Exploiting neuro-inspired dynamic sparsity for energy-efficient intelligent perception
Artificial intelligence (AI) has made significant strides towards efficient online processing of sensory signals at the edge through the use of deep neural networks with ever-expanding size. However, this trend has brought with it escalating computational costs and energy consumption, which have bec...
Saved in:
| Published in: | Nature communications Vol. 16; no. 1; pp. 9928 - 15 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group UK
11.11.2025
Nature Publishing Group Nature Portfolio |
| Subjects: | |
| ISSN: | 2041-1723, 2041-1723 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Artificial intelligence (AI) has made significant strides towards efficient online processing of sensory signals at the edge through the use of deep neural networks with ever-expanding size. However, this trend has brought with it escalating computational costs and energy consumption, which have become major obstacles to the deployment and further upscaling of these models. In this Perspective, we present a neuro-inspired vision to boost the energy efficiency of AI for perception by leveraging brain-like dynamic sparsity. We categorize various forms of dynamic sparsity rooted in data redundancy and discuss potential strategies to enhance and exploit it through algorithm-hardware co-design. Additionally, we explore the technological, architectural, and algorithmic challenges that need to be addressed to fully unlock the potential of dynamic-sparsity-aware neuro-inspired AI for energy-efficient perception.
Edge AI enables intelligent perception in sensory devices, yet at excessive energy costs. This Perspective outlines a neuro-inspired vision for efficient edge perception, sketching the design space of data-driven and stateful dynamic sparsity to selectively activate sensors, memory, and compute. |
|---|---|
| AbstractList | Artificial intelligence (AI) has made significant strides towards efficient online processing of sensory signals at the edge through the use of deep neural networks with ever-expanding size. However, this trend has brought with it escalating computational costs and energy consumption, which have become major obstacles to the deployment and further upscaling of these models. In this Perspective, we present a neuro-inspired vision to boost the energy efficiency of AI for perception by leveraging brain-like dynamic sparsity. We categorize various forms of dynamic sparsity rooted in data redundancy and discuss potential strategies to enhance and exploit it through algorithm-hardware co-design. Additionally, we explore the technological, architectural, and algorithmic challenges that need to be addressed to fully unlock the potential of dynamic-sparsity-aware neuro-inspired AI for energy-efficient perception.Edge AI enables intelligent perception in sensory devices, yet at excessive energy costs. This Perspective outlines a neuro-inspired vision for efficient edge perception, sketching the design space of data-driven and stateful dynamic sparsity to selectively activate sensors, memory, and compute. Artificial intelligence (AI) has made significant strides towards efficient online processing of sensory signals at the edge through the use of deep neural networks with ever-expanding size. However, this trend has brought with it escalating computational costs and energy consumption, which have become major obstacles to the deployment and further upscaling of these models. In this Perspective, we present a neuro-inspired vision to boost the energy efficiency of AI for perception by leveraging brain-like dynamic sparsity. We categorize various forms of dynamic sparsity rooted in data redundancy and discuss potential strategies to enhance and exploit it through algorithm-hardware co-design. Additionally, we explore the technological, architectural, and algorithmic challenges that need to be addressed to fully unlock the potential of dynamic-sparsity-aware neuro-inspired AI for energy-efficient perception. Artificial intelligence (AI) has made significant strides towards efficient online processing of sensory signals at the edge through the use of deep neural networks with ever-expanding size. However, this trend has brought with it escalating computational costs and energy consumption, which have become major obstacles to the deployment and further upscaling of these models. In this Perspective, we present a neuro-inspired vision to boost the energy efficiency of AI for perception by leveraging brain-like dynamic sparsity. We categorize various forms of dynamic sparsity rooted in data redundancy and discuss potential strategies to enhance and exploit it through algorithm-hardware co-design. Additionally, we explore the technological, architectural, and algorithmic challenges that need to be addressed to fully unlock the potential of dynamic-sparsity-aware neuro-inspired AI for energy-efficient perception. Edge AI enables intelligent perception in sensory devices, yet at excessive energy costs. This Perspective outlines a neuro-inspired vision for efficient edge perception, sketching the design space of data-driven and stateful dynamic sparsity to selectively activate sensors, memory, and compute. Artificial intelligence (AI) has made significant strides towards efficient online processing of sensory signals at the edge through the use of deep neural networks with ever-expanding size. However, this trend has brought with it escalating computational costs and energy consumption, which have become major obstacles to the deployment and further upscaling of these models. In this Perspective, we present a neuro-inspired vision to boost the energy efficiency of AI for perception by leveraging brain-like dynamic sparsity. We categorize various forms of dynamic sparsity rooted in data redundancy and discuss potential strategies to enhance and exploit it through algorithm-hardware co-design. Additionally, we explore the technological, architectural, and algorithmic challenges that need to be addressed to fully unlock the potential of dynamic-sparsity-aware neuro-inspired AI for energy-efficient perception.Artificial intelligence (AI) has made significant strides towards efficient online processing of sensory signals at the edge through the use of deep neural networks with ever-expanding size. However, this trend has brought with it escalating computational costs and energy consumption, which have become major obstacles to the deployment and further upscaling of these models. In this Perspective, we present a neuro-inspired vision to boost the energy efficiency of AI for perception by leveraging brain-like dynamic sparsity. We categorize various forms of dynamic sparsity rooted in data redundancy and discuss potential strategies to enhance and exploit it through algorithm-hardware co-design. Additionally, we explore the technological, architectural, and algorithmic challenges that need to be addressed to fully unlock the potential of dynamic-sparsity-aware neuro-inspired AI for energy-efficient perception. Abstract Artificial intelligence (AI) has made significant strides towards efficient online processing of sensory signals at the edge through the use of deep neural networks with ever-expanding size. However, this trend has brought with it escalating computational costs and energy consumption, which have become major obstacles to the deployment and further upscaling of these models. In this Perspective, we present a neuro-inspired vision to boost the energy efficiency of AI for perception by leveraging brain-like dynamic sparsity. We categorize various forms of dynamic sparsity rooted in data redundancy and discuss potential strategies to enhance and exploit it through algorithm-hardware co-design. Additionally, we explore the technological, architectural, and algorithmic challenges that need to be addressed to fully unlock the potential of dynamic-sparsity-aware neuro-inspired AI for energy-efficient perception. |
| ArticleNumber | 9928 |
| Author | Gao, Chang Zhou, Sheng Delbruck, Tobi Verhelst, Marian Liu, Shih-Chii |
| Author_xml | – sequence: 1 givenname: Sheng orcidid: 0009-0009-5408-5963 surname: Zhou fullname: Zhou, Sheng organization: Institute of Neuroinformatics, University of Zurich and ETH Zurich – sequence: 2 givenname: Chang orcidid: 0000-0002-3284-4078 surname: Gao fullname: Gao, Chang organization: Delft University of Technology – sequence: 3 givenname: Tobi orcidid: 0000-0001-5479-1141 surname: Delbruck fullname: Delbruck, Tobi organization: Institute of Neuroinformatics, University of Zurich and ETH Zurich – sequence: 4 givenname: Marian orcidid: 0000-0003-3495-9263 surname: Verhelst fullname: Verhelst, Marian organization: KU Leuven & imec – sequence: 5 givenname: Shih-Chii orcidid: 0000-0002-7557-045X surname: Liu fullname: Liu, Shih-Chii email: shih@ini.uzh.ch organization: Institute of Neuroinformatics, University of Zurich and ETH Zurich |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/41219200$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUFv1DAQhS3UipbSP8ABReLCJdQe27FzRFWBSpW4tFwtx55EXmXtYCcS---bbUpBHJjLjKxvnv383pCTmCIS8o7RT4xyfVUEE42qKci6kVyrWr0i50AFq5kCfvLXfEYuS9nRtXjLtBCvyZlgwFqg9Jz8uPk1jSnMIQ5VxCWnOsQyhYy-8odo98FVZbK5hPlQ9SlXGDEPhxr7PriAca5CnHEcw3CcJ8wOpzmk-Jac9nYsePncL8jDl5v762_13fevt9ef72rHJVc1h6ZzvnPAhLTowNGu1bb10IhGMA_W2c6j013veolCtRwkNK6l3EJDJfILcrvp-mR3Zsphb_PBJBvM00HKg7F5Dm5E01HbUuislB6Fo1o3WgC0wqpOcan9qvVx05py-rlgmc0-FLeasxHTUgwHxagGpfWKfvgH3aUlx9XpkaJacQpqpd4_U0u3R__yvN-_vwKwAS6nUjL2Lwij5piy2VI2a8rmKWVzVOXbUlnhOGD-c_d_th4B8uCpDg |
| Cites_doi | 10.1007/978-3-030-01261-8_25 10.1038/s41467-023-37180-x 10.1145/3581784.3607087 10.1126/science.1089662 10.1098/rspb.1998.0577 10.1109/TNNLS.2018.2852335 10.1109/TNNLS.2022.3180209 10.1109/AERO53065.2022.9843428 10.18653/v1/2024.findings-acl.456 10.1109/JSSC.2021.3076344 10.1038/nature03010 10.23919/VLSICircuits52068.2021.9492401 10.1109/ISSCC49661.2025.10904788 10.1109/JSSC.2023.3316648 10.1371/journal.pone.0144636 10.1109/ASICON58565.2023.10396197 10.1109/IEEECONF44664.2019.9048865 10.1109/TNN.2003.820440 10.1109/TCASAI.2024.3507694 10.21437/Interspeech.2024-958 10.1109/ISSCC42614.2022.9731795 10.1109/VLSIC.2016.7573525 10.1109/JSSC.2020.2968800 10.1145/3174243.3174261 10.1038/d41586-024-03408-z 10.1007/978-3-030-58598-3_25 10.18653/v1/2024.findings-emnlp.266 10.1145/3503221.3508399 10.1109/NEWCAS50681.2021.9462787 10.1038/nn831 10.23919/DATE51398.2021.9474260 10.1109/TBCAS.2013.2281834 10.1109/ISSCC42615.2023.10067566 10.1038/4580 10.1162/neco.1997.9.8.1735 10.1145/3474365 10.1109/MSPEC.1970.5212996 10.1038/nrn964 10.1016/S0960-9822(03)00135-0 10.1109/JSSC.2022.3205713 10.3390/s21010085 10.1109/ISSCC.2017.7870263 10.1109/MCAS.2023.3267893 10.1109/MSP.2019.2928127 10.1109/TCSVT.2019.2903421 10.1109/MSSC.2024.3455290 10.1109/ICIP46576.2022.9897354 10.1109/CVPR52688.2022.01217 10.21437/Interspeech.2019-2396 10.1038/s41467-022-28487-2 10.1109/JSSC.2014.2342715 10.1016/j.neuroimage.2020.117479 10.1109/ISSCC.2014.6757323 10.1109/MICRO.2018.00020 10.1109/JETCAS.2020.3040300 10.1109/HPCA47549.2020.00030 10.1038/s41928-020-0435-7 10.1126/science.1254642 10.1109/ICCAD57390.2023.10323763 10.1109/JSSC.2019.2946771 10.1109/EBCCSP.2016.7605233 10.1109/LMWT.2025.3565004 10.1109/VLSITechnologyandCir46783.2024.10631426 10.1145/3140659.3080254 10.1109/ISSCC49657.2024.10454308 10.1145/3007787.3001172 10.1038/s41467-018-04316-3 10.1145/3600006.3613165 10.1145/3575693.3575728 10.1109/JSSC.2022.3148273 10.1109/TPAMI.2020.3008413 10.1109/JPROC.2014.2313565 10.1109/JSSC.2023.3302791 10.1146/annurev.neuro.27.070203.144152 10.1109/CVPRW.2019.00217 10.1109/TBCAS.2008.924448 10.1109/TC.2023.3257513 10.1016/j.cub.2020.11.054 10.1016/j.conb.2004.07.007 10.1109/MM.2018.112130359 10.1038/s41586-024-07409-w 10.1109/ICIP46576.2022.9897432 10.1109/ISSCC.2017.7870353 10.23919/VLSIC.2019.8778050 10.1146/annurev-neuro-062111-150525 10.1109/JSSC.2016.2638465 10.1109/JSSC.2023.3303154 10.1109/IROS.2017.8202153 10.1038/s41598-017-15249-0 10.1038/s41928-020-00501-9 10.1109/CVPR52733.2024.01282 10.1109/TBCAS.2024.3378973 10.1145/3572848.3577500 10.3389/fnins.2011.00073 10.1109/TPAMI.2021.3117837 10.1038/s41565-020-0655-z 10.1109/JSSC.2016.2616357 10.1145/3530811 10.1109/JSSC.2007.914337 10.1109/A-SSCC48613.2020.9336139 10.23919/EUSIPCO54536.2021.9616033 10.1007/978-3-030-01234-2_48 10.1038/s41586-022-05340-6 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 DOA |
| DOI | 10.1038/s41467-025-65387-7 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2041-1723 |
| EndPage | 15 |
| ExternalDocumentID | oai_doaj_org_article_b0a902ba55de4c0886842294a7b7358d 41219200 10_1038_s41467_025_65387_7 |
| Genre | Journal Article Review |
| GrantInformation_xml | – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation) grantid: 208227; 208227 funderid: 501100001711 – fundername: EC | EC Seventh Framework Programm | FP7 Ideas: European Research Council (FP7-IDEAS-ERC - Specific Programme: "Ideas" Implementing the Seventh Framework Programme of the European Community for Research, Technological Development and Demonstration Activities (2007 to 2013)) grantid: 101088865 funderid: 100011199 – fundername: Flanders AI Research Program, Research Foundation Flanders (FWO) under grant 1SE7723N – fundername: Dutch Research Council (NWO) Talent Programme Veni 2023 under the Grant No. 21132 Marie Skłodowska-Curie Actions (MSCA) Postdoctoral Fellowship program, Grant No. 101107534 – fundername: EC | EC Seventh Framework Programm | FP7 Ideas: European Research Council (FP7-IDEAS-ERC - Specific Programme: "Ideas" Implementing the Seventh Framework Programme of the European Community for Research, Technological Development and Demonstration Activities (2007 to 2013)) grantid: 101088865 – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation) grantid: 208227 |
| GroupedDBID | --- 0R~ 39C 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ AASML ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFFHD AFKRA AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M48 P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 |
| ID | FETCH-LOGICAL-c3537-326bcdbc2145aec2c0b98a9d264641d2acabdec8bfcf5e47932526c903a2605e3 |
| IEDL.DBID | DOA |
| ISSN | 2041-1723 |
| IngestDate | Mon Nov 17 19:35:23 EST 2025 Wed Nov 12 17:01:35 EST 2025 Wed Nov 12 09:50:38 EST 2025 Sat Nov 15 01:41:55 EST 2025 Thu Nov 13 04:31:43 EST 2025 Wed Nov 12 01:18:13 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2025. The Author(s). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3537-326bcdbc2145aec2c0b98a9d264641d2acabdec8bfcf5e47932526c903a2605e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0009-0009-5408-5963 0000-0001-5479-1141 0000-0002-3284-4078 0000-0003-3495-9263 0000-0002-7557-045X |
| OpenAccessLink | https://doaj.org/article/b0a902ba55de4c0886842294a7b7358d |
| PMID | 41219200 |
| PQID | 3270873027 |
| PQPubID | 546298 |
| PageCount | 15 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b0a902ba55de4c0886842294a7b7358d proquest_miscellaneous_3271082788 proquest_journals_3270873027 pubmed_primary_41219200 crossref_primary_10_1038_s41467_025_65387_7 springer_journals_10_1038_s41467_025_65387_7 |
| PublicationCentury | 2000 |
| PublicationDate | 20251111 |
| PublicationDateYYYYMMDD | 2025-11-11 |
| PublicationDate_xml | – month: 11 year: 2025 text: 20251111 day: 11 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Nature communications |
| PublicationTitleAbbrev | Nat Commun |
| PublicationTitleAlternate | Nat Commun |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | 65387_CR83 65387_CR82 JSP Giraldo (65387_CR126) 2020; 55 65387_CR148 65387_CR146 65387_CR145 65387_CR87 65387_CR140 J Sacramento (65387_CR149) 2018; 31 A Parashar (65387_CR81) 2017; 45 RP Rao (65387_CR23) 1999; 2 65387_CR7 65387_CR8 65387_CR5 65387_CR6 65387_CR3 65387_CR4 65387_CR1 65387_CR2 K Boahen (65387_CR79) 2022; 612 W Zhang (65387_CR86) 2020; 3 65387_CR94 65387_CR95 65387_CR92 65387_CR93 65387_CR139 65387_CR90 65387_CR138 65387_CR91 65387_CR137 65387_CR136 65387_CR135 65387_CR134 65387_CR133 K Kim (65387_CR70) 2023; 23 65387_CR132 65387_CR10 65387_CR98 65387_CR130 65387_CR11 R Pope (65387_CR21) 2023; 5 65387_CR97 SB Laughlin (65387_CR12) 2003; 301 SE Petersen (65387_CR24) 2012; 35 G Laurent (65387_CR16) 2002; 3 65387_CR25 65387_CR26 P Lennie (65387_CR153) 2003; 13 C Xie (65387_CR85) 2023; 70 65387_CR22 Y Tay (65387_CR9) 2022; 55 Z Fu (65387_CR131) 2008; 2 M Guo (65387_CR68) 2023; 58 Y-H Chen (65387_CR80) 2017; 52 BV Benjamin (65387_CR114) 2014; 102 RJ Douglas (65387_CR144) 2004; 27 A Sebastian (65387_CR76) 2020; 15 PA Merolla (65387_CR55) 2014; 345 F Zhou (65387_CR62) 2020; 3 DE Kim (65387_CR88) 2023; 72 G Gallego (65387_CR27) 2022; 44 65387_CR36 65387_CR37 65387_CR34 65387_CR32 J Yue (65387_CR89) 2022; 57 65387_CR152 65387_CR33 65387_CR30 BA Olshausen (65387_CR13) 2004; 14 JSP Giraldo (65387_CR127) 2021; 20 S-C Liu (65387_CR71) 2019; 36 J Kim (65387_CR84) 2016; 44 C Gao (65387_CR99) 2024; 35 Y Han (65387_CR46) 2022; 44 M Davies (65387_CR56) 2018; 38 65387_CR109 65387_CR108 DC Mocanu (65387_CR31) 2018; 9 65387_CR107 65387_CR106 65387_CR105 65387_CR103 65387_CR102 65387_CR47 65387_CR101 65387_CR48 65387_CR100 65387_CR45 65387_CR43 65387_CR44 65387_CR41 HR Schindler (65387_CR64) 1970; 7 D Gehrig (65387_CR67) 2024; 629 65387_CR42 65387_CR38 65387_CR39 C Mead (65387_CR151) 2023; 35 65387_CR50 S Paul (65387_CR28) 2017; 52 65387_CR58 65387_CR59 65387_CR57 65387_CR54 A Aimar (65387_CR35) 2019; 30 Z Yuan (65387_CR104) 2019; 55 65387_CR53 J Lin (65387_CR51) 2023; 58 X Chen (65387_CR150) 2024; 38 65387_CR49 M Yang (65387_CR74) 2021; 56 J Benda (65387_CR18) 2021; 31 J Vezoli (65387_CR143) 2021; 225 T Hoefler (65387_CR29) 2021; 22 JH van Hateren (65387_CR14) 1998; 265 65387_CR61 65387_CR129 65387_CR60 65387_CR128 65387_CR125 65387_CR124 65387_CR123 65387_CR122 65387_CR121 65387_CR120 65387_CR65 65387_CR66 Y Wu (65387_CR147) 2025; 35 LF Abbott (65387_CR19) 2004; 431 S-C Liu (65387_CR69) 2024; 16 J-S Park (65387_CR111) 2023; 58 H Yang (65387_CR52) 2024; 59 MS Lewicki (65387_CR15) 2002; 5 W Fedus (65387_CR40) 2022; 23 65387_CR72 65387_CR73 E Izhikevich (65387_CR112) 2003; 14 65387_CR119 65387_CR118 65387_CR117 L Cavigelli (65387_CR115) 2019; 30 65387_CR116 B Vladimirskiy (65387_CR141) 2015; 10 65387_CR113 65387_CR78 65387_CR110 65387_CR77 65387_CR75 C Gao (65387_CR96) 2020; 10 D Kleyko (65387_CR63) 2022; 55 S Hochreiter (65387_CR20) 1997; 9 T Parr (65387_CR142) 2017; 7 HB Barlow (65387_CR17) 1961; 1 |
| References_xml | – ident: 65387_CR61 doi: 10.1007/978-3-030-01261-8_25 – ident: 65387_CR122 – ident: 65387_CR2 doi: 10.1038/s41467-023-37180-x – ident: 65387_CR103 doi: 10.1145/3581784.3607087 – volume: 301 start-page: 1870 year: 2003 ident: 65387_CR12 publication-title: Science doi: 10.1126/science.1089662 – ident: 65387_CR116 – volume: 265 start-page: 2315 year: 1998 ident: 65387_CR14 publication-title: Proc. R. Soc. Lond. Ser. B: Biol. Sci. doi: 10.1098/rspb.1998.0577 – volume: 38 start-page: 11399 year: 2024 ident: 65387_CR150 publication-title: Proc. AAAI Conf. Artif. Intell. – volume: 30 start-page: 644 year: 2019 ident: 65387_CR35 publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2018.2852335 – volume: 35 start-page: 1098 year: 2024 ident: 65387_CR99 publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2022.3180209 – ident: 65387_CR130 doi: 10.1109/AERO53065.2022.9843428 – ident: 65387_CR41 doi: 10.18653/v1/2024.findings-acl.456 – ident: 65387_CR93 – volume: 56 start-page: 3123 year: 2021 ident: 65387_CR74 publication-title: IEEE J. Solid-State Circuits doi: 10.1109/JSSC.2021.3076344 – volume: 431 start-page: 796 year: 2004 ident: 65387_CR19 publication-title: Nature doi: 10.1038/nature03010 – ident: 65387_CR129 doi: 10.23919/VLSICircuits52068.2021.9492401 – ident: 65387_CR136 doi: 10.1109/ISSCC49661.2025.10904788 – volume: 59 start-page: 29 year: 2024 ident: 65387_CR52 publication-title: IEEE J. Solid-State Circuits doi: 10.1109/JSSC.2023.3316648 – volume: 10 start-page: e0144636 year: 2015 ident: 65387_CR141 publication-title: PLoS ONE doi: 10.1371/journal.pone.0144636 – ident: 65387_CR83 doi: 10.1109/ASICON58565.2023.10396197 – volume: 55 start-page: 1 year: 2022 ident: 65387_CR63 publication-title: ACM Comput. Surv. – ident: 65387_CR102 – ident: 65387_CR95 doi: 10.1109/IEEECONF44664.2019.9048865 – ident: 65387_CR44 – ident: 65387_CR148 – volume: 14 start-page: 1569 year: 2003 ident: 65387_CR112 publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2003.820440 – ident: 65387_CR135 doi: 10.1109/TCASAI.2024.3507694 – ident: 65387_CR8 – ident: 65387_CR54 doi: 10.21437/Interspeech.2024-958 – ident: 65387_CR78 doi: 10.1109/ISSCC42614.2022.9731795 – ident: 65387_CR38 – ident: 65387_CR82 doi: 10.1109/VLSIC.2016.7573525 – ident: 65387_CR110 – volume: 55 start-page: 868 year: 2020 ident: 65387_CR126 publication-title: IEEE J. Solid-State Circuits doi: 10.1109/JSSC.2020.2968800 – ident: 65387_CR45 doi: 10.1145/3174243.3174261 – ident: 65387_CR1 doi: 10.1038/d41586-024-03408-z – ident: 65387_CR30 – ident: 65387_CR65 doi: 10.1007/978-3-030-58598-3_25 – ident: 65387_CR117 doi: 10.18653/v1/2024.findings-emnlp.266 – ident: 65387_CR124 doi: 10.1145/3503221.3508399 – ident: 65387_CR128 doi: 10.1109/NEWCAS50681.2021.9462787 – ident: 65387_CR107 – volume: 5 start-page: 356 year: 2002 ident: 65387_CR15 publication-title: Nat. Neurosci. doi: 10.1038/nn831 – ident: 65387_CR145 doi: 10.23919/DATE51398.2021.9474260 – ident: 65387_CR47 doi: 10.1109/TBCAS.2013.2281834 – ident: 65387_CR53 – ident: 65387_CR72 doi: 10.1109/ISSCC42615.2023.10067566 – volume: 2 start-page: 79 year: 1999 ident: 65387_CR23 publication-title: Nat. Neurosci. doi: 10.1038/4580 – volume: 9 start-page: 1735 year: 1997 ident: 65387_CR20 publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 20 start-page: 1 year: 2021 ident: 65387_CR127 publication-title: ACM Trans. Embedded Comput. Syst. doi: 10.1145/3474365 – volume: 7 start-page: 69 year: 1970 ident: 65387_CR64 publication-title: IEEE Spectr. doi: 10.1109/MSPEC.1970.5212996 – ident: 65387_CR33 – ident: 65387_CR108 – volume: 3 start-page: 884 year: 2002 ident: 65387_CR16 publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn964 – volume: 13 start-page: 493 year: 2003 ident: 65387_CR153 publication-title: Curr. Biol. doi: 10.1016/S0960-9822(03)00135-0 – volume: 58 start-page: 189 year: 2023 ident: 65387_CR111 publication-title: IEEE J. Solid-State Circuits doi: 10.1109/JSSC.2022.3205713 – ident: 65387_CR146 doi: 10.3390/s21010085 – ident: 65387_CR100 – ident: 65387_CR59 doi: 10.1109/ISSCC.2017.7870263 – volume: 23 start-page: 29 year: 2023 ident: 65387_CR70 publication-title: IEEE Circuits Syst. Mag. doi: 10.1109/MCAS.2023.3267893 – ident: 65387_CR119 – volume: 36 start-page: 29 year: 2019 ident: 65387_CR71 publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2019.2928127 – ident: 65387_CR6 – volume: 30 start-page: 1451 year: 2019 ident: 65387_CR115 publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2019.2903421 – volume: 16 start-page: 62 year: 2024 ident: 65387_CR69 publication-title: IEEE Solid-State Circuits Mag. doi: 10.1109/MSSC.2024.3455290 – ident: 65387_CR98 – ident: 65387_CR49 doi: 10.1109/ICIP46576.2022.9897354 – ident: 65387_CR57 doi: 10.1109/CVPR52688.2022.01217 – ident: 65387_CR139 doi: 10.21437/Interspeech.2019-2396 – ident: 65387_CR3 doi: 10.1038/s41467-022-28487-2 – ident: 65387_CR152 doi: 10.1109/JSSC.2014.2342715 – volume: 1 start-page: 217 year: 1961 ident: 65387_CR17 publication-title: Sens. Commun. – ident: 65387_CR11 – ident: 65387_CR105 – volume: 225 start-page: 117479 year: 2021 ident: 65387_CR143 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.117479 – ident: 65387_CR25 – ident: 65387_CR42 – ident: 65387_CR75 doi: 10.1109/ISSCC.2014.6757323 – ident: 65387_CR50 doi: 10.1109/MICRO.2018.00020 – volume: 10 start-page: 419 year: 2020 ident: 65387_CR96 publication-title: IEEE J. Emerg. Sel. Top. Circuits Syst. doi: 10.1109/JETCAS.2020.3040300 – ident: 65387_CR97 – ident: 65387_CR125 doi: 10.1109/HPCA47549.2020.00030 – ident: 65387_CR39 – volume: 3 start-page: 371 year: 2020 ident: 65387_CR86 publication-title: Nat. Electron. doi: 10.1038/s41928-020-0435-7 – ident: 65387_CR132 – volume: 345 start-page: 668 year: 2014 ident: 65387_CR55 publication-title: Science doi: 10.1126/science.1254642 – ident: 65387_CR87 doi: 10.1109/ICCAD57390.2023.10323763 – ident: 65387_CR60 – volume: 55 start-page: 465 year: 2019 ident: 65387_CR104 publication-title: IEEE J. Solid-State Circuits doi: 10.1109/JSSC.2019.2946771 – ident: 65387_CR66 doi: 10.1109/EBCCSP.2016.7605233 – volume: 35 start-page: 772 year: 2025 ident: 65387_CR147 publication-title: IEEE Microw. Wirel. Technol. Lett. doi: 10.1109/LMWT.2025.3565004 – ident: 65387_CR58 doi: 10.1109/VLSITechnologyandCir46783.2024.10631426 – volume: 45 start-page: 27 year: 2017 ident: 65387_CR81 publication-title: ACM SIGARCH Comput. Archit. N. doi: 10.1145/3140659.3080254 – ident: 65387_CR90 doi: 10.1109/ISSCC49657.2024.10454308 – ident: 65387_CR106 – volume: 44 start-page: 329 year: 2016 ident: 65387_CR84 publication-title: ACM SIGARCH Comput. Archit. N. doi: 10.1145/3007787.3001172 – volume: 9 year: 2018 ident: 65387_CR31 publication-title: Nat. Commun. doi: 10.1038/s41467-018-04316-3 – volume: 23 start-page: 1 year: 2022 ident: 65387_CR40 publication-title: J. Mach. Learn. Res. – ident: 65387_CR118 doi: 10.1145/3600006.3613165 – ident: 65387_CR92 – ident: 65387_CR4 – ident: 65387_CR34 – ident: 65387_CR37 doi: 10.1145/3575693.3575728 – volume: 57 start-page: 2560 year: 2022 ident: 65387_CR89 publication-title: IEEE J. Solid-State Circuits doi: 10.1109/JSSC.2022.3148273 – volume: 44 start-page: 154 year: 2022 ident: 65387_CR27 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2020.3008413 – ident: 65387_CR138 – volume: 102 start-page: 699 year: 2014 ident: 65387_CR114 publication-title: Proc. IEEE doi: 10.1109/JPROC.2014.2313565 – volume: 58 start-page: 3020 year: 2023 ident: 65387_CR51 publication-title: IEEE J. Solid-State Circuits doi: 10.1109/JSSC.2023.3302791 – volume: 27 start-page: 419 year: 2004 ident: 65387_CR144 publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev.neuro.27.070203.144152 – ident: 65387_CR134 doi: 10.1109/CVPRW.2019.00217 – volume: 35 start-page: 343 year: 2023 ident: 65387_CR151 publication-title: Neural Comput. – ident: 65387_CR120 – volume: 2 start-page: 88 year: 2008 ident: 65387_CR131 publication-title: IEEE Trans. Biomed. Circuits Syst. doi: 10.1109/TBCAS.2008.924448 – volume: 72 start-page: 2615 year: 2023 ident: 65387_CR88 publication-title: IEEE Trans. Comput. doi: 10.1109/TC.2023.3257513 – ident: 65387_CR5 – volume: 31 start-page: R110 year: 2021 ident: 65387_CR18 publication-title: Curr. Biol. doi: 10.1016/j.cub.2020.11.054 – volume: 14 start-page: 481 year: 2004 ident: 65387_CR13 publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2004.07.007 – volume: 38 start-page: 82 year: 2018 ident: 65387_CR56 publication-title: IEEE Micro doi: 10.1109/MM.2018.112130359 – volume: 629 start-page: 1034 year: 2024 ident: 65387_CR67 publication-title: Nature doi: 10.1038/s41586-024-07409-w – ident: 65387_CR91 – ident: 65387_CR10 doi: 10.1109/ICIP46576.2022.9897432 – ident: 65387_CR36 doi: 10.1109/ISSCC.2017.7870353 – volume: 70 start-page: 3625 year: 2023 ident: 65387_CR85 publication-title: IEEE Trans. Circuits Syst. I: Regul. Pap. – ident: 65387_CR137 – ident: 65387_CR133 doi: 10.23919/VLSIC.2019.8778050 – volume: 35 start-page: 73 year: 2012 ident: 65387_CR24 publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev-neuro-062111-150525 – volume: 52 start-page: 961 year: 2017 ident: 65387_CR28 publication-title: IEEE J. Solid-State Circuits doi: 10.1109/JSSC.2016.2638465 – ident: 65387_CR140 – ident: 65387_CR43 – ident: 65387_CR121 – volume: 22 start-page: 1 year: 2021 ident: 65387_CR29 publication-title: J. Mach. Learn. Res. – volume: 58 start-page: 2955 year: 2023 ident: 65387_CR68 publication-title: IEEE J. Solid-State Circuits doi: 10.1109/JSSC.2023.3303154 – ident: 65387_CR48 doi: 10.1109/IROS.2017.8202153 – ident: 65387_CR94 – volume: 7 year: 2017 ident: 65387_CR142 publication-title: Sci. Rep. doi: 10.1038/s41598-017-15249-0 – volume: 3 start-page: 664 year: 2020 ident: 65387_CR62 publication-title: Nat. Electron. doi: 10.1038/s41928-020-00501-9 – ident: 65387_CR22 doi: 10.1109/CVPR52733.2024.01282 – volume: 5 start-page: 606 year: 2023 ident: 65387_CR21 publication-title: Proc. Mach. Learn. Syst. – ident: 65387_CR73 doi: 10.1109/TBCAS.2024.3378973 – ident: 65387_CR101 doi: 10.1145/3572848.3577500 – ident: 65387_CR113 doi: 10.3389/fnins.2011.00073 – ident: 65387_CR32 – volume: 44 start-page: 7436 year: 2022 ident: 65387_CR46 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2021.3117837 – ident: 65387_CR109 – volume: 15 start-page: 529 year: 2020 ident: 65387_CR76 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-0655-z – volume: 31 start-page: 12 year: 2018 ident: 65387_CR149 publication-title: Adv. Neural Inf. Process. Syst. – volume: 52 start-page: 127 year: 2017 ident: 65387_CR80 publication-title: IEEE J. Solid-State Circuits doi: 10.1109/JSSC.2016.2616357 – volume: 55 start-page: 1 year: 2022 ident: 65387_CR9 publication-title: ACM Comput. Surv. doi: 10.1145/3530811 – ident: 65387_CR26 doi: 10.1109/JSSC.2007.914337 – ident: 65387_CR77 doi: 10.1109/A-SSCC48613.2020.9336139 – ident: 65387_CR123 doi: 10.23919/EUSIPCO54536.2021.9616033 – ident: 65387_CR7 doi: 10.1007/978-3-030-01234-2_48 – volume: 612 start-page: 43 year: 2022 ident: 65387_CR79 publication-title: Nature doi: 10.1038/s41586-022-05340-6 |
| SSID | ssj0000391844 |
| Score | 2.4872186 |
| SecondaryResourceType | review_article |
| Snippet | Artificial intelligence (AI) has made significant strides towards efficient online processing of sensory signals at the edge through the use of deep neural... Abstract Artificial intelligence (AI) has made significant strides towards efficient online processing of sensory signals at the edge through the use of deep... |
| SourceID | doaj proquest pubmed crossref springer |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 9928 |
| SubjectTerms | 639/166 639/166/987 Artificial intelligence Artificial neural networks Brain Co-design Computing costs Energy consumption Energy costs Energy efficiency Humanities and Social Sciences Information processing Memory multidisciplinary Neural networks Neurons Optimization techniques Perception Perspective Science Science (multidisciplinary) Sensors Sensory integration Signal processing Sparsity |
| SummonAdditionalLinks | – databaseName: Advanced Technologies & Aerospace Database dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BAYkLb2igICNxg6iJH7F9QoCoOKCqB6gqLpYfk2ov2WV3i9R_j8fJpkI8LlwTy3IyD3-eGX8D8Ep2fbCoVd0nnw8ovcQ6oAl164P0ba-SKQx8p5_18bE5O7MnU8BtM5VV7nxicdRpGSlGfii4boymLNvb1feaukZRdnVqoXEdbhBLAhnmifo2x1iI_dxIOd2VaYQ53MjiGaiHa6eIVlb_sh8V2v4_Yc3f8qRl-zm6-78Lvwd3JuDJ3o2ach-u4fAAbo2tKC8fwmkpxltQETQrHJf1YqAkPCaWxqb1LPueUsHBMs5lWO4M1lgYKPLGxRYzt-eWreZqmUfw9ejjlw-f6qnnQh2FEtnf8C7EFCIRmHuMPDbBGm9Txk2dbBP30YeE0YQ-9gopLMcV76JthKeTEYrHsDcsB9wH5jshGo88ZAiXQVkINgqJXGrfYZ8lUMHr3Z93q5Faw5WUuDBulJPLo1yRk9MVvCfhzCOJFrs8WK7P3WRlLjTeNjx4pRLKmB0oZRm5lV4HLZRJFRzsZOQmW924KwFV8HJ-na2MUid-wOVFGdNmsKSNqeDJqBLzSmRWPZudTQVvdjpyNfnfP-jpv9fyDG5zUlOqOGwPYG-7vsDncDP-2C426xdFz38CW-EFAA priority: 102 providerName: ProQuest |
| Title | Exploiting neuro-inspired dynamic sparsity for energy-efficient intelligent perception |
| URI | https://link.springer.com/article/10.1038/s41467-025-65387-7 https://www.ncbi.nlm.nih.gov/pubmed/41219200 https://www.proquest.com/docview/3270873027 https://www.proquest.com/docview/3271082788 https://doaj.org/article/b0a902ba55de4c0886842294a7b7358d |
| Volume | 16 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: P5Z dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M7P dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Download PDF from ProQuest Central customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: 7X7 dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: PIMPY dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BAYkL4lkCZRUkbhA18SO2jxS1AglWEYJq4WL5MZH2klbdLRL_nrGTDUWAuHDxIbEie8Yef5MZfwPwQrS9N6hk1UdHDkovsPKofdU4L1zTy6gzA9_pe7Vc6tXKdFdKfaWcsJEeeBTcoa-dqZl3UkYUgfZEChwxI5zyiksdk_Ul1HPFmco2mBtyXcR0S6bm-nAjsk1I1VtbmQhl1S8nUSbs_xPK_C1Cmg-ek7twZ0KM5etxpPfgGg734dZYQ_L7AzjNWXTrlL1cZnLKaj2k6DnGMo7V5ksyGjn1oiSAWmK-7Fdhpo6gE6dcz6Sc2_J8TnN5CJ9Pjj-9eVtNxRKqwCUnQ8FaH6IPiXncYWCh9kY7EwnwtKKJzAXnIwbt-9BLTP_TmGRtMDV3yaVB_gj2hrMBH0PpWs5rh8wT9iI05b0JXCATyrXYkwALeLkTnD0fOTFsjmVzbUcxW-pls5itKuAoyXbumfis8wPSsp20bP-l5QIOdpqx0ybbWM5UrVUKvBbwfH5N2yPFPNyAZ5e5T0Mohxz9AvZHjc4jEQ2Za7ISBbzaqfjnx_8-oSf_Y0JP4TZLazElFDYHsLe9uMRncDN82643Fwu4rlYqt3oBN46Ol93HRV7gi5Sb2lHbya_0pnv3ofvyA3mm_Tc |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL70eggJHgBFET24mdA0K8qlZdVhxKtTfjV1AOZJfdLWj_FL8Rj_OoEI9bD1wTy7Ljz99MPONvAJ7wsjaVF0VaOx1-UGruU-OlSXNtuM7rwsmowHc8EdOpnM2qD1vwY7gLg2mVAydGonZzi2fku4yKTAqMsr1cfE2xahRGV4cSGh0sDv3me_hlW704eBvW9ymle--O3uynfVWB1LKChR1FS2OdsSjRrb2lNjOV1JULnkHJc0e11cZ5K01t68LjwRMtaGmrjGn0_T0L_Z6D84HHBaaQiZkYz3RQbV1y3t_NyZjcXfHIRFgztixQxlb8Yv9imYA_-ba_xWWjudu7-r99qGtwpXesyatuJ1yHLd_egItdqc3NTTiOyYYNJnmTqOGZNi0mGXhH3KbVXxpLArfGDBUS_Hji453I1EeFjWCYSTNql67JYswGugUfz2RSt2G7nbf-LhBdMpZpT01wUYPTaUxlGfeUC136Oqx4As-GlVaLTjpExZA_k6rDhQqtVMSFEgm8RjCMLVH2Oz6YLz-rnkWUyXSVUaOLwnlug4HAKCqtuBZGsEK6BHYGTKiei1bqFBAJPB5fBxbB0JBu_fwktsmDMyikTOBOB8FxJDwPVi2QaQLPB0yedv73Cd3791gewaX9o_cTNTmYHt6HyxS3CGZX5juwvV6e-AdwwX5bN6vlw7jHCHw6a6z-BDv3Yr8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qZREXdkqgQJDgBNEkXmLngBBQRlStRnOAquJivAXNoZlhZgqav8avw89ZKsRy64FrYkVJ_Pktfp-_B_CUlbWpvOBZ7XRIUGrmM-OlyQptmC5q7mRU4Ds6FJOJPD6uplvwoz8Lg7TK3iZGQ-3mFvfIR5SIXAqsso3qjhYx3Ru_WnzNsIMUVlr7dhotRA785ntI31Yv9_fCXD8jZPzuw9v3WddhILOU07C6SGmsMxblurW3xOamkrpyIUooWeGItto4b6Wpbc09bkIRTkpb5VRjHuBpeO4FuChCjomJ35R_GvZ3UHldMtad08mpHK1YtErYP7bkKGkrfvGFsWXAn-Lc32q00fWNr__PP-0GXOsC7vR1u0JuwpZvbsHltgXn5jYcRRLiDMnfadT2zGYNkg-8S92m0SczmwabG5kraYjvUx_PSmY-Km8Eh53OBk3TdboYWEJ34OO5fNRd2G7mjb8HqS4pzbUnJoSuIRg1prKUecKELn0dZj-B5_2sq0UrKaIiFYBK1WJEhVEqYkSJBN4gMIaRKAceL8yXX1RnXZTJdZUTozl3ntngOLC6SiqmhRGUS5fAbo8P1dmolToDRwJPhtvBumDJSDd-fhrHFCFIFFImsNPCcXgTVgRvF4xsAi96fJ49_O8fdP_f7_IYrgSIqsP9ycEDuEpwtSDpstiF7fXy1D-ES_bberZaPorLLYXP5w3Vn3AYa7I |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploiting+neuro-inspired+dynamic+sparsity+for+energy-efficient+intelligent+perception&rft.jtitle=Nature+communications&rft.au=Zhou%2C+Sheng&rft.au=Gao%2C+Chang&rft.au=Delbruck%2C+Tobi&rft.au=Verhelst%2C+Marian&rft.date=2025-11-11&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=16&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-025-65387-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_025_65387_7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |