. Chem. Phys.
– volume: 22
  start-page: 1420
  issue: 8
  year: 1954
  publication-title: J. Chem. Phys.
– volume: 21
  start-page: 175
  issue: 1
  year: 2017
  publication-title: Mol. Divers.
– volume: 47
  start-page: 1739
  issue: 7
  year: 2004
  publication-title: J. Med. Chem.
– volume: 58
  start-page: 1697
  issue: 8
  year: 2018
  publication-title: J. Chem. Inf. Model.
– volume: 267
  start-page: 727
  issue: 3
  year: 1997
  publication-title: J. Mol. Biol.
– volume: 12
  start-page: 27
  issue: 1
  year: 1998
  publication-title: J. Comput. Aid. Mol. Des.
– start-page: 305
  year: 2012
– volume: 43
  start-page: 3786
  issue: 20
  year: 2000
  publication-title: J. Med. Chem.
– volume: 4
  start-page: 3887
  issue: 2
  year: 2019
  publication-title: ACS Omega
– volume: 116
  start-page: 5520
  issue: 9
  year: 2016
  publication-title: Chem. Rev.
– volume: 10
  start-page: 7732
  issue: 13
  year: 2020
  publication-title: RSC Adv.
– volume: 10
  start-page: 284
  year: 2020
  ident: e_1_2_6_40_1
  publication-title: RSC Adv.
– ident: e_1_2_6_57_1
  doi: 10.1038/s41467-019-08646-8
– ident: e_1_2_6_60_1
  doi: 10.1016/S0040-4039(01)94977-9
– ident: e_1_2_6_62_1
  doi: 10.1016/j.softx.2015.06.001
– volume: 47
  start-page: 930
  issue: 1
  year: 2018
  ident: e_1_2_6_47_1
  publication-title: Nucleic Acids Res.
– ident: e_1_2_6_42_1
  doi: 10.1039/D1RA02529E
– ident: e_1_2_6_48_1
  doi: 10.1093/nar/gkv951
– ident: e_1_2_6_65_1
  doi: 10.1039/D0RA10529E
– ident: e_1_2_6_21_1
  doi: 10.1063/1.5017136
– ident: e_1_2_6_27_1
  doi: 10.1021/ar000033j
– ident: e_1_2_6_5_1
  doi: 10.1021/acs.jctc.0c00634
– ident: e_1_2_6_53_1
  doi: 10.1038/nprot.2016.051
– ident: e_1_2_6_50_1
  doi: 10.1002/jcc.21334
– ident: e_1_2_6_44_1
  doi: 10.1016/j.jmgm.2019.06.008
– ident: e_1_2_6_14_1
  doi: 10.1021/jm030644s
– ident: e_1_2_6_11_1
  doi: 10.1006/jmbi.1996.0897
– ident: e_1_2_6_26_1
  doi: 10.1039/C9RA09583G
– ident: e_1_2_6_64_1
  doi: 10.1039/D0RA09858B
– ident: e_1_2_6_2_1
  doi: 10.1021/acs.chemrev.5b00630
– ident: e_1_2_6_56_1
  doi: 10.1074/jbc.RA119.009509
– ident: e_1_2_6_32_1
  doi: 10.1063/1.1749657
– ident: e_1_2_6_39_1
  doi: 10.1021/acs.jpcb.8b03277
– ident: e_1_2_6_19_1
  doi: 10.1021/acsomega.8b03258
– ident: e_1_2_6_63_1
  doi: 10.1214/aos/1176344552
– ident: e_1_2_6_4_1
  doi: 10.1002/jcc.26439
– ident: e_1_2_6_10_1
  doi: 10.1002/wcms.1455
– ident: e_1_2_6_55_1
  doi: 10.1073/pnas.1805020115
– ident: e_1_2_6_12_1
  doi: 10.1002/jcc.21256
– volume: 98
  start-page: 937
  issue: 26
  year: 2001
  ident: e_1_2_6_29_1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– ident: e_1_2_6_24_1
  doi: 10.1007/978-1-61779-465-0_20
– ident: e_1_2_6_45_1
  doi: 10.1007/s11030-016-9717-4
– ident: e_1_2_6_59_1
  doi: 10.1021/acs.jcim.1c00203
– ident: e_1_2_6_30_1
  doi: 10.1063/1.1740409
– ident: e_1_2_6_22_1
  doi: 10.1088/2399-6528/abcbac
– ident: e_1_2_6_46_1
  doi: 10.1021/acs.jcim.5b00559
– ident: e_1_2_6_15_1
  doi: 10.1002/qsar.19950140602
– ident: e_1_2_6_35_1
  doi: 10.1063/1.3119261
– volume: 18
  start-page: 964
  issue: 18
  year: 2016
  ident: e_1_2_6_68_1
  publication-title: Phys. Chem. Chem. Phys.
– ident: e_1_2_6_8_1
  doi: 10.1146/annurev.pa.27.040187.001205
– ident: e_1_2_6_66_1
  doi: 10.1038/s41598-020-57781-6
– ident: e_1_2_6_34_1
  doi: 10.1103/PhysRevE.56.5018
– ident: e_1_2_6_37_1
  doi: 10.1021/ct1001768
– ident: e_1_2_6_38_1
  doi: 10.3390/ijms140612157
– ident: e_1_2_6_67_1
  doi: 10.1021/acs.jcim.1c00159
– ident: e_1_2_6_25_1
  doi: 10.1021/ci500301s
– start-page: 85
  volume-title: Antibiotics: Methods and Protocols
  year: 2017
  ident: e_1_2_6_6_1
  doi: 10.1007/978-1-4939-6634-9_5
– ident: e_1_2_6_23_1
  doi: 10.1023/A:1007930623000
– ident: e_1_2_6_49_1
  doi: 10.1124/pr.112.007336
– ident: e_1_2_6_54_1
  doi: 10.1038/nchembio.1697
– ident: e_1_2_6_16_1
  doi: 10.1002/prot.22543
– ident: e_1_2_6_3_1
  doi: 10.1038/s12276-019-0205-7
– ident: e_1_2_6_31_1
  doi: 10.1021/ja9738539
– ident: e_1_2_6_18_1
  doi: 10.1016/j.cplett.2017.03.034
– ident: e_1_2_6_13_1
  doi: 10.1021/jm0306430
– ident: e_1_2_6_17_1
  doi: 10.1002/jcc.24502
– ident: e_1_2_6_61_1
  doi: 10.1016/0040-4020(80)80168-2
– volume: 10
  start-page: 991
  issue: 53
  year: 2020
  ident: e_1_2_6_43_1
  publication-title: RSC Adv.
– ident: e_1_2_6_33_1
  doi: 10.1021/cr00023a004
– ident: e_1_2_6_9_1
  doi: 10.1021/acs.chemrev.0c00534
– ident: e_1_2_6_20_1
  doi: 10.1016/j.jmgm.2019.107441
– ident: e_1_2_6_51_1
  doi: 10.1021/acs.jcim.8b00312
– ident: e_1_2_6_52_1
  doi: 10.1021/acs.jcim.9b00778
– ident: e_1_2_6_7_1
  doi: 10.1002/jcc.25139
– ident: e_1_2_6_69_1
  doi: 10.1002/pro.3784
– ident: e_1_2_6_36_1
  doi: 10.1002/jcc.26130
– ident: e_1_2_6_28_1
  doi: 10.1021/jm000241h
– ident: e_1_2_6_41_1
  doi: 10.1021/acs.jcim.0c00491
– ident: e_1_2_6_58_1
  doi: 10.1039/C9RA01981B
SSID ssj0003564
Score 2.5712388
Snippet AutoDock Vina (Vina) achieved a very high docking‐success rate, p^, but give a rather low correlation coefficient, R, for binding affinity with respect to...
AutoDock Vina (Vina) achieved a very high docking‐success rate, , but give a rather low correlation coefficient, , for binding affinity with respect to...
AutoDock Vina (Vina) achieved a very high docking-success rate, , but give a rather low correlation coefficient, , for binding affinity with respect to...
AutoDock Vina (Vina) achieved a very high docking-success rate, p^ , but give a rather low correlation coefficient, R , for binding affinity with respect to...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 160
SubjectTerms Affinity
AutoDock Vina
Binding
binding affinity
Correlation coefficients
Docking
empirical parameter
Hydrogen bonds
Ligands
Mathematical analysis
modified Vina
Parameters
Ranking
screening
Title Improving ligand‐ranking of AutoDock Vina by changing the empirical parameters
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcc.26779
https://www.ncbi.nlm.nih.gov/pubmed/34716930
https://www.proquest.com/docview/2607094914
https://www.proquest.com/docview/2590136543
Volume 43
WOSCitedRecordID wos000712877900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1096-987X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003564
  issn: 0192-8651
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS9xAFD7oKtQXb23temMUH_qSukkmmRn6tKwuIiIiKvsWJnMp22pW9lLwrT-hv9Ff0jmTi4gWBN9C5oQZzmXmy0nOdwAOLNXuNRkZADRTAU0TGwgdh0EeJVxJYx1G94XCZ-z8nA8G4mIOvte1MCU_RJNww8jw-zUGuMwnh0-koT-V-haljIl5WIic3yYtWDi67F-fNRtxnJTsUQ7EBDxNwppYqBMdNg8_P45eYMznkNWfOf2Vd612FZYrqEm6pW-swZwp1uFDr-7w9hEumowCuR3-kIV-_PMXe7jjjZEl3dl05M6gX-RmWEiSPxBfJIyDDjQSc3c_9PQiBNnD7_CvmsknuO4fX_VOgqrDQqDiJBYBl1Yak7o4pFzSXGtleawV15gXkhK5sHKqO9a3_TYpD6lDd4abUBiL3W3iz9AqRoX5AoRpITTPE2bTnCrEQSGLVR6lRgvJRKcNX2tFZ6qiH8cuGLdZSZwcZU5FmVdRG_Yb0fuSc-M1oe3aWlkVdhM34nYwQUVI27DXDDut4lcQWZjRzMlgtW2MJbVt2Cit3MzinBbJaXCx3pj_nz477fX8xebbRbdgKcLiiQ5m_LahNR3PzA4sqt_T4WS8C_NswHcrH_4HI5Xy6g
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xqAQXHm2BhQVM1UMvgU3iJLbEZbWwou2yQhVU3CLHD7Q8sojdReLGT-A38kvwOI8KlUqVuEXxRLbmYX-ZZL4B-Gqosq_JyACgEunRODIeV6HvZUHEpNDGYnRXKNxL-n12fs5PpmC_qoUp-CHqhBtGhtuvMcAxIb33hzX0UsrdIE4SPg2z1LqR9e_Zg1_ds169E4dRQR9lUYzH4sivmIVawV798Ovz6C-Q-RqzukOnu_i-5S7BQgk2SbvwjmWY0vlHmOtUPd4-wUmdUyDXgwuRq-fHJ-zijjeGhrQn46E9ha7I70EuSPZAXJkwDlrYSPTN7cARjBDkD7_B_2pGn-Gse3jaOfLKHgueDKOQe0wYoXVsI5EyQTOlpGGhkkxhZkgIZMPKqGoZ1_hbx8ynFt9ppn2uDfa3CVdgJh_meg1IojhXLIsSE2dUIhLyk1BmQawVFwlvNeBbpelUlgTk2AfjOi2ok4PUqih1KmrAl1r0tmDdeEuoWZkrLQNvZEfsHsYp92kDduphq1X8DiJyPZxYGay3DbGotgGrhZnrWazbIj0NLtZZ89_Tpz86HXex_v-i2zB3dHrcS3vf-z83YD7AUooW5v-aMDO-m-hN-CDvx4PR3Vbpyi_2iPXy
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7RpSpceLQ8Fih1qx56CWwSJ7ElLmhhBWW1WiGouEWOH2h5ZFfsLhI3fgK_kV-Cx3kg1Faq1FsUT2Rr7LG_TDLfB_DdUGVfk5EBQCXSo3FkPK5C38uCiEmhjcXorlC4m_R67OKC92dgr6qFKfgh6oQbRobbrzHA9UiZ3VfW0Cspd4I4Sfg7mKUoItOA2YPTznm33onDqKCPsijGY3HkV8xCrWC3fvjtefQbyHyLWd2h01n8v-EuwUIJNsl-sTqWYUbnH2GuXWm8fYJ-nVMgN4NLkavnxydUcccbQ0P2p5OhPYWuya9BLkj2QFyZMDZa2Ej07WjgCEYI8off4n814xU47xyetY-8UmPBk2EUco8JI7SObSRSJmimlDQsVJIpzAwJgWxYGVUt44S_dcx8avGdZtrn2qC-TbgKjXyY63UgieJcsSxKTJxRiUjIT0KZBbFWXCS81YQfladTWRKQow7GTVpQJwepdVHqXNSEb7XpqGDd-JPRVjVdaRl4Y9ti9zBOuU-b8LVutl7F7yAi18OptcF62xCLapuwVkxz3YtdtkhPg4N1s_n37tOf7ba72Ph30y_woX_QSbvHvZNNmA-wkqKF6b8taEzupvozvJf3k8H4brtcyS-QjvVt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+ligand%E2%80%90ranking+of+AutoDock+Vina+by+changing+the+empirical+parameters&rft.jtitle=Journal+of+computational+chemistry&rft.au=Pham%2C+T.+Ngoc+Han&rft.au=Nguyen%2C+Trung+Hai&rft.au=Tam%2C+Nguyen+Minh&rft.au=Y.+Vu%2C+Thien&rft.date=2022-01-30&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0192-8651&rft.eissn=1096-987X&rft.volume=43&rft.issue=3&rft.spage=160&rft.epage=169&rft_id=info:doi/10.1002%2Fjcc.26779&rft.externalDBID=10.1002%252Fjcc.26779&rft.externalDocID=JCC26779
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0192-8651&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0192-8651&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0192-8651&client=summon