Exploiting neuro-inspired dynamic sparsity for energy-efficient intelligent perception

Artificial intelligence (AI) has made significant strides towards efficient online processing of sensory signals at the edge through the use of deep neural networks with ever-expanding size. However, this trend has brought with it escalating computational costs and energy consumption, which have bec...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications Vol. 16; no. 1; pp. 9928 - 15
Main Authors: Zhou, Sheng, Gao, Chang, Delbruck, Tobi, Verhelst, Marian, Liu, Shih-Chii
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 11.11.2025
Nature Publishing Group
Nature Portfolio
Subjects:
ISSN:2041-1723, 2041-1723
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Artificial intelligence (AI) has made significant strides towards efficient online processing of sensory signals at the edge through the use of deep neural networks with ever-expanding size. However, this trend has brought with it escalating computational costs and energy consumption, which have become major obstacles to the deployment and further upscaling of these models. In this Perspective, we present a neuro-inspired vision to boost the energy efficiency of AI for perception by leveraging brain-like dynamic sparsity. We categorize various forms of dynamic sparsity rooted in data redundancy and discuss potential strategies to enhance and exploit it through algorithm-hardware co-design. Additionally, we explore the technological, architectural, and algorithmic challenges that need to be addressed to fully unlock the potential of dynamic-sparsity-aware neuro-inspired AI for energy-efficient perception. Edge AI enables intelligent perception in sensory devices, yet at excessive energy costs. This Perspective outlines a neuro-inspired vision for efficient edge perception, sketching the design space of data-driven and stateful dynamic sparsity to selectively activate sensors, memory, and compute.
AbstractList Artificial intelligence (AI) has made significant strides towards efficient online processing of sensory signals at the edge through the use of deep neural networks with ever-expanding size. However, this trend has brought with it escalating computational costs and energy consumption, which have become major obstacles to the deployment and further upscaling of these models. In this Perspective, we present a neuro-inspired vision to boost the energy efficiency of AI for perception by leveraging brain-like dynamic sparsity. We categorize various forms of dynamic sparsity rooted in data redundancy and discuss potential strategies to enhance and exploit it through algorithm-hardware co-design. Additionally, we explore the technological, architectural, and algorithmic challenges that need to be addressed to fully unlock the potential of dynamic-sparsity-aware neuro-inspired AI for energy-efficient perception.Edge AI enables intelligent perception in sensory devices, yet at excessive energy costs. This Perspective outlines a neuro-inspired vision for efficient edge perception, sketching the design space of data-driven and stateful dynamic sparsity to selectively activate sensors, memory, and compute.
Artificial intelligence (AI) has made significant strides towards efficient online processing of sensory signals at the edge through the use of deep neural networks with ever-expanding size. However, this trend has brought with it escalating computational costs and energy consumption, which have become major obstacles to the deployment and further upscaling of these models. In this Perspective, we present a neuro-inspired vision to boost the energy efficiency of AI for perception by leveraging brain-like dynamic sparsity. We categorize various forms of dynamic sparsity rooted in data redundancy and discuss potential strategies to enhance and exploit it through algorithm-hardware co-design. Additionally, we explore the technological, architectural, and algorithmic challenges that need to be addressed to fully unlock the potential of dynamic-sparsity-aware neuro-inspired AI for energy-efficient perception.
Artificial intelligence (AI) has made significant strides towards efficient online processing of sensory signals at the edge through the use of deep neural networks with ever-expanding size. However, this trend has brought with it escalating computational costs and energy consumption, which have become major obstacles to the deployment and further upscaling of these models. In this Perspective, we present a neuro-inspired vision to boost the energy efficiency of AI for perception by leveraging brain-like dynamic sparsity. We categorize various forms of dynamic sparsity rooted in data redundancy and discuss potential strategies to enhance and exploit it through algorithm-hardware co-design. Additionally, we explore the technological, architectural, and algorithmic challenges that need to be addressed to fully unlock the potential of dynamic-sparsity-aware neuro-inspired AI for energy-efficient perception. Edge AI enables intelligent perception in sensory devices, yet at excessive energy costs. This Perspective outlines a neuro-inspired vision for efficient edge perception, sketching the design space of data-driven and stateful dynamic sparsity to selectively activate sensors, memory, and compute.
Artificial intelligence (AI) has made significant strides towards efficient online processing of sensory signals at the edge through the use of deep neural networks with ever-expanding size. However, this trend has brought with it escalating computational costs and energy consumption, which have become major obstacles to the deployment and further upscaling of these models. In this Perspective, we present a neuro-inspired vision to boost the energy efficiency of AI for perception by leveraging brain-like dynamic sparsity. We categorize various forms of dynamic sparsity rooted in data redundancy and discuss potential strategies to enhance and exploit it through algorithm-hardware co-design. Additionally, we explore the technological, architectural, and algorithmic challenges that need to be addressed to fully unlock the potential of dynamic-sparsity-aware neuro-inspired AI for energy-efficient perception.Artificial intelligence (AI) has made significant strides towards efficient online processing of sensory signals at the edge through the use of deep neural networks with ever-expanding size. However, this trend has brought with it escalating computational costs and energy consumption, which have become major obstacles to the deployment and further upscaling of these models. In this Perspective, we present a neuro-inspired vision to boost the energy efficiency of AI for perception by leveraging brain-like dynamic sparsity. We categorize various forms of dynamic sparsity rooted in data redundancy and discuss potential strategies to enhance and exploit it through algorithm-hardware co-design. Additionally, we explore the technological, architectural, and algorithmic challenges that need to be addressed to fully unlock the potential of dynamic-sparsity-aware neuro-inspired AI for energy-efficient perception.
Abstract Artificial intelligence (AI) has made significant strides towards efficient online processing of sensory signals at the edge through the use of deep neural networks with ever-expanding size. However, this trend has brought with it escalating computational costs and energy consumption, which have become major obstacles to the deployment and further upscaling of these models. In this Perspective, we present a neuro-inspired vision to boost the energy efficiency of AI for perception by leveraging brain-like dynamic sparsity. We categorize various forms of dynamic sparsity rooted in data redundancy and discuss potential strategies to enhance and exploit it through algorithm-hardware co-design. Additionally, we explore the technological, architectural, and algorithmic challenges that need to be addressed to fully unlock the potential of dynamic-sparsity-aware neuro-inspired AI for energy-efficient perception.
ArticleNumber 9928
Author Gao, Chang
Zhou, Sheng
Delbruck, Tobi
Verhelst, Marian
Liu, Shih-Chii
Author_xml – sequence: 1
  givenname: Sheng
  orcidid: 0009-0009-5408-5963
  surname: Zhou
  fullname: Zhou, Sheng
  organization: Institute of Neuroinformatics, University of Zurich and ETH Zurich
– sequence: 2
  givenname: Chang
  orcidid: 0000-0002-3284-4078
  surname: Gao
  fullname: Gao, Chang
  organization: Delft University of Technology
– sequence: 3
  givenname: Tobi
  orcidid: 0000-0001-5479-1141
  surname: Delbruck
  fullname: Delbruck, Tobi
  organization: Institute of Neuroinformatics, University of Zurich and ETH Zurich
– sequence: 4
  givenname: Marian
  orcidid: 0000-0003-3495-9263
  surname: Verhelst
  fullname: Verhelst, Marian
  organization: KU Leuven & imec
– sequence: 5
  givenname: Shih-Chii
  orcidid: 0000-0002-7557-045X
  surname: Liu
  fullname: Liu, Shih-Chii
  email: shih@ini.uzh.ch
  organization: Institute of Neuroinformatics, University of Zurich and ETH Zurich
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41219200$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFv1DAQhS3UipbSP8ABReLCJdQe27FzRFWBSpW4tFwtx55EXmXtYCcS---bbUpBHJjLjKxvnv383pCTmCIS8o7RT4xyfVUEE42qKci6kVyrWr0i50AFq5kCfvLXfEYuS9nRtXjLtBCvyZlgwFqg9Jz8uPk1jSnMIQ5VxCWnOsQyhYy-8odo98FVZbK5hPlQ9SlXGDEPhxr7PriAca5CnHEcw3CcJ8wOpzmk-Jac9nYsePncL8jDl5v762_13fevt9ef72rHJVc1h6ZzvnPAhLTowNGu1bb10IhGMA_W2c6j013veolCtRwkNK6l3EJDJfILcrvp-mR3Zsphb_PBJBvM00HKg7F5Dm5E01HbUuislB6Fo1o3WgC0wqpOcan9qvVx05py-rlgmc0-FLeasxHTUgwHxagGpfWKfvgH3aUlx9XpkaJacQpqpd4_U0u3R__yvN-_vwKwAS6nUjL2Lwij5piy2VI2a8rmKWVzVOXbUlnhOGD-c_d_th4B8uCpDg
Cites_doi 10.1007/978-3-030-01261-8_25
10.1038/s41467-023-37180-x
10.1145/3581784.3607087
10.1126/science.1089662
10.1098/rspb.1998.0577
10.1109/TNNLS.2018.2852335
10.1109/TNNLS.2022.3180209
10.1109/AERO53065.2022.9843428
10.18653/v1/2024.findings-acl.456
10.1109/JSSC.2021.3076344
10.1038/nature03010
10.23919/VLSICircuits52068.2021.9492401
10.1109/ISSCC49661.2025.10904788
10.1109/JSSC.2023.3316648
10.1371/journal.pone.0144636
10.1109/ASICON58565.2023.10396197
10.1109/IEEECONF44664.2019.9048865
10.1109/TNN.2003.820440
10.1109/TCASAI.2024.3507694
10.21437/Interspeech.2024-958
10.1109/ISSCC42614.2022.9731795
10.1109/VLSIC.2016.7573525
10.1109/JSSC.2020.2968800
10.1145/3174243.3174261
10.1038/d41586-024-03408-z
10.1007/978-3-030-58598-3_25
10.18653/v1/2024.findings-emnlp.266
10.1145/3503221.3508399
10.1109/NEWCAS50681.2021.9462787
10.1038/nn831
10.23919/DATE51398.2021.9474260
10.1109/TBCAS.2013.2281834
10.1109/ISSCC42615.2023.10067566
10.1038/4580
10.1162/neco.1997.9.8.1735
10.1145/3474365
10.1109/MSPEC.1970.5212996
10.1038/nrn964
10.1016/S0960-9822(03)00135-0
10.1109/JSSC.2022.3205713
10.3390/s21010085
10.1109/ISSCC.2017.7870263
10.1109/MCAS.2023.3267893
10.1109/MSP.2019.2928127
10.1109/TCSVT.2019.2903421
10.1109/MSSC.2024.3455290
10.1109/ICIP46576.2022.9897354
10.1109/CVPR52688.2022.01217
10.21437/Interspeech.2019-2396
10.1038/s41467-022-28487-2
10.1109/JSSC.2014.2342715
10.1016/j.neuroimage.2020.117479
10.1109/ISSCC.2014.6757323
10.1109/MICRO.2018.00020
10.1109/JETCAS.2020.3040300
10.1109/HPCA47549.2020.00030
10.1038/s41928-020-0435-7
10.1126/science.1254642
10.1109/ICCAD57390.2023.10323763
10.1109/JSSC.2019.2946771
10.1109/EBCCSP.2016.7605233
10.1109/LMWT.2025.3565004
10.1109/VLSITechnologyandCir46783.2024.10631426
10.1145/3140659.3080254
10.1109/ISSCC49657.2024.10454308
10.1145/3007787.3001172
10.1038/s41467-018-04316-3
10.1145/3600006.3613165
10.1145/3575693.3575728
10.1109/JSSC.2022.3148273
10.1109/TPAMI.2020.3008413
10.1109/JPROC.2014.2313565
10.1109/JSSC.2023.3302791
10.1146/annurev.neuro.27.070203.144152
10.1109/CVPRW.2019.00217
10.1109/TBCAS.2008.924448
10.1109/TC.2023.3257513
10.1016/j.cub.2020.11.054
10.1016/j.conb.2004.07.007
10.1109/MM.2018.112130359
10.1038/s41586-024-07409-w
10.1109/ICIP46576.2022.9897432
10.1109/ISSCC.2017.7870353
10.23919/VLSIC.2019.8778050
10.1146/annurev-neuro-062111-150525
10.1109/JSSC.2016.2638465
10.1109/JSSC.2023.3303154
10.1109/IROS.2017.8202153
10.1038/s41598-017-15249-0
10.1038/s41928-020-00501-9
10.1109/CVPR52733.2024.01282
10.1109/TBCAS.2024.3378973
10.1145/3572848.3577500
10.3389/fnins.2011.00073
10.1109/TPAMI.2021.3117837
10.1038/s41565-020-0655-z
10.1109/JSSC.2016.2616357
10.1145/3530811
10.1109/JSSC.2007.914337
10.1109/A-SSCC48613.2020.9336139
10.23919/EUSIPCO54536.2021.9616033
10.1007/978-3-030-01234-2_48
10.1038/s41586-022-05340-6
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
DOA
DOI 10.1038/s41467-025-65387-7
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
CrossRef

MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 15
ExternalDocumentID oai_doaj_org_article_b0a902ba55de4c0886842294a7b7358d
41219200
10_1038_s41467_025_65387_7
Genre Journal Article
Review
GrantInformation_xml – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
  grantid: 208227; 208227
  funderid: 501100001711
– fundername: EC | EC Seventh Framework Programm | FP7 Ideas: European Research Council (FP7-IDEAS-ERC - Specific Programme: "Ideas" Implementing the Seventh Framework Programme of the European Community for Research, Technological Development and Demonstration Activities (2007 to 2013))
  grantid: 101088865
  funderid: 100011199
– fundername: Flanders AI Research Program, Research Foundation Flanders (FWO) under grant 1SE7723N
– fundername: Dutch Research Council (NWO) Talent Programme Veni 2023 under the Grant No. 21132 Marie Skłodowska-Curie Actions (MSCA) Postdoctoral Fellowship program, Grant No. 101107534
– fundername: EC | EC Seventh Framework Programm | FP7 Ideas: European Research Council (FP7-IDEAS-ERC - Specific Programme: "Ideas" Implementing the Seventh Framework Programme of the European Community for Research, Technological Development and Demonstration Activities (2007 to 2013))
  grantid: 101088865
– fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
  grantid: 208227
GroupedDBID ---
0R~
39C
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
AASML
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFFHD
AFKRA
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
M48
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
SOI
7X8
ID FETCH-LOGICAL-c3537-326bcdbc2145aec2c0b98a9d264641d2acabdec8bfcf5e47932526c903a2605e3
IEDL.DBID DOA
ISSN 2041-1723
IngestDate Mon Nov 17 19:35:23 EST 2025
Wed Nov 12 17:01:35 EST 2025
Wed Nov 12 09:50:38 EST 2025
Sat Nov 15 01:41:55 EST 2025
Thu Nov 13 04:31:43 EST 2025
Wed Nov 12 01:18:13 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2025. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3537-326bcdbc2145aec2c0b98a9d264641d2acabdec8bfcf5e47932526c903a2605e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0009-0009-5408-5963
0000-0001-5479-1141
0000-0002-3284-4078
0000-0003-3495-9263
0000-0002-7557-045X
OpenAccessLink https://doaj.org/article/b0a902ba55de4c0886842294a7b7358d
PMID 41219200
PQID 3270873027
PQPubID 546298
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_b0a902ba55de4c0886842294a7b7358d
proquest_miscellaneous_3271082788
proquest_journals_3270873027
pubmed_primary_41219200
crossref_primary_10_1038_s41467_025_65387_7
springer_journals_10_1038_s41467_025_65387_7
PublicationCentury 2000
PublicationDate 20251111
PublicationDateYYYYMMDD 2025-11-11
PublicationDate_xml – month: 11
  year: 2025
  text: 20251111
  day: 11
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References 65387_CR83
65387_CR82
JSP Giraldo (65387_CR126) 2020; 55
65387_CR148
65387_CR146
65387_CR145
65387_CR87
65387_CR140
J Sacramento (65387_CR149) 2018; 31
A Parashar (65387_CR81) 2017; 45
RP Rao (65387_CR23) 1999; 2
65387_CR7
65387_CR8
65387_CR5
65387_CR6
65387_CR3
65387_CR4
65387_CR1
65387_CR2
K Boahen (65387_CR79) 2022; 612
W Zhang (65387_CR86) 2020; 3
65387_CR94
65387_CR95
65387_CR92
65387_CR93
65387_CR139
65387_CR90
65387_CR138
65387_CR91
65387_CR137
65387_CR136
65387_CR135
65387_CR134
65387_CR133
K Kim (65387_CR70) 2023; 23
65387_CR132
65387_CR10
65387_CR98
65387_CR130
65387_CR11
R Pope (65387_CR21) 2023; 5
65387_CR97
SB Laughlin (65387_CR12) 2003; 301
SE Petersen (65387_CR24) 2012; 35
G Laurent (65387_CR16) 2002; 3
65387_CR25
65387_CR26
P Lennie (65387_CR153) 2003; 13
C Xie (65387_CR85) 2023; 70
65387_CR22
Y Tay (65387_CR9) 2022; 55
Z Fu (65387_CR131) 2008; 2
M Guo (65387_CR68) 2023; 58
Y-H Chen (65387_CR80) 2017; 52
BV Benjamin (65387_CR114) 2014; 102
RJ Douglas (65387_CR144) 2004; 27
A Sebastian (65387_CR76) 2020; 15
PA Merolla (65387_CR55) 2014; 345
F Zhou (65387_CR62) 2020; 3
DE Kim (65387_CR88) 2023; 72
G Gallego (65387_CR27) 2022; 44
65387_CR36
65387_CR37
65387_CR34
65387_CR32
J Yue (65387_CR89) 2022; 57
65387_CR152
65387_CR33
65387_CR30
BA Olshausen (65387_CR13) 2004; 14
JSP Giraldo (65387_CR127) 2021; 20
S-C Liu (65387_CR71) 2019; 36
J Kim (65387_CR84) 2016; 44
C Gao (65387_CR99) 2024; 35
Y Han (65387_CR46) 2022; 44
M Davies (65387_CR56) 2018; 38
65387_CR109
65387_CR108
DC Mocanu (65387_CR31) 2018; 9
65387_CR107
65387_CR106
65387_CR105
65387_CR103
65387_CR102
65387_CR47
65387_CR101
65387_CR48
65387_CR100
65387_CR45
65387_CR43
65387_CR44
65387_CR41
HR Schindler (65387_CR64) 1970; 7
D Gehrig (65387_CR67) 2024; 629
65387_CR42
65387_CR38
65387_CR39
C Mead (65387_CR151) 2023; 35
65387_CR50
S Paul (65387_CR28) 2017; 52
65387_CR58
65387_CR59
65387_CR57
65387_CR54
A Aimar (65387_CR35) 2019; 30
Z Yuan (65387_CR104) 2019; 55
65387_CR53
J Lin (65387_CR51) 2023; 58
X Chen (65387_CR150) 2024; 38
65387_CR49
M Yang (65387_CR74) 2021; 56
J Benda (65387_CR18) 2021; 31
J Vezoli (65387_CR143) 2021; 225
T Hoefler (65387_CR29) 2021; 22
JH van Hateren (65387_CR14) 1998; 265
65387_CR61
65387_CR129
65387_CR60
65387_CR128
65387_CR125
65387_CR124
65387_CR123
65387_CR122
65387_CR121
65387_CR120
65387_CR65
65387_CR66
Y Wu (65387_CR147) 2025; 35
LF Abbott (65387_CR19) 2004; 431
S-C Liu (65387_CR69) 2024; 16
J-S Park (65387_CR111) 2023; 58
H Yang (65387_CR52) 2024; 59
MS Lewicki (65387_CR15) 2002; 5
W Fedus (65387_CR40) 2022; 23
65387_CR72
65387_CR73
E Izhikevich (65387_CR112) 2003; 14
65387_CR119
65387_CR118
65387_CR117
L Cavigelli (65387_CR115) 2019; 30
65387_CR116
B Vladimirskiy (65387_CR141) 2015; 10
65387_CR113
65387_CR78
65387_CR110
65387_CR77
65387_CR75
C Gao (65387_CR96) 2020; 10
D Kleyko (65387_CR63) 2022; 55
S Hochreiter (65387_CR20) 1997; 9
T Parr (65387_CR142) 2017; 7
HB Barlow (65387_CR17) 1961; 1
References_xml – ident: 65387_CR61
  doi: 10.1007/978-3-030-01261-8_25
– ident: 65387_CR122
– ident: 65387_CR2
  doi: 10.1038/s41467-023-37180-x
– ident: 65387_CR103
  doi: 10.1145/3581784.3607087
– volume: 301
  start-page: 1870
  year: 2003
  ident: 65387_CR12
  publication-title: Science
  doi: 10.1126/science.1089662
– ident: 65387_CR116
– volume: 265
  start-page: 2315
  year: 1998
  ident: 65387_CR14
  publication-title: Proc. R. Soc. Lond. Ser. B: Biol. Sci.
  doi: 10.1098/rspb.1998.0577
– volume: 38
  start-page: 11399
  year: 2024
  ident: 65387_CR150
  publication-title: Proc. AAAI Conf. Artif. Intell.
– volume: 30
  start-page: 644
  year: 2019
  ident: 65387_CR35
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2018.2852335
– volume: 35
  start-page: 1098
  year: 2024
  ident: 65387_CR99
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2022.3180209
– ident: 65387_CR130
  doi: 10.1109/AERO53065.2022.9843428
– ident: 65387_CR41
  doi: 10.18653/v1/2024.findings-acl.456
– ident: 65387_CR93
– volume: 56
  start-page: 3123
  year: 2021
  ident: 65387_CR74
  publication-title: IEEE J. Solid-State Circuits
  doi: 10.1109/JSSC.2021.3076344
– volume: 431
  start-page: 796
  year: 2004
  ident: 65387_CR19
  publication-title: Nature
  doi: 10.1038/nature03010
– ident: 65387_CR129
  doi: 10.23919/VLSICircuits52068.2021.9492401
– ident: 65387_CR136
  doi: 10.1109/ISSCC49661.2025.10904788
– volume: 59
  start-page: 29
  year: 2024
  ident: 65387_CR52
  publication-title: IEEE J. Solid-State Circuits
  doi: 10.1109/JSSC.2023.3316648
– volume: 10
  start-page: e0144636
  year: 2015
  ident: 65387_CR141
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0144636
– ident: 65387_CR83
  doi: 10.1109/ASICON58565.2023.10396197
– volume: 55
  start-page: 1
  year: 2022
  ident: 65387_CR63
  publication-title: ACM Comput. Surv.
– ident: 65387_CR102
– ident: 65387_CR95
  doi: 10.1109/IEEECONF44664.2019.9048865
– ident: 65387_CR44
– ident: 65387_CR148
– volume: 14
  start-page: 1569
  year: 2003
  ident: 65387_CR112
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2003.820440
– ident: 65387_CR135
  doi: 10.1109/TCASAI.2024.3507694
– ident: 65387_CR8
– ident: 65387_CR54
  doi: 10.21437/Interspeech.2024-958
– ident: 65387_CR78
  doi: 10.1109/ISSCC42614.2022.9731795
– ident: 65387_CR38
– ident: 65387_CR82
  doi: 10.1109/VLSIC.2016.7573525
– ident: 65387_CR110
– volume: 55
  start-page: 868
  year: 2020
  ident: 65387_CR126
  publication-title: IEEE J. Solid-State Circuits
  doi: 10.1109/JSSC.2020.2968800
– ident: 65387_CR45
  doi: 10.1145/3174243.3174261
– ident: 65387_CR1
  doi: 10.1038/d41586-024-03408-z
– ident: 65387_CR30
– ident: 65387_CR65
  doi: 10.1007/978-3-030-58598-3_25
– ident: 65387_CR117
  doi: 10.18653/v1/2024.findings-emnlp.266
– ident: 65387_CR124
  doi: 10.1145/3503221.3508399
– ident: 65387_CR128
  doi: 10.1109/NEWCAS50681.2021.9462787
– ident: 65387_CR107
– volume: 5
  start-page: 356
  year: 2002
  ident: 65387_CR15
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn831
– ident: 65387_CR145
  doi: 10.23919/DATE51398.2021.9474260
– ident: 65387_CR47
  doi: 10.1109/TBCAS.2013.2281834
– ident: 65387_CR53
– ident: 65387_CR72
  doi: 10.1109/ISSCC42615.2023.10067566
– volume: 2
  start-page: 79
  year: 1999
  ident: 65387_CR23
  publication-title: Nat. Neurosci.
  doi: 10.1038/4580
– volume: 9
  start-page: 1735
  year: 1997
  ident: 65387_CR20
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 20
  start-page: 1
  year: 2021
  ident: 65387_CR127
  publication-title: ACM Trans. Embedded Comput. Syst.
  doi: 10.1145/3474365
– volume: 7
  start-page: 69
  year: 1970
  ident: 65387_CR64
  publication-title: IEEE Spectr.
  doi: 10.1109/MSPEC.1970.5212996
– ident: 65387_CR33
– ident: 65387_CR108
– volume: 3
  start-page: 884
  year: 2002
  ident: 65387_CR16
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn964
– volume: 13
  start-page: 493
  year: 2003
  ident: 65387_CR153
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(03)00135-0
– volume: 58
  start-page: 189
  year: 2023
  ident: 65387_CR111
  publication-title: IEEE J. Solid-State Circuits
  doi: 10.1109/JSSC.2022.3205713
– ident: 65387_CR146
  doi: 10.3390/s21010085
– ident: 65387_CR100
– ident: 65387_CR59
  doi: 10.1109/ISSCC.2017.7870263
– volume: 23
  start-page: 29
  year: 2023
  ident: 65387_CR70
  publication-title: IEEE Circuits Syst. Mag.
  doi: 10.1109/MCAS.2023.3267893
– ident: 65387_CR119
– volume: 36
  start-page: 29
  year: 2019
  ident: 65387_CR71
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2019.2928127
– ident: 65387_CR6
– volume: 30
  start-page: 1451
  year: 2019
  ident: 65387_CR115
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2019.2903421
– volume: 16
  start-page: 62
  year: 2024
  ident: 65387_CR69
  publication-title: IEEE Solid-State Circuits Mag.
  doi: 10.1109/MSSC.2024.3455290
– ident: 65387_CR98
– ident: 65387_CR49
  doi: 10.1109/ICIP46576.2022.9897354
– ident: 65387_CR57
  doi: 10.1109/CVPR52688.2022.01217
– ident: 65387_CR139
  doi: 10.21437/Interspeech.2019-2396
– ident: 65387_CR3
  doi: 10.1038/s41467-022-28487-2
– ident: 65387_CR152
  doi: 10.1109/JSSC.2014.2342715
– volume: 1
  start-page: 217
  year: 1961
  ident: 65387_CR17
  publication-title: Sens. Commun.
– ident: 65387_CR11
– ident: 65387_CR105
– volume: 225
  start-page: 117479
  year: 2021
  ident: 65387_CR143
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.117479
– ident: 65387_CR25
– ident: 65387_CR42
– ident: 65387_CR75
  doi: 10.1109/ISSCC.2014.6757323
– ident: 65387_CR50
  doi: 10.1109/MICRO.2018.00020
– volume: 10
  start-page: 419
  year: 2020
  ident: 65387_CR96
  publication-title: IEEE J. Emerg. Sel. Top. Circuits Syst.
  doi: 10.1109/JETCAS.2020.3040300
– ident: 65387_CR97
– ident: 65387_CR125
  doi: 10.1109/HPCA47549.2020.00030
– ident: 65387_CR39
– volume: 3
  start-page: 371
  year: 2020
  ident: 65387_CR86
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-020-0435-7
– ident: 65387_CR132
– volume: 345
  start-page: 668
  year: 2014
  ident: 65387_CR55
  publication-title: Science
  doi: 10.1126/science.1254642
– ident: 65387_CR87
  doi: 10.1109/ICCAD57390.2023.10323763
– ident: 65387_CR60
– volume: 55
  start-page: 465
  year: 2019
  ident: 65387_CR104
  publication-title: IEEE J. Solid-State Circuits
  doi: 10.1109/JSSC.2019.2946771
– ident: 65387_CR66
  doi: 10.1109/EBCCSP.2016.7605233
– volume: 35
  start-page: 772
  year: 2025
  ident: 65387_CR147
  publication-title: IEEE Microw. Wirel. Technol. Lett.
  doi: 10.1109/LMWT.2025.3565004
– ident: 65387_CR58
  doi: 10.1109/VLSITechnologyandCir46783.2024.10631426
– volume: 45
  start-page: 27
  year: 2017
  ident: 65387_CR81
  publication-title: ACM SIGARCH Comput. Archit. N.
  doi: 10.1145/3140659.3080254
– ident: 65387_CR90
  doi: 10.1109/ISSCC49657.2024.10454308
– ident: 65387_CR106
– volume: 44
  start-page: 329
  year: 2016
  ident: 65387_CR84
  publication-title: ACM SIGARCH Comput. Archit. N.
  doi: 10.1145/3007787.3001172
– volume: 9
  year: 2018
  ident: 65387_CR31
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04316-3
– volume: 23
  start-page: 1
  year: 2022
  ident: 65387_CR40
  publication-title: J. Mach. Learn. Res.
– ident: 65387_CR118
  doi: 10.1145/3600006.3613165
– ident: 65387_CR92
– ident: 65387_CR4
– ident: 65387_CR34
– ident: 65387_CR37
  doi: 10.1145/3575693.3575728
– volume: 57
  start-page: 2560
  year: 2022
  ident: 65387_CR89
  publication-title: IEEE J. Solid-State Circuits
  doi: 10.1109/JSSC.2022.3148273
– volume: 44
  start-page: 154
  year: 2022
  ident: 65387_CR27
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2020.3008413
– ident: 65387_CR138
– volume: 102
  start-page: 699
  year: 2014
  ident: 65387_CR114
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2014.2313565
– volume: 58
  start-page: 3020
  year: 2023
  ident: 65387_CR51
  publication-title: IEEE J. Solid-State Circuits
  doi: 10.1109/JSSC.2023.3302791
– volume: 27
  start-page: 419
  year: 2004
  ident: 65387_CR144
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev.neuro.27.070203.144152
– ident: 65387_CR134
  doi: 10.1109/CVPRW.2019.00217
– volume: 35
  start-page: 343
  year: 2023
  ident: 65387_CR151
  publication-title: Neural Comput.
– ident: 65387_CR120
– volume: 2
  start-page: 88
  year: 2008
  ident: 65387_CR131
  publication-title: IEEE Trans. Biomed. Circuits Syst.
  doi: 10.1109/TBCAS.2008.924448
– volume: 72
  start-page: 2615
  year: 2023
  ident: 65387_CR88
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/TC.2023.3257513
– ident: 65387_CR5
– volume: 31
  start-page: R110
  year: 2021
  ident: 65387_CR18
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2020.11.054
– volume: 14
  start-page: 481
  year: 2004
  ident: 65387_CR13
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2004.07.007
– volume: 38
  start-page: 82
  year: 2018
  ident: 65387_CR56
  publication-title: IEEE Micro
  doi: 10.1109/MM.2018.112130359
– volume: 629
  start-page: 1034
  year: 2024
  ident: 65387_CR67
  publication-title: Nature
  doi: 10.1038/s41586-024-07409-w
– ident: 65387_CR91
– ident: 65387_CR10
  doi: 10.1109/ICIP46576.2022.9897432
– ident: 65387_CR36
  doi: 10.1109/ISSCC.2017.7870353
– volume: 70
  start-page: 3625
  year: 2023
  ident: 65387_CR85
  publication-title: IEEE Trans. Circuits Syst. I: Regul. Pap.
– ident: 65387_CR137
– ident: 65387_CR133
  doi: 10.23919/VLSIC.2019.8778050
– volume: 35
  start-page: 73
  year: 2012
  ident: 65387_CR24
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev-neuro-062111-150525
– volume: 52
  start-page: 961
  year: 2017
  ident: 65387_CR28
  publication-title: IEEE J. Solid-State Circuits
  doi: 10.1109/JSSC.2016.2638465
– ident: 65387_CR140
– ident: 65387_CR43
– ident: 65387_CR121
– volume: 22
  start-page: 1
  year: 2021
  ident: 65387_CR29
  publication-title: J. Mach. Learn. Res.
– volume: 58
  start-page: 2955
  year: 2023
  ident: 65387_CR68
  publication-title: IEEE J. Solid-State Circuits
  doi: 10.1109/JSSC.2023.3303154
– ident: 65387_CR48
  doi: 10.1109/IROS.2017.8202153
– ident: 65387_CR94
– volume: 7
  year: 2017
  ident: 65387_CR142
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-15249-0
– volume: 3
  start-page: 664
  year: 2020
  ident: 65387_CR62
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-020-00501-9
– ident: 65387_CR22
  doi: 10.1109/CVPR52733.2024.01282
– volume: 5
  start-page: 606
  year: 2023
  ident: 65387_CR21
  publication-title: Proc. Mach. Learn. Syst.
– ident: 65387_CR73
  doi: 10.1109/TBCAS.2024.3378973
– ident: 65387_CR101
  doi: 10.1145/3572848.3577500
– ident: 65387_CR113
  doi: 10.3389/fnins.2011.00073
– ident: 65387_CR32
– volume: 44
  start-page: 7436
  year: 2022
  ident: 65387_CR46
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2021.3117837
– ident: 65387_CR109
– volume: 15
  start-page: 529
  year: 2020
  ident: 65387_CR76
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-020-0655-z
– volume: 31
  start-page: 12
  year: 2018
  ident: 65387_CR149
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 52
  start-page: 127
  year: 2017
  ident: 65387_CR80
  publication-title: IEEE J. Solid-State Circuits
  doi: 10.1109/JSSC.2016.2616357
– volume: 55
  start-page: 1
  year: 2022
  ident: 65387_CR9
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3530811
– ident: 65387_CR26
  doi: 10.1109/JSSC.2007.914337
– ident: 65387_CR77
  doi: 10.1109/A-SSCC48613.2020.9336139
– ident: 65387_CR123
  doi: 10.23919/EUSIPCO54536.2021.9616033
– ident: 65387_CR7
  doi: 10.1007/978-3-030-01234-2_48
– volume: 612
  start-page: 43
  year: 2022
  ident: 65387_CR79
  publication-title: Nature
  doi: 10.1038/s41586-022-05340-6
SSID ssj0000391844
Score 2.4872186
SecondaryResourceType review_article
Snippet Artificial intelligence (AI) has made significant strides towards efficient online processing of sensory signals at the edge through the use of deep neural...
Abstract Artificial intelligence (AI) has made significant strides towards efficient online processing of sensory signals at the edge through the use of deep...
SourceID doaj
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 9928
SubjectTerms 639/166
639/166/987
Artificial intelligence
Artificial neural networks
Brain
Co-design
Computing costs
Energy consumption
Energy costs
Energy efficiency
Humanities and Social Sciences
Information processing
Memory
multidisciplinary
Neural networks
Neurons
Optimization techniques
Perception
Perspective
Science
Science (multidisciplinary)
Sensors
Sensory integration
Signal processing
Sparsity
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BAYkLb2igICNxg6iJH7F9QoCoOKCqB6gqLpYfk2ov2WV3i9R_j8fJpkI8LlwTy3IyD3-eGX8D8Ep2fbCoVd0nnw8ovcQ6oAl164P0ba-SKQx8p5_18bE5O7MnU8BtM5VV7nxicdRpGSlGfii4boymLNvb1feaukZRdnVqoXEdbhBLAhnmifo2x1iI_dxIOd2VaYQ53MjiGaiHa6eIVlb_sh8V2v4_Yc3f8qRl-zm6-78Lvwd3JuDJ3o2ach-u4fAAbo2tKC8fwmkpxltQETQrHJf1YqAkPCaWxqb1LPueUsHBMs5lWO4M1lgYKPLGxRYzt-eWreZqmUfw9ejjlw-f6qnnQh2FEtnf8C7EFCIRmHuMPDbBGm9Txk2dbBP30YeE0YQ-9gopLMcV76JthKeTEYrHsDcsB9wH5jshGo88ZAiXQVkINgqJXGrfYZ8lUMHr3Z93q5Faw5WUuDBulJPLo1yRk9MVvCfhzCOJFrs8WK7P3WRlLjTeNjx4pRLKmB0oZRm5lV4HLZRJFRzsZOQmW924KwFV8HJ-na2MUid-wOVFGdNmsKSNqeDJqBLzSmRWPZudTQVvdjpyNfnfP-jpv9fyDG5zUlOqOGwPYG-7vsDncDP-2C426xdFz38CW-EFAA
  priority: 102
  providerName: ProQuest
Title Exploiting neuro-inspired dynamic sparsity for energy-efficient intelligent perception
URI https://link.springer.com/article/10.1038/s41467-025-65387-7
https://www.ncbi.nlm.nih.gov/pubmed/41219200
https://www.proquest.com/docview/3270873027
https://www.proquest.com/docview/3271082788
https://doaj.org/article/b0a902ba55de4c0886842294a7b7358d
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: P5Z
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: M7P
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Download PDF from ProQuest Central
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: 7X7
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: PIMPY
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BAYkL4lkCZRUkbhA18SO2jxS1AglWEYJq4WL5MZH2klbdLRL_nrGTDUWAuHDxIbEie8Yef5MZfwPwQrS9N6hk1UdHDkovsPKofdU4L1zTy6gzA9_pe7Vc6tXKdFdKfaWcsJEeeBTcoa-dqZl3UkYUgfZEChwxI5zyiksdk_Ul1HPFmco2mBtyXcR0S6bm-nAjsk1I1VtbmQhl1S8nUSbs_xPK_C1Cmg-ek7twZ0KM5etxpPfgGg734dZYQ_L7AzjNWXTrlL1cZnLKaj2k6DnGMo7V5ksyGjn1oiSAWmK-7Fdhpo6gE6dcz6Sc2_J8TnN5CJ9Pjj-9eVtNxRKqwCUnQ8FaH6IPiXncYWCh9kY7EwnwtKKJzAXnIwbt-9BLTP_TmGRtMDV3yaVB_gj2hrMBH0PpWs5rh8wT9iI05b0JXCATyrXYkwALeLkTnD0fOTFsjmVzbUcxW-pls5itKuAoyXbumfis8wPSsp20bP-l5QIOdpqx0ybbWM5UrVUKvBbwfH5N2yPFPNyAZ5e5T0Mohxz9AvZHjc4jEQ2Za7ISBbzaqfjnx_8-oSf_Y0JP4TZLazElFDYHsLe9uMRncDN82643Fwu4rlYqt3oBN46Ol93HRV7gi5Sb2lHbya_0pnv3ofvyA3mm_Tc
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL70eggJHgBFET24mdA0K8qlZdVhxKtTfjV1AOZJfdLWj_FL8Rj_OoEI9bD1wTy7Ljz99MPONvAJ7wsjaVF0VaOx1-UGruU-OlSXNtuM7rwsmowHc8EdOpnM2qD1vwY7gLg2mVAydGonZzi2fku4yKTAqMsr1cfE2xahRGV4cSGh0sDv3me_hlW704eBvW9ymle--O3uynfVWB1LKChR1FS2OdsSjRrb2lNjOV1JULnkHJc0e11cZ5K01t68LjwRMtaGmrjGn0_T0L_Z6D84HHBaaQiZkYz3RQbV1y3t_NyZjcXfHIRFgztixQxlb8Yv9imYA_-ba_xWWjudu7-r99qGtwpXesyatuJ1yHLd_egItdqc3NTTiOyYYNJnmTqOGZNi0mGXhH3KbVXxpLArfGDBUS_Hji453I1EeFjWCYSTNql67JYswGugUfz2RSt2G7nbf-LhBdMpZpT01wUYPTaUxlGfeUC136Oqx4As-GlVaLTjpExZA_k6rDhQqtVMSFEgm8RjCMLVH2Oz6YLz-rnkWUyXSVUaOLwnlug4HAKCqtuBZGsEK6BHYGTKiei1bqFBAJPB5fBxbB0JBu_fwktsmDMyikTOBOB8FxJDwPVi2QaQLPB0yedv73Cd3791gewaX9o_cTNTmYHt6HyxS3CGZX5juwvV6e-AdwwX5bN6vlw7jHCHw6a6z-BDv3Yr8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qZREXdkqgQJDgBNEkXmLngBBQRlStRnOAquJivAXNoZlhZgqav8avw89ZKsRy64FrYkVJ_Pktfp-_B_CUlbWpvOBZ7XRIUGrmM-OlyQptmC5q7mRU4Ds6FJOJPD6uplvwoz8Lg7TK3iZGQ-3mFvfIR5SIXAqsso3qjhYx3Ru_WnzNsIMUVlr7dhotRA785ntI31Yv9_fCXD8jZPzuw9v3WddhILOU07C6SGmsMxblurW3xOamkrpyIUooWeGItto4b6Wpbc09bkIRTkpb5VRjHuBpeO4FuChCjomJ35R_GvZ3UHldMtad08mpHK1YtErYP7bkKGkrfvGFsWXAn-Lc32q00fWNr__PP-0GXOsC7vR1u0JuwpZvbsHltgXn5jYcRRLiDMnfadT2zGYNkg-8S92m0SczmwabG5kraYjvUx_PSmY-Km8Eh53OBk3TdboYWEJ34OO5fNRd2G7mjb8HqS4pzbUnJoSuIRg1prKUecKELn0dZj-B5_2sq0UrKaIiFYBK1WJEhVEqYkSJBN4gMIaRKAceL8yXX1RnXZTJdZUTozl3ntngOLC6SiqmhRGUS5fAbo8P1dmolToDRwJPhtvBumDJSDd-fhrHFCFIFFImsNPCcXgTVgRvF4xsAi96fJ49_O8fdP_f7_IYrgSIqsP9ycEDuEpwtSDpstiF7fXy1D-ES_bberZaPorLLYXP5w3Vn3AYa7I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploiting+neuro-inspired+dynamic+sparsity+for+energy-efficient+intelligent+perception&rft.jtitle=Nature+communications&rft.au=Zhou%2C+Sheng&rft.au=Gao%2C+Chang&rft.au=Delbruck%2C+Tobi&rft.au=Verhelst%2C+Marian&rft.date=2025-11-11&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=16&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-025-65387-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_025_65387_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon