3D B1+ corrected simultaneous myocardial T1 and T1ρ mapping with subject‐specific respiratory motion correction and water‐fat separation
Purpose To develop a 3D free‐breathing cardiac multi‐parametric mapping framework that is robust to confounders of respiratory motion, fat, and B1+ inhomogeneities and validate it for joint myocardial T1 and T1ρ mapping at 3T. Methods An electrocardiogram‐triggered sequence with dual‐echo Dixon read...
Uložené v:
| Vydané v: | Magnetic resonance in medicine Ročník 93; číslo 2; s. 751 - 760 |
|---|---|
| Hlavní autori: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
Wiley Subscription Services, Inc
01.02.2025
|
| Predmet: | |
| ISSN: | 0740-3194, 1522-2594, 1522-2594 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Purpose
To develop a 3D free‐breathing cardiac multi‐parametric mapping framework that is robust to confounders of respiratory motion, fat, and B1+ inhomogeneities and validate it for joint myocardial T1 and T1ρ mapping at 3T.
Methods
An electrocardiogram‐triggered sequence with dual‐echo Dixon readout was developed, where nine cardiac cycles were repeatedly acquired with inversion recovery and T1ρ preparation pulses for T1 and T1ρ sensitization. A subject‐specific respiratory motion model relating the 1D diaphragmatic navigator to the respiration‐induced 3D translational motion of the heart was constructed followed by respiratory motion binning and intra‐bin 3D translational and inter‐bin non‐rigid motion correction. Spin history B1+ inhomogeneities were corrected with optimized dual flip angle strategy. After water‐fat separation, the water images were matched to the simulated dictionary for T1 and T1ρ quantification. Phantoms and 10 heathy subjects were imaged to validate the proposed technique.
Results
The proposed technique achieved strong correlation (T1: R2 = 0.99; T1ρ: R2 = 0.98) with the reference measurements in phantoms. 3D cardiac T1 and T1ρ maps with spatial resolution of 2 × 2 × 4 mm were obtained with scan time of 5.4 ± 0.5 min, demonstrating comparable T1 (1236 ± 59 ms) and T1ρ (50.2 ± 2.4 ms) measurements to 2D separate breath‐hold mapping techniques. The estimated B1+ maps showed spatial variations across the left ventricle with the septal and inferior regions being 10%–25% lower than the anterior and septal regions.
Conclusion
The proposed technique achieved efficient 3D joint myocardial T1 and T1ρ mapping at 3T with respiratory motion correction, spin history B1+ correction and water‐fat separation. |
|---|---|
| AbstractList | Purpose
To develop a 3D free‐breathing cardiac multi‐parametric mapping framework that is robust to confounders of respiratory motion, fat, and B1+ inhomogeneities and validate it for joint myocardial T1 and T1ρ mapping at 3T.
Methods
An electrocardiogram‐triggered sequence with dual‐echo Dixon readout was developed, where nine cardiac cycles were repeatedly acquired with inversion recovery and T1ρ preparation pulses for T1 and T1ρ sensitization. A subject‐specific respiratory motion model relating the 1D diaphragmatic navigator to the respiration‐induced 3D translational motion of the heart was constructed followed by respiratory motion binning and intra‐bin 3D translational and inter‐bin non‐rigid motion correction. Spin history B1+ inhomogeneities were corrected with optimized dual flip angle strategy. After water‐fat separation, the water images were matched to the simulated dictionary for T1 and T1ρ quantification. Phantoms and 10 heathy subjects were imaged to validate the proposed technique.
Results
The proposed technique achieved strong correlation (T1: R2 = 0.99; T1ρ: R2 = 0.98) with the reference measurements in phantoms. 3D cardiac T1 and T1ρ maps with spatial resolution of 2 × 2 × 4 mm were obtained with scan time of 5.4 ± 0.5 min, demonstrating comparable T1 (1236 ± 59 ms) and T1ρ (50.2 ± 2.4 ms) measurements to 2D separate breath‐hold mapping techniques. The estimated B1+ maps showed spatial variations across the left ventricle with the septal and inferior regions being 10%–25% lower than the anterior and septal regions.
Conclusion
The proposed technique achieved efficient 3D joint myocardial T1 and T1ρ mapping at 3T with respiratory motion correction, spin history B1+ correction and water‐fat separation. To develop a 3D free-breathing cardiac multi-parametric mapping framework that is robust to confounders of respiratory motion, fat, and B1+ inhomogeneities and validate it for joint myocardial T1 and T1ρ mapping at 3T.PURPOSETo develop a 3D free-breathing cardiac multi-parametric mapping framework that is robust to confounders of respiratory motion, fat, and B1+ inhomogeneities and validate it for joint myocardial T1 and T1ρ mapping at 3T.An electrocardiogram-triggered sequence with dual-echo Dixon readout was developed, where nine cardiac cycles were repeatedly acquired with inversion recovery and T1ρ preparation pulses for T1 and T1ρ sensitization. A subject-specific respiratory motion model relating the 1D diaphragmatic navigator to the respiration-induced 3D translational motion of the heart was constructed followed by respiratory motion binning and intra-bin 3D translational and inter-bin non-rigid motion correction. Spin history B1+ inhomogeneities were corrected with optimized dual flip angle strategy. After water-fat separation, the water images were matched to the simulated dictionary for T1 and T1ρ quantification. Phantoms and 10 heathy subjects were imaged to validate the proposed technique.METHODSAn electrocardiogram-triggered sequence with dual-echo Dixon readout was developed, where nine cardiac cycles were repeatedly acquired with inversion recovery and T1ρ preparation pulses for T1 and T1ρ sensitization. A subject-specific respiratory motion model relating the 1D diaphragmatic navigator to the respiration-induced 3D translational motion of the heart was constructed followed by respiratory motion binning and intra-bin 3D translational and inter-bin non-rigid motion correction. Spin history B1+ inhomogeneities were corrected with optimized dual flip angle strategy. After water-fat separation, the water images were matched to the simulated dictionary for T1 and T1ρ quantification. Phantoms and 10 heathy subjects were imaged to validate the proposed technique.The proposed technique achieved strong correlation (T1: R2 = 0.99; T1ρ: R2 = 0.98) with the reference measurements in phantoms. 3D cardiac T1 and T1ρ maps with spatial resolution of 2 × 2 × 4 mm were obtained with scan time of 5.4 ± 0.5 min, demonstrating comparable T1 (1236 ± 59 ms) and T1ρ (50.2 ± 2.4 ms) measurements to 2D separate breath-hold mapping techniques. The estimated B1+ maps showed spatial variations across the left ventricle with the septal and inferior regions being 10%-25% lower than the anterior and septal regions.RESULTSThe proposed technique achieved strong correlation (T1: R2 = 0.99; T1ρ: R2 = 0.98) with the reference measurements in phantoms. 3D cardiac T1 and T1ρ maps with spatial resolution of 2 × 2 × 4 mm were obtained with scan time of 5.4 ± 0.5 min, demonstrating comparable T1 (1236 ± 59 ms) and T1ρ (50.2 ± 2.4 ms) measurements to 2D separate breath-hold mapping techniques. The estimated B1+ maps showed spatial variations across the left ventricle with the septal and inferior regions being 10%-25% lower than the anterior and septal regions.The proposed technique achieved efficient 3D joint myocardial T1 and T1ρ mapping at 3T with respiratory motion correction, spin history B1+ correction and water-fat separation.CONCLUSIONThe proposed technique achieved efficient 3D joint myocardial T1 and T1ρ mapping at 3T with respiratory motion correction, spin history B1+ correction and water-fat separation. To develop a 3D free-breathing cardiac multi-parametric mapping framework that is robust to confounders of respiratory motion, fat, and B1+ inhomogeneities and validate it for joint myocardial T1 and T1ρ mapping at 3T. An electrocardiogram-triggered sequence with dual-echo Dixon readout was developed, where nine cardiac cycles were repeatedly acquired with inversion recovery and T1ρ preparation pulses for T1 and T1ρ sensitization. A subject-specific respiratory motion model relating the 1D diaphragmatic navigator to the respiration-induced 3D translational motion of the heart was constructed followed by respiratory motion binning and intra-bin 3D translational and inter-bin non-rigid motion correction. Spin history B1+ inhomogeneities were corrected with optimized dual flip angle strategy. After water-fat separation, the water images were matched to the simulated dictionary for T1 and T1ρ quantification. Phantoms and 10 heathy subjects were imaged to validate the proposed technique. The proposed technique achieved strong correlation (T1: R = 0.99; T1ρ: R = 0.98) with the reference measurements in phantoms. 3D cardiac T1 and T1ρ maps with spatial resolution of 2 × 2 × 4 mm were obtained with scan time of 5.4 ± 0.5 min, demonstrating comparable T1 (1236 ± 59 ms) and T1ρ (50.2 ± 2.4 ms) measurements to 2D separate breath-hold mapping techniques. The estimated B1+ maps showed spatial variations across the left ventricle with the septal and inferior regions being 10%-25% lower than the anterior and septal regions. The proposed technique achieved efficient 3D joint myocardial T1 and T1ρ mapping at 3T with respiratory motion correction, spin history B1+ correction and water-fat separation. PurposeTo develop a 3D free‐breathing cardiac multi‐parametric mapping framework that is robust to confounders of respiratory motion, fat, and B1+ inhomogeneities and validate it for joint myocardial T1 and T1ρ mapping at 3T.MethodsAn electrocardiogram‐triggered sequence with dual‐echo Dixon readout was developed, where nine cardiac cycles were repeatedly acquired with inversion recovery and T1ρ preparation pulses for T1 and T1ρ sensitization. A subject‐specific respiratory motion model relating the 1D diaphragmatic navigator to the respiration‐induced 3D translational motion of the heart was constructed followed by respiratory motion binning and intra‐bin 3D translational and inter‐bin non‐rigid motion correction. Spin history B1+ inhomogeneities were corrected with optimized dual flip angle strategy. After water‐fat separation, the water images were matched to the simulated dictionary for T1 and T1ρ quantification. Phantoms and 10 heathy subjects were imaged to validate the proposed technique.ResultsThe proposed technique achieved strong correlation (T1: R2 = 0.99; T1ρ: R2 = 0.98) with the reference measurements in phantoms. 3D cardiac T1 and T1ρ maps with spatial resolution of 2 × 2 × 4 mm were obtained with scan time of 5.4 ± 0.5 min, demonstrating comparable T1 (1236 ± 59 ms) and T1ρ (50.2 ± 2.4 ms) measurements to 2D separate breath‐hold mapping techniques. The estimated B1+ maps showed spatial variations across the left ventricle with the septal and inferior regions being 10%–25% lower than the anterior and septal regions.ConclusionThe proposed technique achieved efficient 3D joint myocardial T1 and T1ρ mapping at 3T with respiratory motion correction, spin history B1+ correction and water‐fat separation. |
| Author | Tao, Xiaofeng Lv, Zhenfeng Hu, Peng Xu, Jian Botnar, René Prieto, Claudia Hu, Junpu Diao, Jiameng Qi, Haikun |
| Author_xml | – sequence: 1 givenname: Haikun orcidid: 0000-0003-4709-5185 surname: Qi fullname: Qi, Haikun email: qihk@shanghaitech.edu.cn organization: ShanghaiTech University – sequence: 2 givenname: Zhenfeng surname: Lv fullname: Lv, Zhenfeng organization: ShanghaiTech University – sequence: 3 givenname: Jiameng orcidid: 0009-0009-7640-1699 surname: Diao fullname: Diao, Jiameng organization: ShanghaiTech University – sequence: 4 givenname: Xiaofeng surname: Tao fullname: Tao, Xiaofeng organization: Shanghai Jiao Tong University School of Medicine – sequence: 5 givenname: Junpu surname: Hu fullname: Hu, Junpu organization: United Imaging Healthcare – sequence: 6 givenname: Jian surname: Xu fullname: Xu, Jian organization: UIH America, Inc – sequence: 7 givenname: René surname: Botnar fullname: Botnar, René organization: Millenium Institute for Intelligent Healthcare Engineering – sequence: 8 givenname: Claudia surname: Prieto fullname: Prieto, Claudia organization: Millenium Institute for Intelligent Healthcare Engineering – sequence: 9 givenname: Peng surname: Hu fullname: Hu, Peng organization: ShanghaiTech University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39370883$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kc9u1DAQhy1URLeFAy-ALHGhQmltT7JxjlD-Sq2QUDlbjjMGr5I42I5We4MHqMSb8Q48Cd7u7qWC01ia7_vZ4zkhR6MfkZCnnJ1zxsTFEIZzYMDrB2TBKyEKUTXlEVmwumQF8KY8JicxrhhjTVOXj8gxNFAzKWFBbuENfc1fUuNDQJOwo9ENc5_0iH6OdNh4o0PndE9vONVjl8vvn3TQ0-TGr3Tt0jca53aV1T8_fsUJjbPO0IBxckEnHzZ08Mn58XDB9riNWeuEIStWJxpx0hnOrcfkodV9xCf7ekq-vHt7c_mhuPr0_uPlq6vCQAV1YZdlC8tW2lqiqBmH2lpheGm0RWtRc2grEGLZ5U4JILgVUgs02ILkra7glLzY5U7Bf58xJjW4aLDvd2Mr4Fuzlhwy-vweuvJzGPPrMgUgSyG5zNSzPTW3A3ZqCm7QYaMOH52Bix1ggo8xoFXGpbuZU9CuV5yp7SpVXqW6W2U2zu4Zh9B_sfv0tetx839QXX--3hl_AV3SsP0 |
| CitedBy_id | crossref_primary_10_1002_mrm_70071 |
| Cites_doi | 10.1186/s12968-021-00813-5 10.1186/s12968-020-0597-5 10.1002/mrm.29417 10.1002/mrm.28675 10.1002/mrm.20110 10.1002/mrm.25975 10.1016/j.mri.2019.08.008 10.1002/mrm.1910230118 10.1002/mrm.24793 10.1007/s12410-013-9248-7 10.1186/s12968-021-00781-w 10.1038/s41551-018-0217-y 10.1002/mrm.28935 10.1002/mrm.26569 10.1186/s12968-023-00973-6 10.1002/mrm.27694 10.1002/mrm.29097 10.1002/jmri.24785 10.1002/mrm.28330 10.1002/jmri.24602 10.1002/mrm.29091 10.1016/j.jocmr.2024.100113 10.1016/j.jcmg.2018.08.028 10.1002/mrm.27681 10.1016/j.jocmr.2024.101037 10.1186/s12968-017-0389-8 10.1186/s12968-014-0102-0 10.1002/mrm.29143 10.1002/mrm.30139 10.1093/ehjci/jead319 10.1186/s12968-020-00611-5 10.1002/mrm.28475 10.1002/mrm.26274 10.2214/AJR.10.4570 10.1002/mrm.27466 |
| ContentType | Journal Article |
| Copyright | 2024 International Society for Magnetic Resonance in Medicine. 2025 International Society for Magnetic Resonance in Medicine. |
| Copyright_xml | – notice: 2024 International Society for Magnetic Resonance in Medicine. – notice: 2025 International Society for Magnetic Resonance in Medicine. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 |
| DOI | 10.1002/mrm.30317 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Biochemistry Abstracts 1 |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Physics |
| EISSN | 1522-2594 |
| EndPage | 760 |
| ExternalDocumentID | 39370883 10_1002_mrm_30317 MRM30317 |
| Genre | technicalNote Journal Article |
| GrantInformation_xml | – fundername: Cross‐disciplinary Research Fund of Shanghai Ninth People's Hospital, Shanghai JiaoTong university School of Medicine funderid: JYJC202134 – fundername: National Natural Science Foundation of China funderid: 82102027 – fundername: Shanghai Science and Technology Commission funderid: 23TS1400300 – fundername: National Natural Science Foundation of China grantid: 82102027 – fundername: Shanghai Science and Technology Commission grantid: 23TS1400300 – fundername: Cross-disciplinary Research Fund of Shanghai Ninth People's Hospital, Shanghai JiaoTong university School of Medicine grantid: JYJC202134 |
| GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 |
| ID | FETCH-LOGICAL-c3537-f64b36b8f78e270137ff2c14cafeffea13b53226d13743321f28a2eceb381ba53 |
| IEDL.DBID | WIN |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001329656200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0740-3194 1522-2594 |
| IngestDate | Fri Sep 05 07:31:49 EDT 2025 Sat Nov 29 14:27:37 EST 2025 Wed Feb 19 02:04:23 EST 2025 Tue Nov 18 22:14:58 EST 2025 Sat Nov 29 08:03:39 EST 2025 Wed Jan 22 17:12:24 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | cardiac multi‐parametric mapping B1+ correction free‐breathing T1ρ mapping T1 mapping |
| Language | English |
| License | 2024 International Society for Magnetic Resonance in Medicine. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3537-f64b36b8f78e270137ff2c14cafeffea13b53226d13743321f28a2eceb381ba53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-4709-5185 0009-0009-7640-1699 |
| PMID | 39370883 |
| PQID | 3133842818 |
| PQPubID | 1016391 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_3113747813 proquest_journals_3133842818 pubmed_primary_39370883 crossref_citationtrail_10_1002_mrm_30317 crossref_primary_10_1002_mrm_30317 wiley_primary_10_1002_mrm_30317_MRM30317 |
| PublicationCentury | 2000 |
| PublicationDate | February 2025 2025-02-00 2025-Feb 20250201 |
| PublicationDateYYYYMMDD | 2025-02-01 |
| PublicationDate_xml | – month: 02 year: 2025 text: February 2025 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Hoboken |
| PublicationTitle | Magnetic resonance in medicine |
| PublicationTitleAlternate | Magn Reson Med |
| PublicationYear | 2025 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2021; 86 2021; 23 2020; 84 2016; 76 2022; 87 2022; 88 2011; 196 2004; 52 2015; 28 2023; 25 2019; 81 2018; 2 2019; 63 2022 2015; 42 2017; 77 2015; 41 2024; 92 2017; 78 2014; 16 2017; 19 2020; 22 2018; 11 2024; 26 2014; 7 2021; 85 1992; 23 2014; 71 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Crabb M (e_1_2_7_18_1) 2022 e_1_2_7_30_1 Speier P (e_1_2_7_39_1) 2015; 28 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 |
| References_xml | – volume: 22 start-page: 12 year: 2020 article-title: Respiratory motion‐compensated high‐resolution 3D whole‐heart T1rho mapping publication-title: J Cardiovasc Magn Reson – volume: 78 start-page: 1862 year: 2017 end-page: 1869 article-title: Method of B0 mapping with magnitude‐based correction for bipolar two‐point Dixon cardiac MRI publication-title: Magn Reson Med – start-page: 1004 year: 2022 – volume: 28 start-page: S97 year: 2015 end-page: S98 article-title: PT‐Nav: a novel respiratory navigation method for continuous acquisitions based on modulation of a pilot tone in the MR‐receiver publication-title: Magn Reson Mater Phys Biol Med – volume: 25 start-page: 63 year: 2023 article-title: Free‐breathing simultaneous native myocardial T1, T2 and T1ρ mapping with Cartesian acquisition and dictionary matching publication-title: J Cardiovasc Magn Reson – volume: 63 start-page: 159 year: 2019 end-page: 169 article-title: Free‐running simultaneous myocardial T1/T2 mapping and cine imaging with 3D whole‐heart coverage and isotropic spatial resolution publication-title: Magn Reson Imaging – volume: 81 start-page: 3705 year: 2019 end-page: 3719 article-title: High‐dimensionality undersampled patch‐based reconstruction (HD‐PROST) for accelerated multi‐contrast MRI publication-title: Magn Reson Med – volume: 81 start-page: 1031 year: 2019 end-page: 1043 article-title: A three‐dimensional free‐breathing sequence for simultaneous myocardial T(1) and T(2) mapping publication-title: Magn Reson Med – volume: 71 start-page: 1428 year: 2014 end-page: 1434 article-title: Adiabatic inversion pulses for myocardial T1 mapping publication-title: Magn Reson Med – volume: 2 start-page: 215 year: 2018 end-page: 226 article-title: Magnetic resonance multitasking for motion‐resolved quantitative cardiovascular imaging publication-title: Nat Biomed Eng – volume: 11 start-page: 1837 year: 2018 end-page: 1853 article-title: Cardiac magnetic resonance fingerprinting: technical overview and initial results publication-title: JACC Cardiovasc Imaging – volume: 87 start-page: 1832 year: 2022 end-page: 1845 article-title: Free‐breathing 3D cardiac T‐1 mapping with transmit B‐1 correction at 3T publication-title: Magn Reson Med – volume: 23 start-page: 119 year: 2021 article-title: Endogenous assessment of myocardial injury with single‐shot model‐based non‐rigid motion‐corrected T1 rho mapping publication-title: J Cardiovasc Magn Reson – volume: 86 start-page: 82 year: 2021 end-page: 96 article-title: Dual‐excitation flip‐angle simultaneous cine and mapping using spiral acquisition with respiratory and cardiac self‐gating publication-title: Magn Reson Med – volume: 25 start-page: 548 year: 2023 end-page: 557 article-title: Assessment of myocardial injuries in ischaemic and non‐ischaemic cardiomyopathies using magnetic resonance T1‐rho mapping publication-title: Eur Heart J Cardiovasc Imaging – volume: 42 start-page: 407 year: 2015 end-page: 420 article-title: Free‐breathing pediatric MRI with nonrigid motion correction and acceleration publication-title: J Magn Reson Imaging – volume: 7 start-page: 9248 year: 2014 article-title: Assessing myocardial disease using T1rho MRI publication-title: Curr Cardiovasc Imaging Rep – volume: 23 start-page: 120 year: 2021 article-title: Endogenous T1rho cardiovascular magnetic resonance in hypertrophic cardiomyopathy publication-title: J Cardiovasc Magn Reson – volume: 87 start-page: 1992 year: 2022 end-page: 2002 article-title: Simultaneous T1, T2, and T1ρcardiac magnetic resonance fingerprinting for contrast agent–free myocardial tissue characterization publication-title: Magn Reson Med – volume: 19 start-page: 75 year: 2017 article-title: Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: a consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI) publication-title: J Cardiovasc Magn Reson – volume: 26 year: 2024 article-title: Intra‐bin correction and inter‐bin compensation of respiratory motion in free‐running five‐dimensional whole‐heart magnetic resonance imaging publication-title: J Cardiovasc Magn Reson – volume: 84 start-page: 3009 year: 2020 end-page: 3026 article-title: 3D whole‐heart isotropic‐resolution motion‐compensated joint T‐1/T(2)mapping and water/fat imaging publication-title: Magn Reson Med – volume: 77 start-page: 1894 year: 2017 end-page: 1908 article-title: Highly efficient nonrigid motion‐corrected 3D whole‐heart coronary vessel wall imaging publication-title: Magn Reson Med – volume: 23 start-page: 172 year: 1992 end-page: 178 article-title: Respiratory kinematics of the upper abdominal organs: a quantitative study publication-title: Magn Reson Med – volume: 85 start-page: 855 year: 2021 end-page: 867 article-title: Prospective correction of patient‐specific respiratory motion in myocardial T(1) and T(2) mapping publication-title: Magn Reson Med – volume: 87 start-page: 2347 year: 2022 end-page: 2362 article-title: Cartesian dictionary‐based native T1 and T2 mapping of the myocardium publication-title: Magn Reson Med – volume: 92 start-page: 1511 year: 2024 end-page: 1524 article-title: Free‐breathing 3D whole‐heart joint T1/T2 mapping and water/fat imaging at 0.55 T publication-title: Magn Reson Med – volume: 22 start-page: 24 year: 2020 article-title: 3D whole‐heart isotropic sub‐millimeter resolution coronary magnetic resonance angiography with non‐rigid motion‐compensated PROST publication-title: J Cardiovasc Magn Reson – volume: 16 start-page: 102 year: 2014 article-title: Simultaneous three‐dimensional myocardial T1 and T2 mapping in one breath hold with 3D‐QALAS publication-title: J Cardiovasc Magn Reson – volume: 86 start-page: 3182 year: 2021 end-page: 3191 article-title: Dual flip‐angle IR‐FLASH with spin history mapping for B1+corrected T1 mapping: application to T1 cardiovascular magnetic resonance multitasking publication-title: Magn Reson Med – volume: 196 start-page: W174 year: 2011 end-page: W179 article-title: Comparison of T1rho measurements in agarose phantoms and human patellar cartilage using 2D multislice spiral and 3D magnetization prepared partitioned k‐space spoiled gradient‐echo snapshot techniques at 3 T publication-title: AJR Am J Roentgenol – volume: 88 start-page: 2520 year: 2022 end-page: 2531 article-title: Accelerated 3D free‐breathing high‐resolution myocardial T(1rho) mapping at 3 tesla publication-title: Magn Reson Med – volume: 26 start-page: 26 year: 2024 article-title: 3D whole‐heart joint T1/T1ρ/T2 mapping and water‐fat imaging for contrast‐agent free myocardial tissue characterization at 0.55 T publication-title: J Cardiovasc Magn Reson – volume: 52 start-page: 141 year: 2004 end-page: 146 article-title: Modified look‐locker inversion recovery (MOLLI) for high‐resolution T‐1 mapping of the heart publication-title: Magn Reson Med – volume: 76 start-page: 888 year: 2016 end-page: 896 article-title: Joint myocardial T1 and T2 mapping using a combination of saturation recovery and T2‐preparation publication-title: Magn Reson Med – volume: 41 start-page: 738 year: 2015 end-page: 746 article-title: Highly efficient respiratory motion compensated free‐breathing coronary MRA using Golden‐step Cartesian acquisition publication-title: J Magn Reson Imaging – volume: 81 start-page: 3662 year: 2019 end-page: 3674 article-title: Patient specific prospective respiratory motion correction for efficient, free‐breathing cardiovascular MRI publication-title: Magn Reson Med – ident: e_1_2_7_6_1 doi: 10.1186/s12968-021-00813-5 – ident: e_1_2_7_4_1 doi: 10.1186/s12968-020-0597-5 – ident: e_1_2_7_34_1 doi: 10.1002/mrm.29417 – ident: e_1_2_7_21_1 doi: 10.1002/mrm.28675 – ident: e_1_2_7_33_1 doi: 10.1002/mrm.20110 – ident: e_1_2_7_8_1 doi: 10.1002/mrm.25975 – ident: e_1_2_7_13_1 doi: 10.1016/j.mri.2019.08.008 – ident: e_1_2_7_25_1 doi: 10.1002/mrm.1910230118 – ident: e_1_2_7_36_1 doi: 10.1002/mrm.24793 – ident: e_1_2_7_29_1 – ident: e_1_2_7_3_1 doi: 10.1007/s12410-013-9248-7 – ident: e_1_2_7_5_1 doi: 10.1186/s12968-021-00781-w – ident: e_1_2_7_11_1 doi: 10.1038/s41551-018-0217-y – ident: e_1_2_7_20_1 doi: 10.1002/mrm.28935 – ident: e_1_2_7_31_1 doi: 10.1002/mrm.26569 – ident: e_1_2_7_17_1 doi: 10.1186/s12968-023-00973-6 – ident: e_1_2_7_30_1 doi: 10.1002/mrm.27694 – ident: e_1_2_7_22_1 doi: 10.1002/mrm.29097 – ident: e_1_2_7_23_1 doi: 10.1002/jmri.24785 – ident: e_1_2_7_14_1 doi: 10.1002/mrm.28330 – ident: e_1_2_7_24_1 doi: 10.1002/jmri.24602 – ident: e_1_2_7_16_1 doi: 10.1002/mrm.29091 – ident: e_1_2_7_19_1 doi: 10.1016/j.jocmr.2024.100113 – ident: e_1_2_7_12_1 doi: 10.1016/j.jcmg.2018.08.028 – ident: e_1_2_7_26_1 doi: 10.1002/mrm.27681 – start-page: 1004 volume-title: Proceedings of the 30th Annual Meeting of ISMRM year: 2022 ident: e_1_2_7_18_1 – ident: e_1_2_7_38_1 doi: 10.1016/j.jocmr.2024.101037 – ident: e_1_2_7_2_1 doi: 10.1186/s12968-017-0389-8 – ident: e_1_2_7_10_1 doi: 10.1186/s12968-014-0102-0 – ident: e_1_2_7_15_1 doi: 10.1002/mrm.29143 – ident: e_1_2_7_35_1 doi: 10.1002/mrm.30139 – volume: 28 start-page: S97 year: 2015 ident: e_1_2_7_39_1 article-title: PT‐Nav: a novel respiratory navigation method for continuous acquisitions based on modulation of a pilot tone in the MR‐receiver publication-title: Magn Reson Mater Phys Biol Med – ident: e_1_2_7_7_1 doi: 10.1093/ehjci/jead319 – ident: e_1_2_7_28_1 doi: 10.1186/s12968-020-00611-5 – ident: e_1_2_7_37_1 doi: 10.1002/mrm.28475 – ident: e_1_2_7_27_1 doi: 10.1002/mrm.26274 – ident: e_1_2_7_32_1 doi: 10.2214/AJR.10.4570 – ident: e_1_2_7_9_1 doi: 10.1002/mrm.27466 |
| SSID | ssj0009974 |
| Score | 2.4736896 |
| Snippet | Purpose
To develop a 3D free‐breathing cardiac multi‐parametric mapping framework that is robust to confounders of respiratory motion, fat, and B1+... To develop a 3D free-breathing cardiac multi-parametric mapping framework that is robust to confounders of respiratory motion, fat, and B1+ inhomogeneities and... PurposeTo develop a 3D free‐breathing cardiac multi‐parametric mapping framework that is robust to confounders of respiratory motion, fat, and B1+... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 751 |
| SubjectTerms | Adipose Tissue - diagnostic imaging Adult Algorithms B1+ correction cardiac multi‐parametric mapping Diaphragm EKG Electrocardiography Female free‐breathing Heart Heart - diagnostic imaging Humans Image Processing, Computer-Assisted - methods Imaging, Three-Dimensional - methods Inhomogeneity Magnetic Resonance Imaging - methods Male Mapping Motion Myocardium - pathology Phantoms, Imaging Reproducibility of Results Respiration Separation Spatial discrimination Spatial resolution Spatial variations T1 mapping T1ρ mapping Translation Translational motion Water - chemistry |
| Title | 3D B1+ corrected simultaneous myocardial T1 and T1ρ mapping with subject‐specific respiratory motion correction and water‐fat separation |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.30317 https://www.ncbi.nlm.nih.gov/pubmed/39370883 https://www.proquest.com/docview/3133842818 https://www.proquest.com/docview/3113747813 |
| Volume | 93 |
| WOSCitedRecordID | wos001329656200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 issn: 0740-3194 databaseCode: WIN dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 issn: 0740-3194 databaseCode: DRFUL dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dahQxFD7UqqU3_lStq3WJ4oUgY5uf3cnglVoXhe4ipcW9GzKZRArdWZnZbemdPoDgm_kOPonnTGZmKSoIXk1gTiaZ5PwlOfkOwFPtJPe5V5HOuIpU4mSktdGRtdp5laCFsTWI60E8mejpNPmwBi_buzABH6LbcCPJqPU1CbjJqt0VaOisnL1A_cvpJjlXnLIXfHw_WQHuJgGBOVakZxLVogrtid2u5mVb9JuDedlfrQ3O6OZ_dfUW3Gj8TPYqMMZtWHPFFmyMm5P0Lbheh37a6g58k_vsNX_OLOXpsOiAsuqEwgxN4ebLis0u0NoRF52yI85MkePjx1c2MwTs8InRPi6rlhlt5_z88p0ublLwEStXR_gsZApqG6AifeYcvdwSq3izYJULEOTz4i4cj94evXkXNUkaIisHMo78UGVymGkfaydiAjD0XliurPEUkWK4zAaoNIY5viGsNO6FNsJZXMSjx2wG8h6sF_PC3Qfm9zIlzBBVsEa_DtdpKs64EC7LvUtyKXvwrJ2u1DYI5pRI4zQN2MsixYFO64HuwZOO9HOA7fgT0U4752kjuVUqadGuCCOrB4-71yhzdJASRh5p6GdizbFL24FXulYIYBA1N3W2Zom_N5-OD8d14cG_kz6ETUEJiOuw8R1YX5RL9wiu2bPFSVX24Uo81X24un84Oj7o1_LwC9cTDi0 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VAoULj1JgoYBBHJBQaP3YjSNx4VW1YneF0KL2FjmOjSp1syjZbcUNfkCl_jP-A7-EGeexqgAJiVMsZRw79sx4PB5_A_BUO8l97lWkM64ilTgZaW10ZK12XiW4wtgA4jqMx2N9cJB8WIGX7V2YGh-ic7iRZAR9TQJODumtJWrotJy-QAXM4wtwUaGhQYkb9vfGS8jdpMZgjhVpmkS1uELbYquren41-s3EPG-xhiVn5_r_dfYGXGtMTfaq5o2bsOKKdVgbNYfp63A5RH_a6hacyrfsNX_OLKXqsGiDsuqQIg1N4WaLik2_4oJHjHTEJpyZIsfHj-9sagjb4TMjVy6rFhl5dH5-O6O7mxR_xMrlKT6rkwW1DVCRPnOChm6JVbyZs8rVKOSzYgM-7bybvNmNmjwNkZV9GUd-oDI5yLSPtRMxYRh6LyxX1ngKSjFcZn3UG4Mc3xBcGvdCG-Es7uPRaDZ9eRtWi1nh7gLz25kSZoBaWKNph1s1FWdcCJfl3iW5lD141s5XahsQc8qlcZTW8MsixYFOw0D34ElH-qVG7vgT0WY76WkjvFUqad-uCCarB4-71yh2dJZSjzzS0M_EmmOX7tTM0rVCGIOovKmzgSf-3nw6-jgKhXv_TvoIruxORsN0uDd-fx-uCspHHKLIN2F1Xi7cA7hkj-eHVfkwiMMvysoPww |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9QwFD6ss7r44mW9ja4axQdB6m4uM03BF3UcFGeGZdmFfStpmsjCTmdpZxTf9AcI_jP_g7_Ec5q2w6KC4FMDPWnS5NySnHwH4Il2kvvcq0hnXEUqcTLS2ujIWu28StDC2BrEdRLPZvr4ONnfgBftXZiAD9FtuJFk1PqaBNyd5X53jRo6L-fPUQHz-AJsKkoi04PN0cH4aLIG3U0CCnOsSNckqkUW2hO7XeXz9ug3J_O8z1obnfHV_-vuNbjSOJvsZeCO67Dhim3YmjbH6dtwqY7_tNUN-CZH7BV_xiwl67DohbLqhGINTeEWq4rNP6PJI1Y6ZYecmSLHx4-vbG4I3eEDo81cVq0y2tP5-eU73d6kCCRWrs_xWUgX1DZARfrMJ3R1S6zizZJVLuCQL4qbcDR-c_j6bdRkaoisHMg48kOVyWGmfaydiAnF0HthubLGU1iK4TIboOYY5viGANO4F9oIZ3Elj26zGchb0CsWhbsDzO9lSpgh6mGNzh0u1lSccSFclnuX5FL24Wk7X6ltYMwpm8ZpGgCYRYoDndYD3YfHHelZwO74E9FOO-lpI75VKmnlrggoqw-PutcoeHSaEkYeaehnYs2xS7cDs3StEMogqm_qbM0Tf28-nR5M68Ldfyd9CFv7o3E6eTd7fw8uC0pIXIeR70BvWa7cfbhoPy5PqvJBIw-_AIcfEGw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+B1%2B+corrected+simultaneous+myocardial+T1+and+T1%CF%81+mapping+with+subject-specific+respiratory+motion+correction+and+water-fat+separation&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Qi%2C+Haikun&rft.au=Lv%2C+Zhenfeng&rft.au=Diao%2C+Jiameng&rft.au=Tao%2C+Xiaofeng&rft.date=2025-02-01&rft.eissn=1522-2594&rft.volume=93&rft.issue=2&rft.spage=751&rft_id=info:doi/10.1002%2Fmrm.30317&rft_id=info%3Apmid%2F39370883&rft.externalDocID=39370883 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |