3D B1+ corrected simultaneous myocardial T1 and T1ρ mapping with subject‐specific respiratory motion correction and water‐fat separation

Purpose To develop a 3D free‐breathing cardiac multi‐parametric mapping framework that is robust to confounders of respiratory motion, fat, and B1+ inhomogeneities and validate it for joint myocardial T1 and T1ρ mapping at 3T. Methods An electrocardiogram‐triggered sequence with dual‐echo Dixon read...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Magnetic resonance in medicine Ročník 93; číslo 2; s. 751 - 760
Hlavní autori: Qi, Haikun, Lv, Zhenfeng, Diao, Jiameng, Tao, Xiaofeng, Hu, Junpu, Xu, Jian, Botnar, René, Prieto, Claudia, Hu, Peng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Wiley Subscription Services, Inc 01.02.2025
Predmet:
ISSN:0740-3194, 1522-2594, 1522-2594
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Purpose To develop a 3D free‐breathing cardiac multi‐parametric mapping framework that is robust to confounders of respiratory motion, fat, and B1+ inhomogeneities and validate it for joint myocardial T1 and T1ρ mapping at 3T. Methods An electrocardiogram‐triggered sequence with dual‐echo Dixon readout was developed, where nine cardiac cycles were repeatedly acquired with inversion recovery and T1ρ preparation pulses for T1 and T1ρ sensitization. A subject‐specific respiratory motion model relating the 1D diaphragmatic navigator to the respiration‐induced 3D translational motion of the heart was constructed followed by respiratory motion binning and intra‐bin 3D translational and inter‐bin non‐rigid motion correction. Spin history B1+ inhomogeneities were corrected with optimized dual flip angle strategy. After water‐fat separation, the water images were matched to the simulated dictionary for T1 and T1ρ quantification. Phantoms and 10 heathy subjects were imaged to validate the proposed technique. Results The proposed technique achieved strong correlation (T1: R2 = 0.99; T1ρ: R2 = 0.98) with the reference measurements in phantoms. 3D cardiac T1 and T1ρ maps with spatial resolution of 2 × 2 × 4 mm were obtained with scan time of 5.4 ± 0.5 min, demonstrating comparable T1 (1236 ± 59 ms) and T1ρ (50.2 ± 2.4 ms) measurements to 2D separate breath‐hold mapping techniques. The estimated B1+ maps showed spatial variations across the left ventricle with the septal and inferior regions being 10%–25% lower than the anterior and septal regions. Conclusion The proposed technique achieved efficient 3D joint myocardial T1 and T1ρ mapping at 3T with respiratory motion correction, spin history B1+ correction and water‐fat separation.
AbstractList Purpose To develop a 3D free‐breathing cardiac multi‐parametric mapping framework that is robust to confounders of respiratory motion, fat, and B1+ inhomogeneities and validate it for joint myocardial T1 and T1ρ mapping at 3T. Methods An electrocardiogram‐triggered sequence with dual‐echo Dixon readout was developed, where nine cardiac cycles were repeatedly acquired with inversion recovery and T1ρ preparation pulses for T1 and T1ρ sensitization. A subject‐specific respiratory motion model relating the 1D diaphragmatic navigator to the respiration‐induced 3D translational motion of the heart was constructed followed by respiratory motion binning and intra‐bin 3D translational and inter‐bin non‐rigid motion correction. Spin history B1+ inhomogeneities were corrected with optimized dual flip angle strategy. After water‐fat separation, the water images were matched to the simulated dictionary for T1 and T1ρ quantification. Phantoms and 10 heathy subjects were imaged to validate the proposed technique. Results The proposed technique achieved strong correlation (T1: R2 = 0.99; T1ρ: R2 = 0.98) with the reference measurements in phantoms. 3D cardiac T1 and T1ρ maps with spatial resolution of 2 × 2 × 4 mm were obtained with scan time of 5.4 ± 0.5 min, demonstrating comparable T1 (1236 ± 59 ms) and T1ρ (50.2 ± 2.4 ms) measurements to 2D separate breath‐hold mapping techniques. The estimated B1+ maps showed spatial variations across the left ventricle with the septal and inferior regions being 10%–25% lower than the anterior and septal regions. Conclusion The proposed technique achieved efficient 3D joint myocardial T1 and T1ρ mapping at 3T with respiratory motion correction, spin history B1+ correction and water‐fat separation.
To develop a 3D free-breathing cardiac multi-parametric mapping framework that is robust to confounders of respiratory motion, fat, and B1+ inhomogeneities and validate it for joint myocardial T1 and T1ρ mapping at 3T.PURPOSETo develop a 3D free-breathing cardiac multi-parametric mapping framework that is robust to confounders of respiratory motion, fat, and B1+ inhomogeneities and validate it for joint myocardial T1 and T1ρ mapping at 3T.An electrocardiogram-triggered sequence with dual-echo Dixon readout was developed, where nine cardiac cycles were repeatedly acquired with inversion recovery and T1ρ preparation pulses for T1 and T1ρ sensitization. A subject-specific respiratory motion model relating the 1D diaphragmatic navigator to the respiration-induced 3D translational motion of the heart was constructed followed by respiratory motion binning and intra-bin 3D translational and inter-bin non-rigid motion correction. Spin history B1+ inhomogeneities were corrected with optimized dual flip angle strategy. After water-fat separation, the water images were matched to the simulated dictionary for T1 and T1ρ quantification. Phantoms and 10 heathy subjects were imaged to validate the proposed technique.METHODSAn electrocardiogram-triggered sequence with dual-echo Dixon readout was developed, where nine cardiac cycles were repeatedly acquired with inversion recovery and T1ρ preparation pulses for T1 and T1ρ sensitization. A subject-specific respiratory motion model relating the 1D diaphragmatic navigator to the respiration-induced 3D translational motion of the heart was constructed followed by respiratory motion binning and intra-bin 3D translational and inter-bin non-rigid motion correction. Spin history B1+ inhomogeneities were corrected with optimized dual flip angle strategy. After water-fat separation, the water images were matched to the simulated dictionary for T1 and T1ρ quantification. Phantoms and 10 heathy subjects were imaged to validate the proposed technique.The proposed technique achieved strong correlation (T1: R2 = 0.99; T1ρ: R2 = 0.98) with the reference measurements in phantoms. 3D cardiac T1 and T1ρ maps with spatial resolution of 2 × 2 × 4 mm were obtained with scan time of 5.4 ± 0.5 min, demonstrating comparable T1 (1236 ± 59 ms) and T1ρ (50.2 ± 2.4 ms) measurements to 2D separate breath-hold mapping techniques. The estimated B1+ maps showed spatial variations across the left ventricle with the septal and inferior regions being 10%-25% lower than the anterior and septal regions.RESULTSThe proposed technique achieved strong correlation (T1: R2 = 0.99; T1ρ: R2 = 0.98) with the reference measurements in phantoms. 3D cardiac T1 and T1ρ maps with spatial resolution of 2 × 2 × 4 mm were obtained with scan time of 5.4 ± 0.5 min, demonstrating comparable T1 (1236 ± 59 ms) and T1ρ (50.2 ± 2.4 ms) measurements to 2D separate breath-hold mapping techniques. The estimated B1+ maps showed spatial variations across the left ventricle with the septal and inferior regions being 10%-25% lower than the anterior and septal regions.The proposed technique achieved efficient 3D joint myocardial T1 and T1ρ mapping at 3T with respiratory motion correction, spin history B1+ correction and water-fat separation.CONCLUSIONThe proposed technique achieved efficient 3D joint myocardial T1 and T1ρ mapping at 3T with respiratory motion correction, spin history B1+ correction and water-fat separation.
To develop a 3D free-breathing cardiac multi-parametric mapping framework that is robust to confounders of respiratory motion, fat, and B1+ inhomogeneities and validate it for joint myocardial T1 and T1ρ mapping at 3T. An electrocardiogram-triggered sequence with dual-echo Dixon readout was developed, where nine cardiac cycles were repeatedly acquired with inversion recovery and T1ρ preparation pulses for T1 and T1ρ sensitization. A subject-specific respiratory motion model relating the 1D diaphragmatic navigator to the respiration-induced 3D translational motion of the heart was constructed followed by respiratory motion binning and intra-bin 3D translational and inter-bin non-rigid motion correction. Spin history B1+ inhomogeneities were corrected with optimized dual flip angle strategy. After water-fat separation, the water images were matched to the simulated dictionary for T1 and T1ρ quantification. Phantoms and 10 heathy subjects were imaged to validate the proposed technique. The proposed technique achieved strong correlation (T1: R  = 0.99; T1ρ: R  = 0.98) with the reference measurements in phantoms. 3D cardiac T1 and T1ρ maps with spatial resolution of 2 × 2 × 4 mm were obtained with scan time of 5.4 ± 0.5 min, demonstrating comparable T1 (1236 ± 59 ms) and T1ρ (50.2 ± 2.4 ms) measurements to 2D separate breath-hold mapping techniques. The estimated B1+ maps showed spatial variations across the left ventricle with the septal and inferior regions being 10%-25% lower than the anterior and septal regions. The proposed technique achieved efficient 3D joint myocardial T1 and T1ρ mapping at 3T with respiratory motion correction, spin history B1+ correction and water-fat separation.
PurposeTo develop a 3D free‐breathing cardiac multi‐parametric mapping framework that is robust to confounders of respiratory motion, fat, and B1+ inhomogeneities and validate it for joint myocardial T1 and T1ρ mapping at 3T.MethodsAn electrocardiogram‐triggered sequence with dual‐echo Dixon readout was developed, where nine cardiac cycles were repeatedly acquired with inversion recovery and T1ρ preparation pulses for T1 and T1ρ sensitization. A subject‐specific respiratory motion model relating the 1D diaphragmatic navigator to the respiration‐induced 3D translational motion of the heart was constructed followed by respiratory motion binning and intra‐bin 3D translational and inter‐bin non‐rigid motion correction. Spin history B1+ inhomogeneities were corrected with optimized dual flip angle strategy. After water‐fat separation, the water images were matched to the simulated dictionary for T1 and T1ρ quantification. Phantoms and 10 heathy subjects were imaged to validate the proposed technique.ResultsThe proposed technique achieved strong correlation (T1: R2 = 0.99; T1ρ: R2 = 0.98) with the reference measurements in phantoms. 3D cardiac T1 and T1ρ maps with spatial resolution of 2 × 2 × 4 mm were obtained with scan time of 5.4 ± 0.5 min, demonstrating comparable T1 (1236 ± 59 ms) and T1ρ (50.2 ± 2.4 ms) measurements to 2D separate breath‐hold mapping techniques. The estimated B1+ maps showed spatial variations across the left ventricle with the septal and inferior regions being 10%–25% lower than the anterior and septal regions.ConclusionThe proposed technique achieved efficient 3D joint myocardial T1 and T1ρ mapping at 3T with respiratory motion correction, spin history B1+ correction and water‐fat separation.
Author Tao, Xiaofeng
Lv, Zhenfeng
Hu, Peng
Xu, Jian
Botnar, René
Prieto, Claudia
Hu, Junpu
Diao, Jiameng
Qi, Haikun
Author_xml – sequence: 1
  givenname: Haikun
  orcidid: 0000-0003-4709-5185
  surname: Qi
  fullname: Qi, Haikun
  email: qihk@shanghaitech.edu.cn
  organization: ShanghaiTech University
– sequence: 2
  givenname: Zhenfeng
  surname: Lv
  fullname: Lv, Zhenfeng
  organization: ShanghaiTech University
– sequence: 3
  givenname: Jiameng
  orcidid: 0009-0009-7640-1699
  surname: Diao
  fullname: Diao, Jiameng
  organization: ShanghaiTech University
– sequence: 4
  givenname: Xiaofeng
  surname: Tao
  fullname: Tao, Xiaofeng
  organization: Shanghai Jiao Tong University School of Medicine
– sequence: 5
  givenname: Junpu
  surname: Hu
  fullname: Hu, Junpu
  organization: United Imaging Healthcare
– sequence: 6
  givenname: Jian
  surname: Xu
  fullname: Xu, Jian
  organization: UIH America, Inc
– sequence: 7
  givenname: René
  surname: Botnar
  fullname: Botnar, René
  organization: Millenium Institute for Intelligent Healthcare Engineering
– sequence: 8
  givenname: Claudia
  surname: Prieto
  fullname: Prieto, Claudia
  organization: Millenium Institute for Intelligent Healthcare Engineering
– sequence: 9
  givenname: Peng
  surname: Hu
  fullname: Hu, Peng
  organization: ShanghaiTech University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39370883$$D View this record in MEDLINE/PubMed
BookMark eNp1kc9u1DAQhy1URLeFAy-ALHGhQmltT7JxjlD-Sq2QUDlbjjMGr5I42I5We4MHqMSb8Q48Cd7u7qWC01ia7_vZ4zkhR6MfkZCnnJ1zxsTFEIZzYMDrB2TBKyEKUTXlEVmwumQF8KY8JicxrhhjTVOXj8gxNFAzKWFBbuENfc1fUuNDQJOwo9ENc5_0iH6OdNh4o0PndE9vONVjl8vvn3TQ0-TGr3Tt0jca53aV1T8_fsUJjbPO0IBxckEnHzZ08Mn58XDB9riNWeuEIStWJxpx0hnOrcfkodV9xCf7ekq-vHt7c_mhuPr0_uPlq6vCQAV1YZdlC8tW2lqiqBmH2lpheGm0RWtRc2grEGLZ5U4JILgVUgs02ILkra7glLzY5U7Bf58xJjW4aLDvd2Mr4Fuzlhwy-vweuvJzGPPrMgUgSyG5zNSzPTW3A3ZqCm7QYaMOH52Bix1ggo8xoFXGpbuZU9CuV5yp7SpVXqW6W2U2zu4Zh9B_sfv0tetx839QXX--3hl_AV3SsP0
CitedBy_id crossref_primary_10_1002_mrm_70071
Cites_doi 10.1186/s12968-021-00813-5
10.1186/s12968-020-0597-5
10.1002/mrm.29417
10.1002/mrm.28675
10.1002/mrm.20110
10.1002/mrm.25975
10.1016/j.mri.2019.08.008
10.1002/mrm.1910230118
10.1002/mrm.24793
10.1007/s12410-013-9248-7
10.1186/s12968-021-00781-w
10.1038/s41551-018-0217-y
10.1002/mrm.28935
10.1002/mrm.26569
10.1186/s12968-023-00973-6
10.1002/mrm.27694
10.1002/mrm.29097
10.1002/jmri.24785
10.1002/mrm.28330
10.1002/jmri.24602
10.1002/mrm.29091
10.1016/j.jocmr.2024.100113
10.1016/j.jcmg.2018.08.028
10.1002/mrm.27681
10.1016/j.jocmr.2024.101037
10.1186/s12968-017-0389-8
10.1186/s12968-014-0102-0
10.1002/mrm.29143
10.1002/mrm.30139
10.1093/ehjci/jead319
10.1186/s12968-020-00611-5
10.1002/mrm.28475
10.1002/mrm.26274
10.2214/AJR.10.4570
10.1002/mrm.27466
ContentType Journal Article
Copyright 2024 International Society for Magnetic Resonance in Medicine.
2025 International Society for Magnetic Resonance in Medicine.
Copyright_xml – notice: 2024 International Society for Magnetic Resonance in Medicine.
– notice: 2025 International Society for Magnetic Resonance in Medicine.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
DOI 10.1002/mrm.30317
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Biochemistry Abstracts 1
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 760
ExternalDocumentID 39370883
10_1002_mrm_30317
MRM30317
Genre technicalNote
Journal Article
GrantInformation_xml – fundername: Cross‐disciplinary Research Fund of Shanghai Ninth People's Hospital, Shanghai JiaoTong university School of Medicine
  funderid: JYJC202134
– fundername: National Natural Science Foundation of China
  funderid: 82102027
– fundername: Shanghai Science and Technology Commission
  funderid: 23TS1400300
– fundername: National Natural Science Foundation of China
  grantid: 82102027
– fundername: Shanghai Science and Technology Commission
  grantid: 23TS1400300
– fundername: Cross-disciplinary Research Fund of Shanghai Ninth People's Hospital, Shanghai JiaoTong university School of Medicine
  grantid: JYJC202134
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
ID FETCH-LOGICAL-c3537-f64b36b8f78e270137ff2c14cafeffea13b53226d13743321f28a2eceb381ba53
IEDL.DBID WIN
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001329656200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0740-3194
1522-2594
IngestDate Fri Sep 05 07:31:49 EDT 2025
Sat Nov 29 14:27:37 EST 2025
Wed Feb 19 02:04:23 EST 2025
Tue Nov 18 22:14:58 EST 2025
Sat Nov 29 08:03:39 EST 2025
Wed Jan 22 17:12:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords cardiac multi‐parametric mapping
B1+ correction
free‐breathing
T1ρ mapping
T1 mapping
Language English
License 2024 International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3537-f64b36b8f78e270137ff2c14cafeffea13b53226d13743321f28a2eceb381ba53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4709-5185
0009-0009-7640-1699
PMID 39370883
PQID 3133842818
PQPubID 1016391
PageCount 10
ParticipantIDs proquest_miscellaneous_3113747813
proquest_journals_3133842818
pubmed_primary_39370883
crossref_citationtrail_10_1002_mrm_30317
crossref_primary_10_1002_mrm_30317
wiley_primary_10_1002_mrm_30317_MRM30317
PublicationCentury 2000
PublicationDate February 2025
2025-02-00
2025-Feb
20250201
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: February 2025
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 86
2021; 23
2020; 84
2016; 76
2022; 87
2022; 88
2011; 196
2004; 52
2015; 28
2023; 25
2019; 81
2018; 2
2019; 63
2022
2015; 42
2017; 77
2015; 41
2024; 92
2017; 78
2014; 16
2017; 19
2020; 22
2018; 11
2024; 26
2014; 7
2021; 85
1992; 23
2014; 71
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Crabb M (e_1_2_7_18_1) 2022
e_1_2_7_30_1
Speier P (e_1_2_7_39_1) 2015; 28
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
References_xml – volume: 22
  start-page: 12
  year: 2020
  article-title: Respiratory motion‐compensated high‐resolution 3D whole‐heart T1rho mapping
  publication-title: J Cardiovasc Magn Reson
– volume: 78
  start-page: 1862
  year: 2017
  end-page: 1869
  article-title: Method of B0 mapping with magnitude‐based correction for bipolar two‐point Dixon cardiac MRI
  publication-title: Magn Reson Med
– start-page: 1004
  year: 2022
– volume: 28
  start-page: S97
  year: 2015
  end-page: S98
  article-title: PT‐Nav: a novel respiratory navigation method for continuous acquisitions based on modulation of a pilot tone in the MR‐receiver
  publication-title: Magn Reson Mater Phys Biol Med
– volume: 25
  start-page: 63
  year: 2023
  article-title: Free‐breathing simultaneous native myocardial T1, T2 and T1ρ mapping with Cartesian acquisition and dictionary matching
  publication-title: J Cardiovasc Magn Reson
– volume: 63
  start-page: 159
  year: 2019
  end-page: 169
  article-title: Free‐running simultaneous myocardial T1/T2 mapping and cine imaging with 3D whole‐heart coverage and isotropic spatial resolution
  publication-title: Magn Reson Imaging
– volume: 81
  start-page: 3705
  year: 2019
  end-page: 3719
  article-title: High‐dimensionality undersampled patch‐based reconstruction (HD‐PROST) for accelerated multi‐contrast MRI
  publication-title: Magn Reson Med
– volume: 81
  start-page: 1031
  year: 2019
  end-page: 1043
  article-title: A three‐dimensional free‐breathing sequence for simultaneous myocardial T(1) and T(2) mapping
  publication-title: Magn Reson Med
– volume: 71
  start-page: 1428
  year: 2014
  end-page: 1434
  article-title: Adiabatic inversion pulses for myocardial T1 mapping
  publication-title: Magn Reson Med
– volume: 2
  start-page: 215
  year: 2018
  end-page: 226
  article-title: Magnetic resonance multitasking for motion‐resolved quantitative cardiovascular imaging
  publication-title: Nat Biomed Eng
– volume: 11
  start-page: 1837
  year: 2018
  end-page: 1853
  article-title: Cardiac magnetic resonance fingerprinting: technical overview and initial results
  publication-title: JACC Cardiovasc Imaging
– volume: 87
  start-page: 1832
  year: 2022
  end-page: 1845
  article-title: Free‐breathing 3D cardiac T‐1 mapping with transmit B‐1 correction at 3T
  publication-title: Magn Reson Med
– volume: 23
  start-page: 119
  year: 2021
  article-title: Endogenous assessment of myocardial injury with single‐shot model‐based non‐rigid motion‐corrected T1 rho mapping
  publication-title: J Cardiovasc Magn Reson
– volume: 86
  start-page: 82
  year: 2021
  end-page: 96
  article-title: Dual‐excitation flip‐angle simultaneous cine and mapping using spiral acquisition with respiratory and cardiac self‐gating
  publication-title: Magn Reson Med
– volume: 25
  start-page: 548
  year: 2023
  end-page: 557
  article-title: Assessment of myocardial injuries in ischaemic and non‐ischaemic cardiomyopathies using magnetic resonance T1‐rho mapping
  publication-title: Eur Heart J Cardiovasc Imaging
– volume: 42
  start-page: 407
  year: 2015
  end-page: 420
  article-title: Free‐breathing pediatric MRI with nonrigid motion correction and acceleration
  publication-title: J Magn Reson Imaging
– volume: 7
  start-page: 9248
  year: 2014
  article-title: Assessing myocardial disease using T1rho MRI
  publication-title: Curr Cardiovasc Imaging Rep
– volume: 23
  start-page: 120
  year: 2021
  article-title: Endogenous T1rho cardiovascular magnetic resonance in hypertrophic cardiomyopathy
  publication-title: J Cardiovasc Magn Reson
– volume: 87
  start-page: 1992
  year: 2022
  end-page: 2002
  article-title: Simultaneous T1, T2, and T1ρcardiac magnetic resonance fingerprinting for contrast agent–free myocardial tissue characterization
  publication-title: Magn Reson Med
– volume: 19
  start-page: 75
  year: 2017
  article-title: Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: a consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI)
  publication-title: J Cardiovasc Magn Reson
– volume: 26
  year: 2024
  article-title: Intra‐bin correction and inter‐bin compensation of respiratory motion in free‐running five‐dimensional whole‐heart magnetic resonance imaging
  publication-title: J Cardiovasc Magn Reson
– volume: 84
  start-page: 3009
  year: 2020
  end-page: 3026
  article-title: 3D whole‐heart isotropic‐resolution motion‐compensated joint T‐1/T(2)mapping and water/fat imaging
  publication-title: Magn Reson Med
– volume: 77
  start-page: 1894
  year: 2017
  end-page: 1908
  article-title: Highly efficient nonrigid motion‐corrected 3D whole‐heart coronary vessel wall imaging
  publication-title: Magn Reson Med
– volume: 23
  start-page: 172
  year: 1992
  end-page: 178
  article-title: Respiratory kinematics of the upper abdominal organs: a quantitative study
  publication-title: Magn Reson Med
– volume: 85
  start-page: 855
  year: 2021
  end-page: 867
  article-title: Prospective correction of patient‐specific respiratory motion in myocardial T(1) and T(2) mapping
  publication-title: Magn Reson Med
– volume: 87
  start-page: 2347
  year: 2022
  end-page: 2362
  article-title: Cartesian dictionary‐based native T1 and T2 mapping of the myocardium
  publication-title: Magn Reson Med
– volume: 92
  start-page: 1511
  year: 2024
  end-page: 1524
  article-title: Free‐breathing 3D whole‐heart joint T1/T2 mapping and water/fat imaging at 0.55 T
  publication-title: Magn Reson Med
– volume: 22
  start-page: 24
  year: 2020
  article-title: 3D whole‐heart isotropic sub‐millimeter resolution coronary magnetic resonance angiography with non‐rigid motion‐compensated PROST
  publication-title: J Cardiovasc Magn Reson
– volume: 16
  start-page: 102
  year: 2014
  article-title: Simultaneous three‐dimensional myocardial T1 and T2 mapping in one breath hold with 3D‐QALAS
  publication-title: J Cardiovasc Magn Reson
– volume: 86
  start-page: 3182
  year: 2021
  end-page: 3191
  article-title: Dual flip‐angle IR‐FLASH with spin history mapping for B1+corrected T1 mapping: application to T1 cardiovascular magnetic resonance multitasking
  publication-title: Magn Reson Med
– volume: 196
  start-page: W174
  year: 2011
  end-page: W179
  article-title: Comparison of T1rho measurements in agarose phantoms and human patellar cartilage using 2D multislice spiral and 3D magnetization prepared partitioned k‐space spoiled gradient‐echo snapshot techniques at 3 T
  publication-title: AJR Am J Roentgenol
– volume: 88
  start-page: 2520
  year: 2022
  end-page: 2531
  article-title: Accelerated 3D free‐breathing high‐resolution myocardial T(1rho) mapping at 3 tesla
  publication-title: Magn Reson Med
– volume: 26
  start-page: 26
  year: 2024
  article-title: 3D whole‐heart joint T1/T1ρ/T2 mapping and water‐fat imaging for contrast‐agent free myocardial tissue characterization at 0.55 T
  publication-title: J Cardiovasc Magn Reson
– volume: 52
  start-page: 141
  year: 2004
  end-page: 146
  article-title: Modified look‐locker inversion recovery (MOLLI) for high‐resolution T‐1 mapping of the heart
  publication-title: Magn Reson Med
– volume: 76
  start-page: 888
  year: 2016
  end-page: 896
  article-title: Joint myocardial T1 and T2 mapping using a combination of saturation recovery and T2‐preparation
  publication-title: Magn Reson Med
– volume: 41
  start-page: 738
  year: 2015
  end-page: 746
  article-title: Highly efficient respiratory motion compensated free‐breathing coronary MRA using Golden‐step Cartesian acquisition
  publication-title: J Magn Reson Imaging
– volume: 81
  start-page: 3662
  year: 2019
  end-page: 3674
  article-title: Patient specific prospective respiratory motion correction for efficient, free‐breathing cardiovascular MRI
  publication-title: Magn Reson Med
– ident: e_1_2_7_6_1
  doi: 10.1186/s12968-021-00813-5
– ident: e_1_2_7_4_1
  doi: 10.1186/s12968-020-0597-5
– ident: e_1_2_7_34_1
  doi: 10.1002/mrm.29417
– ident: e_1_2_7_21_1
  doi: 10.1002/mrm.28675
– ident: e_1_2_7_33_1
  doi: 10.1002/mrm.20110
– ident: e_1_2_7_8_1
  doi: 10.1002/mrm.25975
– ident: e_1_2_7_13_1
  doi: 10.1016/j.mri.2019.08.008
– ident: e_1_2_7_25_1
  doi: 10.1002/mrm.1910230118
– ident: e_1_2_7_36_1
  doi: 10.1002/mrm.24793
– ident: e_1_2_7_29_1
– ident: e_1_2_7_3_1
  doi: 10.1007/s12410-013-9248-7
– ident: e_1_2_7_5_1
  doi: 10.1186/s12968-021-00781-w
– ident: e_1_2_7_11_1
  doi: 10.1038/s41551-018-0217-y
– ident: e_1_2_7_20_1
  doi: 10.1002/mrm.28935
– ident: e_1_2_7_31_1
  doi: 10.1002/mrm.26569
– ident: e_1_2_7_17_1
  doi: 10.1186/s12968-023-00973-6
– ident: e_1_2_7_30_1
  doi: 10.1002/mrm.27694
– ident: e_1_2_7_22_1
  doi: 10.1002/mrm.29097
– ident: e_1_2_7_23_1
  doi: 10.1002/jmri.24785
– ident: e_1_2_7_14_1
  doi: 10.1002/mrm.28330
– ident: e_1_2_7_24_1
  doi: 10.1002/jmri.24602
– ident: e_1_2_7_16_1
  doi: 10.1002/mrm.29091
– ident: e_1_2_7_19_1
  doi: 10.1016/j.jocmr.2024.100113
– ident: e_1_2_7_12_1
  doi: 10.1016/j.jcmg.2018.08.028
– ident: e_1_2_7_26_1
  doi: 10.1002/mrm.27681
– start-page: 1004
  volume-title: Proceedings of the 30th Annual Meeting of ISMRM
  year: 2022
  ident: e_1_2_7_18_1
– ident: e_1_2_7_38_1
  doi: 10.1016/j.jocmr.2024.101037
– ident: e_1_2_7_2_1
  doi: 10.1186/s12968-017-0389-8
– ident: e_1_2_7_10_1
  doi: 10.1186/s12968-014-0102-0
– ident: e_1_2_7_15_1
  doi: 10.1002/mrm.29143
– ident: e_1_2_7_35_1
  doi: 10.1002/mrm.30139
– volume: 28
  start-page: S97
  year: 2015
  ident: e_1_2_7_39_1
  article-title: PT‐Nav: a novel respiratory navigation method for continuous acquisitions based on modulation of a pilot tone in the MR‐receiver
  publication-title: Magn Reson Mater Phys Biol Med
– ident: e_1_2_7_7_1
  doi: 10.1093/ehjci/jead319
– ident: e_1_2_7_28_1
  doi: 10.1186/s12968-020-00611-5
– ident: e_1_2_7_37_1
  doi: 10.1002/mrm.28475
– ident: e_1_2_7_27_1
  doi: 10.1002/mrm.26274
– ident: e_1_2_7_32_1
  doi: 10.2214/AJR.10.4570
– ident: e_1_2_7_9_1
  doi: 10.1002/mrm.27466
SSID ssj0009974
Score 2.4736896
Snippet Purpose To develop a 3D free‐breathing cardiac multi‐parametric mapping framework that is robust to confounders of respiratory motion, fat, and B1+...
To develop a 3D free-breathing cardiac multi-parametric mapping framework that is robust to confounders of respiratory motion, fat, and B1+ inhomogeneities and...
PurposeTo develop a 3D free‐breathing cardiac multi‐parametric mapping framework that is robust to confounders of respiratory motion, fat, and B1+...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 751
SubjectTerms Adipose Tissue - diagnostic imaging
Adult
Algorithms
B1+ correction
cardiac multi‐parametric mapping
Diaphragm
EKG
Electrocardiography
Female
free‐breathing
Heart
Heart - diagnostic imaging
Humans
Image Processing, Computer-Assisted - methods
Imaging, Three-Dimensional - methods
Inhomogeneity
Magnetic Resonance Imaging - methods
Male
Mapping
Motion
Myocardium - pathology
Phantoms, Imaging
Reproducibility of Results
Respiration
Separation
Spatial discrimination
Spatial resolution
Spatial variations
T1 mapping
T1ρ mapping
Translation
Translational motion
Water - chemistry
Title 3D B1+ corrected simultaneous myocardial T1 and T1ρ mapping with subject‐specific respiratory motion correction and water‐fat separation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.30317
https://www.ncbi.nlm.nih.gov/pubmed/39370883
https://www.proquest.com/docview/3133842818
https://www.proquest.com/docview/3113747813
Volume 93
WOSCitedRecordID wos001329656200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: WIN
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dahQxFD7UqqU3_lStq3WJ4oUgY5uf3cnglVoXhe4ipcW9GzKZRArdWZnZbemdPoDgm_kOPonnTGZmKSoIXk1gTiaZ5PwlOfkOwFPtJPe5V5HOuIpU4mSktdGRtdp5laCFsTWI60E8mejpNPmwBi_buzABH6LbcCPJqPU1CbjJqt0VaOisnL1A_cvpJjlXnLIXfHw_WQHuJgGBOVakZxLVogrtid2u5mVb9JuDedlfrQ3O6OZ_dfUW3Gj8TPYqMMZtWHPFFmyMm5P0Lbheh37a6g58k_vsNX_OLOXpsOiAsuqEwgxN4ebLis0u0NoRF52yI85MkePjx1c2MwTs8InRPi6rlhlt5_z88p0ublLwEStXR_gsZApqG6AifeYcvdwSq3izYJULEOTz4i4cj94evXkXNUkaIisHMo78UGVymGkfaydiAjD0XliurPEUkWK4zAaoNIY5viGsNO6FNsJZXMSjx2wG8h6sF_PC3Qfm9zIlzBBVsEa_DtdpKs64EC7LvUtyKXvwrJ2u1DYI5pRI4zQN2MsixYFO64HuwZOO9HOA7fgT0U4752kjuVUqadGuCCOrB4-71yhzdJASRh5p6GdizbFL24FXulYIYBA1N3W2Zom_N5-OD8d14cG_kz6ETUEJiOuw8R1YX5RL9wiu2bPFSVX24Uo81X24un84Oj7o1_LwC9cTDi0
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VAoULj1JgoYBBHJBQaP3YjSNx4VW1YneF0KL2FjmOjSp1syjZbcUNfkCl_jP-A7-EGeexqgAJiVMsZRw79sx4PB5_A_BUO8l97lWkM64ilTgZaW10ZK12XiW4wtgA4jqMx2N9cJB8WIGX7V2YGh-ic7iRZAR9TQJODumtJWrotJy-QAXM4wtwUaGhQYkb9vfGS8jdpMZgjhVpmkS1uELbYquren41-s3EPG-xhiVn5_r_dfYGXGtMTfaq5o2bsOKKdVgbNYfp63A5RH_a6hacyrfsNX_OLKXqsGiDsuqQIg1N4WaLik2_4oJHjHTEJpyZIsfHj-9sagjb4TMjVy6rFhl5dH5-O6O7mxR_xMrlKT6rkwW1DVCRPnOChm6JVbyZs8rVKOSzYgM-7bybvNmNmjwNkZV9GUd-oDI5yLSPtRMxYRh6LyxX1ngKSjFcZn3UG4Mc3xBcGvdCG-Es7uPRaDZ9eRtWi1nh7gLz25kSZoBaWKNph1s1FWdcCJfl3iW5lD141s5XahsQc8qlcZTW8MsixYFOw0D34ElH-qVG7vgT0WY76WkjvFUqad-uCCarB4-71yh2dJZSjzzS0M_EmmOX7tTM0rVCGIOovKmzgSf-3nw6-jgKhXv_TvoIruxORsN0uDd-fx-uCspHHKLIN2F1Xi7cA7hkj-eHVfkwiMMvysoPww
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9QwFD6ss7r44mW9ja4axQdB6m4uM03BF3UcFGeGZdmFfStpmsjCTmdpZxTf9AcI_jP_g7_Ec5q2w6KC4FMDPWnS5NySnHwH4Il2kvvcq0hnXEUqcTLS2ujIWu28StDC2BrEdRLPZvr4ONnfgBftXZiAD9FtuJFk1PqaBNyd5X53jRo6L-fPUQHz-AJsKkoi04PN0cH4aLIG3U0CCnOsSNckqkUW2hO7XeXz9ug3J_O8z1obnfHV_-vuNbjSOJvsZeCO67Dhim3YmjbH6dtwqY7_tNUN-CZH7BV_xiwl67DohbLqhGINTeEWq4rNP6PJI1Y6ZYecmSLHx4-vbG4I3eEDo81cVq0y2tP5-eU73d6kCCRWrs_xWUgX1DZARfrMJ3R1S6zizZJVLuCQL4qbcDR-c_j6bdRkaoisHMg48kOVyWGmfaydiAnF0HthubLGU1iK4TIboOYY5viGANO4F9oIZ3Elj26zGchb0CsWhbsDzO9lSpgh6mGNzh0u1lSccSFclnuX5FL24Wk7X6ltYMwpm8ZpGgCYRYoDndYD3YfHHelZwO74E9FOO-lpI75VKmnlrggoqw-PutcoeHSaEkYeaehnYs2xS7cDs3StEMogqm_qbM0Tf28-nR5M68Ldfyd9CFv7o3E6eTd7fw8uC0pIXIeR70BvWa7cfbhoPy5PqvJBIw-_AIcfEGw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+B1%2B+corrected+simultaneous+myocardial+T1+and+T1%CF%81+mapping+with+subject-specific+respiratory+motion+correction+and+water-fat+separation&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Qi%2C+Haikun&rft.au=Lv%2C+Zhenfeng&rft.au=Diao%2C+Jiameng&rft.au=Tao%2C+Xiaofeng&rft.date=2025-02-01&rft.eissn=1522-2594&rft.volume=93&rft.issue=2&rft.spage=751&rft_id=info:doi/10.1002%2Fmrm.30317&rft_id=info%3Apmid%2F39370883&rft.externalDocID=39370883
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon