Adaptive partitioning by local density‐peaks: An efficient density‐based clustering algorithm for analyzing molecular dynamics trajectories

We present an efficient density‐based adaptive‐resolution clustering method APLoD for analyzing large‐scale molecular dynamics (MD) trajectories. APLoD performs the k‐nearest‐neighbors search to estimate the density of MD conformations in a local fashion, which can group MD conformations in the same...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry Jg. 38; H. 3; S. 152 - 160
Hauptverfasser: Liu, Song, Zhu, Lizhe, Sheong, Fu Kit, Wang, Wei, Huang, Xuhui
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Wiley Subscription Services, Inc 30.01.2017
Schlagworte:
ISSN:0192-8651, 1096-987X, 1096-987X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We present an efficient density‐based adaptive‐resolution clustering method APLoD for analyzing large‐scale molecular dynamics (MD) trajectories. APLoD performs the k‐nearest‐neighbors search to estimate the density of MD conformations in a local fashion, which can group MD conformations in the same high‐density region into a cluster. APLoD greatly improves the popular density peaks algorithm by reducing the running time and the memory usage by 2–3 orders of magnitude for systems ranging from alanine dipeptide to a 370‐residue Maltose‐binding protein. In addition, we demonstrate that APLoD can produce clusters with various sizes that are adaptive to the underlying density (i.e., larger clusters at low‐density regions, while smaller clusters at high‐density regions), which is a clear advantage over other popular clustering algorithms including k‐centers and k‐medoids. We anticipate that APLoD can be widely applied to split ultra‐large MD datasets containing millions of conformations for subsequent construction of Markov State Models. © 2016 Wiley Periodicals, Inc. Incorporating the k‐nearest‐neighbors search into the density peaks clustering algorithm results in a novel clustering method Adaptive Partitioning by Local Density‐peaks (APLoD) for analyzing of molecular dynamics (MD) trajectories. APLoD is highly efficient and applicable to large MD datasets containing millions of frames. The density‐based feature and adaptive resolution of APLoD make it particularly useful in constructing Markov State Models for complex processes, especially those with heterogeneous metastable regions.
AbstractList We present an efficient density-based adaptive-resolution clustering method APLoD for analyzing large-scale molecular dynamics (MD) trajectories. APLoD performs the k-nearest-neighbors search to estimate the density of MD conformations in a local fashion, which can group MD conformations in the same high-density region into a cluster. APLoD greatly improves the popular density peaks algorithm by reducing the running time and the memory usage by 2-3 orders of magnitude for systems ranging from alanine dipeptide to a 370-residue Maltose-binding protein. In addition, we demonstrate that APLoD can produce clusters with various sizes that are adaptive to the underlying density (i.e., larger clusters at low-density regions, while smaller clusters at high-density regions), which is a clear advantage over other popular clustering algorithms including k-centers and k-medoids. We anticipate that APLoD can be widely applied to split ultra-large MD datasets containing millions of conformations for subsequent construction of Markov State Models. © 2016 Wiley Periodicals, Inc.
We present an efficient density-based adaptive-resolution clustering method APLoD for analyzing large-scale molecular dynamics (MD) trajectories. APLoD performs the k-nearest-neighbors search to estimate the density of MD conformations in a local fashion, which can group MD conformations in the same high-density region into a cluster. APLoD greatly improves the popular density peaks algorithm by reducing the running time and the memory usage by 2-3 orders of magnitude for systems ranging from alanine dipeptide to a 370-residue Maltose-binding protein. In addition, we demonstrate that APLoD can produce clusters with various sizes that are adaptive to the underlying density (i.e., larger clusters at low-density regions, while smaller clusters at high-density regions), which is a clear advantage over other popular clustering algorithms including k-centers and k-medoids. We anticipate that APLoD can be widely applied to split ultra-large MD datasets containing millions of conformations for subsequent construction of Markov State Models. © 2016 Wiley Periodicals, Inc.We present an efficient density-based adaptive-resolution clustering method APLoD for analyzing large-scale molecular dynamics (MD) trajectories. APLoD performs the k-nearest-neighbors search to estimate the density of MD conformations in a local fashion, which can group MD conformations in the same high-density region into a cluster. APLoD greatly improves the popular density peaks algorithm by reducing the running time and the memory usage by 2-3 orders of magnitude for systems ranging from alanine dipeptide to a 370-residue Maltose-binding protein. In addition, we demonstrate that APLoD can produce clusters with various sizes that are adaptive to the underlying density (i.e., larger clusters at low-density regions, while smaller clusters at high-density regions), which is a clear advantage over other popular clustering algorithms including k-centers and k-medoids. We anticipate that APLoD can be widely applied to split ultra-large MD datasets containing millions of conformations for subsequent construction of Markov State Models. © 2016 Wiley Periodicals, Inc.
We present an efficient density‐based adaptive‐resolution clustering method APLoD for analyzing large‐scale molecular dynamics (MD) trajectories. APLoD performs the k‐nearest‐neighbors search to estimate the density of MD conformations in a local fashion, which can group MD conformations in the same high‐density region into a cluster. APLoD greatly improves the popular density peaks algorithm by reducing the running time and the memory usage by 2–3 orders of magnitude for systems ranging from alanine dipeptide to a 370‐residue Maltose‐binding protein. In addition, we demonstrate that APLoD can produce clusters with various sizes that are adaptive to the underlying density (i.e., larger clusters at low‐density regions, while smaller clusters at high‐density regions), which is a clear advantage over other popular clustering algorithms including k‐centers and k‐medoids. We anticipate that APLoD can be widely applied to split ultra‐large MD datasets containing millions of conformations for subsequent construction of Markov State Models. © 2016 Wiley Periodicals, Inc. Incorporating the k‐nearest‐neighbors search into the density peaks clustering algorithm results in a novel clustering method Adaptive Partitioning by Local Density‐peaks (APLoD) for analyzing of molecular dynamics (MD) trajectories. APLoD is highly efficient and applicable to large MD datasets containing millions of frames. The density‐based feature and adaptive resolution of APLoD make it particularly useful in constructing Markov State Models for complex processes, especially those with heterogeneous metastable regions.
We present an efficient density-based adaptive-resolution clustering method APLoD for analyzing large-scale molecular dynamics (MD) trajectories. APLoD performs the k-nearest-neighbors search to estimate the density of MD conformations in a local fashion, which can group MD conformations in the same high-density region into a cluster. APLoD greatly improves the popular density peaks algorithm by reducing the running time and the memory usage by 2-3 orders of magnitude for systems ranging from alanine dipeptide to a 370-residue Maltose-binding protein. In addition, we demonstrate that APLoD can produce clusters with various sizes that are adaptive to the underlying density (i.e., larger clusters at low-density regions, while smaller clusters at high-density regions), which is a clear advantage over other popular clustering algorithms including k-centers and k-medoids. We anticipate that APLoD can be widely applied to split ultra-large MD datasets containing millions of conformations for subsequent construction of Markov State Models.
Author Zhu, Lizhe
Sheong, Fu Kit
Huang, Xuhui
Liu, Song
Wang, Wei
Author_xml – sequence: 1
  givenname: Song
  surname: Liu
  fullname: Liu, Song
  organization: The Hong Kong University of Science and Technology
– sequence: 2
  givenname: Lizhe
  surname: Zhu
  fullname: Zhu, Lizhe
  email: chlizhezhu@ust.hk
  organization: Center of Systems Biology and Human Health, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology
– sequence: 3
  givenname: Fu Kit
  surname: Sheong
  fullname: Sheong, Fu Kit
  organization: The Hong Kong University of Science and Technology
– sequence: 4
  givenname: Wei
  surname: Wang
  fullname: Wang, Wei
  organization: Center of Systems Biology and Human Health, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology
– sequence: 5
  givenname: Xuhui
  surname: Huang
  fullname: Huang, Xuhui
  email: xuhuihuang@ust.hk
  organization: Center of Systems Biology and Human Health, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27868222$$D View this record in MEDLINE/PubMed
BookMark eNp90cFu1DAQBmALFdFt4cALIEtc4JDWdhwn4bZaFVpUiQtI3CJnMileHDvYTlF64g3gGXkSst2CUCU4WbK_-SXPf0QOnHdIyFPOTjhj4nQLcCKkUvIBWXFWq6yuyo8HZMV4LbJKFfyQHMW4ZYzlhZKPyKEoK1UJIVbk-7rTYzLXSEcdkknGO-OuaDtT60Fb2qGLJs0_v_0YUX-Or-jaUex7AwZd-uu11RE7CnaKCcMuQdsrH0z6NNDeB6qdtvPN7n7wFmGyOtBudnowEGkKeouQFo7xMXnYaxvxyd15TD68Pnu_Oc8u37252KwvM8iLXGZVlyvMBQrQXQnQ1aihb_uyABBMyKqQire5hAKxb1mfM1DtYlAqWXcKZX5MXuxzx-C_TBhTM5gIaK126KfY8EqKQpaSs4U-v0e3fgrLh25VJctaqHxRz-7U1A7YNWMwgw5z83vVC3i5BxB8jAH7P4SzZldjs9TY3Na42NN7FkzSu3KWXRn7v4mvxuL87-jm7Wazn_gFyoKzvw
CODEN JCCHDD
CitedBy_id crossref_primary_10_1016_j_cbpa_2022_102156
crossref_primary_10_1016_j_knosys_2020_106350
crossref_primary_10_1073_pnas_2221048120
crossref_primary_10_1063_5_0025797
crossref_primary_10_3390_a11020019
crossref_primary_10_1016_j_patrec_2018_01_020
crossref_primary_10_1016_j_bpj_2023_03_028
crossref_primary_10_3390_ijms22126576
crossref_primary_10_1038_s42003_021_02822_7
crossref_primary_10_1007_s10916_018_1003_9
crossref_primary_10_1016_j_dsp_2019_04_011
crossref_primary_10_1371_journal_pone_0198948
crossref_primary_10_1002_nadc_20184072078
crossref_primary_10_1002_wcms_1343
Cites_doi 10.1073/pnas.1315751111
10.1038/ncomms11244
10.1002/prot.21123
10.1371/journal.pcbi.1003020
10.1016/S0024-3795(00)00095-1
10.1063/1.3565032
10.1016/0304-3975(85)90224-5
10.1063/1.2116947
10.1016/j.sbi.2010.10.006
10.1021/acs.jctc.5b00498
10.1063/1.3301140
10.1021/acs.jctc.5b01233
10.1021/jp076377+
10.1063/1.2959573
10.1016/j.sbi.2014.04.002
10.1063/1.2714538
10.1016/j.eswa.2008.01.039
10.1080/00031305.1992.10475879
10.1016/S0022-2836(83)80304-0
10.1126/science.1242072
10.1016/S0003-2670(01)95359-0
10.1016/j.ymeth.2010.06.002
10.1021/ct4009156
10.1021/acs.jctc.5b00737
10.1371/journal.pcbi.1004404
10.1145/1364782.1364802
10.1021/ct5007168
10.1002/prot.20033
10.1021/ct500827g
10.1002/jcc.23110
10.1021/jp0761665
10.1021/acs.accounts.5b00536
10.1021/ct900620b
10.1073/pnas.1103547108
10.1109/TIT.1982.1056489
10.1287/moor.10.2.180
10.1021/ct5002363
10.1063/1.4802007
10.1016/j.ymeth.2009.04.013
10.1038/268765a0
10.1021/acs.jctc.5b00553
10.1073/pnas.0909088106
10.1371/journal.pcbi.1003767
10.1371/journal.pcbi.1001015
ContentType Journal Article
Copyright 2016 Wiley Periodicals, Inc.
Copyright Wiley Subscription Services, Inc. Jan 30, 2017
Copyright_xml – notice: 2016 Wiley Periodicals, Inc.
– notice: Copyright Wiley Subscription Services, Inc. Jan 30, 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
JQ2
7X8
DOI 10.1002/jcc.24664
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

ProQuest Computer Science Collection
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1096-987X
EndPage 160
ExternalDocumentID 4277488021
27868222
10_1002_jcc_24664
JCC24664
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Feature
GrantInformation_xml – fundername: Innovation and Technology Commission (ITCPD/17‐9)
– fundername: Hong Kong Research Grant Council
  funderid: HKUST C6009‐15G; 16302214; 609813; AoE/M‐09/12; M‐HKUST601/13; T13‐607/12R
– fundername: National Science Foundation of China
  funderid: 21273188
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
36B
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWK
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YQT
ZZTAW
~IA
~KM
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
JQ2
7X8
ID FETCH-LOGICAL-c3534-8d36e32e2cad7ccd9eacfbf75cc202485461b34c5eefb0f30c6b9eae4649d6e43
IEDL.DBID DRFUL
ISICitedReferencesCount 29
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000398424600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0192-8651
1096-987X
IngestDate Sun Nov 09 14:36:40 EST 2025
Fri Jul 25 19:20:05 EDT 2025
Thu Apr 03 06:56:25 EDT 2025
Sat Nov 29 03:23:35 EST 2025
Tue Nov 18 22:25:14 EST 2025
Wed Jan 22 16:43:01 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Markov State Models
clustering algorithm
density peaks
kNN search
molecular dynamics
Language English
License http://onlinelibrary.wiley.com/termsAndConditions
http://doi.wiley.com/10.1002/tdm_license_1
2016 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3534-8d36e32e2cad7ccd9eacfbf75cc202485461b34c5eefb0f30c6b9eae4649d6e43
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 27868222
PQID 1848479263
PQPubID 48816
PageCount 9
ParticipantIDs proquest_miscellaneous_1842547410
proquest_journals_1848479263
pubmed_primary_27868222
crossref_primary_10_1002_jcc_24664
crossref_citationtrail_10_1002_jcc_24664
wiley_primary_10_1002_jcc_24664_JCC24664
PublicationCentury 2000
PublicationDate January 30, 2017
PublicationDateYYYYMMDD 2017-01-30
PublicationDate_xml – month: 01
  year: 2017
  text: January 30, 2017
  day: 30
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Journal of computational chemistry
PublicationTitleAlternate J Comput Chem
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2007; 126
2000; 315
2015; 11
2008
2014; 25
2008; 129
1993
2008; 51
2014; 111
1977; 268
2011; 134
2009; 49
2013; 9
2016; 12
2004; 55
2009; 36
2016; 6
2016; 7
1983; 168
1982; 28
2011; 108
2006; 65
2005; 123
2013; 34
2013; 138
1987
2010; 132
2011; 21
1992; 46
1982; 136
2008; 112
2016; 49
1985; 10
2010; 52
1985; 38
2010; 6
1967
2014; 10
2009; 106
2014; 344
Zhang (10.1002/jcc.24664-BIB0036|jcc24664-cit-0037) 2016; 49
Gonzalez (10.1002/jcc.24664-BIB0004|jcc24664-cit-0005) 1985; 38
Park (10.1002/jcc.24664-BIB0010|jcc24664-cit-0011) 2009; 36
Morcos (10.1002/jcc.24664-BIB0020|jcc24664-cit-0021) 2010; 6
Buchete (10.1002/jcc.24664-BIB0017|jcc24664-cit-0018) 2008; 112
Pande (10.1002/jcc.24664-BIB0011|jcc24664-cit-0012) 2010; 52
Prinz (10.1002/jcc.24664-BIB0013|jcc24664-cit-0014) 2011; 134
Vitalini (10.1002/jcc.24664-BIB0033|jcc24664-cit-0034) 2015; 11
Zhu (10.1002/jcc.24664-BIB0037|jcc24664-cit-0038)
Zheng (10.1002/jcc.24664-BIB0015|jcc24664-cit-0016) 2008; 112
Da (10.1002/jcc.24664-BIB0024|jcc24664-cit-0025) 2013; 9
10.1002/jcc.24664-BIB0009|jcc24664-cit-0010
Malmstrom (10.1002/jcc.24664-BIB0026|jcc24664-cit-0027) 2014; 10
Coomans (10.1002/jcc.24664-BIB0041|jcc24664-cit-0042) 1982; 136
Deuflhard (10.1002/jcc.24664-BIB0047|jcc24664-cit-0048) 2000; 315
Buch (10.1002/jcc.24664-BIB0022|jcc24664-cit-0023) 2011; 108
Rodriguez (10.1002/jcc.24664-BIB0039|jcc24664-cit-0040) 2014; 344
Chodera (10.1002/jcc.24664-BIB0014|jcc24664-cit-0015) 2007; 126
Da (10.1002/jcc.24664-BIB0035|jcc24664-cit-0036) 2016; 7
Singhal (10.1002/jcc.24664-BIB0049|jcc24664-cit-0050) 2005; 123
Bowman (10.1002/jcc.24664-BIB0019|jcc24664-cit-0020) 2009; 49
Keller (10.1002/jcc.24664-BIB0038|jcc24664-cit-0039) 2010; 132
Altman (10.1002/jcc.24664-BIB0042|jcc24664-cit-0043) 1992; 46
McCammon (10.1002/jcc.24664-BIB0001|jcc24664-cit-0002) 1977; 268
Yao (10.1002/jcc.24664-BIB0023|jcc24664-cit-0024) 2013; 138
Zhao (10.1002/jcc.24664-BIB0044|jcc24664-cit-0045) 2013; 34
Pan (10.1002/jcc.24664-BIB0016|jcc24664-cit-0017) 2008; 129
Levitt (10.1002/jcc.24664-BIB0002|jcc24664-cit-0003) 1983; 168
10.1002/jcc.24664-BIB0043|jcc24664-cit-0044
Hornak (10.1002/jcc.24664-BIB0045|jcc24664-cit-0046) 2006; 65
Kaufman (10.1002/jcc.24664-BIB0005|jcc24664-cit-0006) 2008
Nüske (10.1002/jcc.24664-BIB0027|jcc24664-cit-0028) 2014; 10
10.1002/jcc.24664-BIB0007|jcc24664-cit-0008
Hochbaum (10.1002/jcc.24664-BIB0006|jcc24664-cit-0007) 1985; 10
Jiang (10.1002/jcc.24664-BIB0032|jcc24664-cit-0033) 2015; 11
Sheong (10.1002/jcc.24664-BIB0031|jcc24664-cit-0032) 2015; 11
Gu (10.1002/jcc.24664-BIB0028|jcc24664-cit-0029) 2014; 10
Noé (10.1002/jcc.24664-BIB0034|jcc24664-cit-0035) 2015; 11
Onufriev (10.1002/jcc.24664-BIB0046|jcc24664-cit-0047) 2004; 55
Trendelkamp-Schroer (10.1002/jcc.24664-BIB0048|jcc24664-cit-0049) 2016; 6
Chodera (10.1002/jcc.24664-BIB0012|jcc24664-cit-0013) 2014; 25
Bowman (10.1002/jcc.24664-BIB0050|jcc24664-cit-0051) 2010; 6
Bowman (10.1002/jcc.24664-BIB0021|jcc24664-cit-0022) 2011; 21
Sittel (10.1002/jcc.24664-BIB0040|jcc24664-cit-0041) 2016; 12
Voelz (10.1002/jcc.24664-BIB0025|jcc24664-cit-0026) 2014; 10
Huang (10.1002/jcc.24664-BIB0018|jcc24664-cit-0019) 2009; 106
Shaw (10.1002/jcc.24664-BIB0003|jcc24664-cit-0004) 2008; 51
Lloyd (10.1002/jcc.24664-BIB0008|jcc24664-cit-0009) 1982; 28
Silva (10.1002/jcc.24664-BIB0029|jcc24664-cit-0030) 2014; 111
Zimmerman (10.1002/jcc.24664-BIB0030|jcc24664-cit-0031) 2015; 11
References_xml – volume: 10
  start-page: 1739
  year: 2014
  publication-title: J. Chem. Theory Comput.
– volume: 52
  start-page: 99
  year: 2010
  publication-title: Methods
– volume: 268
  start-page: 765
  year: 1977
  publication-title: Nature
– volume: 10
  start-page: 2648
  year: 2014
  publication-title: J. Chem. Theory Comput.
– volume: 315
  start-page: 39
  year: 2000
  publication-title: Linear Algebra Appl.
– publication-title: Phys. Chem. Chem. Phys.
– start-page: 281
  year: 1967
  end-page: 297
– volume: 136
  start-page: 15
  year: 1982
  publication-title: Anal. Chim. Acta
– volume: 112
  start-page: 6083
  year: 2008
  publication-title: J. Phys. Chem. B
– start-page: 311
  year: 1993
  end-page: 321
– volume: 11
  start-page: e1004404
  year: 2015
  publication-title: PLoS Comput. Biol.
– volume: 7
  start-page: 11244
  year: 2016
  publication-title: Nat. Commun.
– volume: 106
  start-page: 19765
  year: 2009
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 9
  start-page: e1003020
  year: 2013
  publication-title: PLoS Comput. Biol.
– volume: 21
  start-page: 4
  year: 2011
  publication-title: Curr. Opin. Struct. Biol.
– volume: 46
  start-page: 175
  year: 1992
  publication-title: Am. Stat.
– volume: 134
  start-page: 174105
  year: 2011
  publication-title: J. Chem. Phys.
– volume: 28
  start-page: 129
  year: 1982
  publication-title: IEEE Trans. Inf. Theory
– volume: 123
  start-page: 204909
  year: 2005
  publication-title: J. Chem. Phys.
– year: 2008
– volume: 49
  start-page: 197
  year: 2009
  publication-title: Methods
– volume: 108
  start-page: 10184
  year: 2011
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 112
  start-page: 6057
  year: 2008
  publication-title: J. Phys. Chem. B
– volume: 38
  start-page: 293
  year: 1985
  publication-title: Theor. Comput. Sci.
– volume: 344
  start-page: 1492
  year: 2014
  publication-title: Science
– volume: 6
  start-page: 011009
  year: 2016
  publication-title: Phys. Rev. X
– volume: 126
  start-page: 155101
  year: 2007
  publication-title: J. Chem. Phys.
– volume: 6
  start-page: 787
  year: 2010
  publication-title: J. Chem. Theory Comput.
– volume: 168
  start-page: 595
  year: 1983
  publication-title: J. Mol. Biol.
– volume: 36
  start-page: 3336
  year: 2009
  publication-title: Expert Syst. Appl.
– volume: 49
  start-page: 687
  year: 2016
  publication-title: Acc. Chem. Res.
– volume: 11
  start-page: 3992
  year: 2015
  publication-title: J. Chem. Theory Comput.
– year: 1987
– volume: 138
  start-page: 174106
  year: 2013
  publication-title: J. Chem. Phys.
– volume: 111
  start-page: 7665
  year: 2014
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 55
  start-page: 383
  year: 2004
  publication-title: Proteins Struct. Funct. Bioinform.
– volume: 6
  start-page: e1001015
  year: 2010
  publication-title: PLoS Comput. Biol.
– volume: 10
  start-page: 180
  year: 1985
  publication-title: Math. Oper. Res.
– volume: 65
  start-page: 712
  year: 2006
  publication-title: Proteins Struct. Funct. Bioinform.
– volume: 25
  start-page: 135
  year: 2014
  publication-title: Curr. Opin. Struct. Biol.
– volume: 10
  start-page: e1003767
  year: 2014
  publication-title: PLoS Comput. Biol.
– volume: 11
  start-page: 5002
  year: 2015
  publication-title: J. Chem. Theory Comput.
– volume: 132
  start-page: 074110
  year: 2010
  publication-title: J. Chem. Phys.
– volume: 34
  start-page: 95
  year: 2013
  publication-title: J. Comput. Chem.
– volume: 11
  start-page: 17
  year: 2015
  publication-title: J. Chem. Theory Comput.
– volume: 129
  start-page: 064107
  year: 2008
  publication-title: J. Chem. Phys.
– volume: 11
  start-page: 5747
  year: 2015
  publication-title: J. Chem. Theory Comput.
– volume: 12
  start-page: 2426
  year: 2016
  publication-title: J. Chem. Theory Comput.
– volume: 10
  start-page: 5716
  year: 2014
  publication-title: J. Chem. Theory Comput.
– volume: 51
  start-page: 91
  year: 2008
  publication-title: Commun. ACM
– volume: 111
  start-page: 7665
  year: 2014
  ident: 10.1002/jcc.24664-BIB0029|jcc24664-cit-0030
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1315751111
– ident: 10.1002/jcc.24664-BIB0043|jcc24664-cit-0044
– volume: 7
  start-page: 11244
  year: 2016
  ident: 10.1002/jcc.24664-BIB0035|jcc24664-cit-0036
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11244
– ident: 10.1002/jcc.24664-BIB0009|jcc24664-cit-0010
– volume: 65
  start-page: 712
  year: 2006
  ident: 10.1002/jcc.24664-BIB0045|jcc24664-cit-0046
  publication-title: Proteins Struct. Funct. Bioinform.
  doi: 10.1002/prot.21123
– volume: 9
  start-page: e1003020
  year: 2013
  ident: 10.1002/jcc.24664-BIB0024|jcc24664-cit-0025
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1003020
– volume: 315
  start-page: 39
  year: 2000
  ident: 10.1002/jcc.24664-BIB0047|jcc24664-cit-0048
  publication-title: Linear Algebra Appl.
  doi: 10.1016/S0024-3795(00)00095-1
– volume: 134
  start-page: 174105
  year: 2011
  ident: 10.1002/jcc.24664-BIB0013|jcc24664-cit-0014
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3565032
– volume: 38
  start-page: 293
  year: 1985
  ident: 10.1002/jcc.24664-BIB0004|jcc24664-cit-0005
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/0304-3975(85)90224-5
– volume: 123
  start-page: 204909
  year: 2005
  ident: 10.1002/jcc.24664-BIB0049|jcc24664-cit-0050
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2116947
– volume: 21
  start-page: 4
  year: 2011
  ident: 10.1002/jcc.24664-BIB0021|jcc24664-cit-0022
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2010.10.006
– volume: 6
  start-page: 011009
  year: 2016
  ident: 10.1002/jcc.24664-BIB0048|jcc24664-cit-0049
  publication-title: Phys. Rev. X
– volume: 11
  start-page: 3992
  year: 2015
  ident: 10.1002/jcc.24664-BIB0033|jcc24664-cit-0034
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.5b00498
– volume: 132
  start-page: 074110
  year: 2010
  ident: 10.1002/jcc.24664-BIB0038|jcc24664-cit-0039
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3301140
– volume: 12
  start-page: 2426
  year: 2016
  ident: 10.1002/jcc.24664-BIB0040|jcc24664-cit-0041
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.5b01233
– volume: 112
  start-page: 6083
  year: 2008
  ident: 10.1002/jcc.24664-BIB0015|jcc24664-cit-0016
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp076377+
– volume: 129
  start-page: 064107
  year: 2008
  ident: 10.1002/jcc.24664-BIB0016|jcc24664-cit-0017
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2959573
– volume: 25
  start-page: 135
  year: 2014
  ident: 10.1002/jcc.24664-BIB0012|jcc24664-cit-0013
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2014.04.002
– volume: 126
  start-page: 155101
  year: 2007
  ident: 10.1002/jcc.24664-BIB0014|jcc24664-cit-0015
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2714538
– volume: 36
  start-page: 3336
  year: 2009
  ident: 10.1002/jcc.24664-BIB0010|jcc24664-cit-0011
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.01.039
– volume: 46
  start-page: 175
  year: 1992
  ident: 10.1002/jcc.24664-BIB0042|jcc24664-cit-0043
  publication-title: Am. Stat.
  doi: 10.1080/00031305.1992.10475879
– volume: 168
  start-page: 595
  year: 1983
  ident: 10.1002/jcc.24664-BIB0002|jcc24664-cit-0003
  publication-title: J. Mol. Biol.
  doi: 10.1016/S0022-2836(83)80304-0
– volume: 344
  start-page: 1492
  year: 2014
  ident: 10.1002/jcc.24664-BIB0039|jcc24664-cit-0040
  publication-title: Science
  doi: 10.1126/science.1242072
– volume: 136
  start-page: 15
  year: 1982
  ident: 10.1002/jcc.24664-BIB0041|jcc24664-cit-0042
  publication-title: Anal. Chim. Acta
  doi: 10.1016/S0003-2670(01)95359-0
– volume: 52
  start-page: 99
  year: 2010
  ident: 10.1002/jcc.24664-BIB0011|jcc24664-cit-0012
  publication-title: Methods
  doi: 10.1016/j.ymeth.2010.06.002
– volume: 10
  start-page: 1739
  year: 2014
  ident: 10.1002/jcc.24664-BIB0027|jcc24664-cit-0028
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct4009156
– volume: 11
  start-page: 5747
  year: 2015
  ident: 10.1002/jcc.24664-BIB0030|jcc24664-cit-0031
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.5b00737
– volume: 11
  start-page: e1004404
  year: 2015
  ident: 10.1002/jcc.24664-BIB0032|jcc24664-cit-0033
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1004404
– volume: 51
  start-page: 91
  year: 2008
  ident: 10.1002/jcc.24664-BIB0003|jcc24664-cit-0004
  publication-title: Commun. ACM
  doi: 10.1145/1364782.1364802
– volume: 11
  start-page: 17
  year: 2015
  ident: 10.1002/jcc.24664-BIB0031|jcc24664-cit-0032
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct5007168
– volume-title: Finding Groups in Data: An Introduction to Cluster Analysis
  year: 2008
  ident: 10.1002/jcc.24664-BIB0005|jcc24664-cit-0006
– volume: 55
  start-page: 383
  year: 2004
  ident: 10.1002/jcc.24664-BIB0046|jcc24664-cit-0047
  publication-title: Proteins Struct. Funct. Bioinform.
  doi: 10.1002/prot.20033
– volume: 10
  start-page: 5716
  year: 2014
  ident: 10.1002/jcc.24664-BIB0025|jcc24664-cit-0026
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct500827g
– volume: 34
  start-page: 95
  year: 2013
  ident: 10.1002/jcc.24664-BIB0044|jcc24664-cit-0045
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.23110
– volume: 112
  start-page: 6057
  year: 2008
  ident: 10.1002/jcc.24664-BIB0017|jcc24664-cit-0018
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0761665
– volume: 49
  start-page: 687
  year: 2016
  ident: 10.1002/jcc.24664-BIB0036|jcc24664-cit-0037
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.5b00536
– volume: 6
  start-page: 787
  year: 2010
  ident: 10.1002/jcc.24664-BIB0050|jcc24664-cit-0051
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct900620b
– volume: 108
  start-page: 10184
  year: 2011
  ident: 10.1002/jcc.24664-BIB0022|jcc24664-cit-0023
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1103547108
– volume: 28
  start-page: 129
  year: 1982
  ident: 10.1002/jcc.24664-BIB0008|jcc24664-cit-0009
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1982.1056489
– ident: 10.1002/jcc.24664-BIB0037|jcc24664-cit-0038
  publication-title: Phys. Chem. Chem. Phys.
– volume: 10
  start-page: 180
  year: 1985
  ident: 10.1002/jcc.24664-BIB0006|jcc24664-cit-0007
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.10.2.180
– volume: 10
  start-page: 2648
  year: 2014
  ident: 10.1002/jcc.24664-BIB0026|jcc24664-cit-0027
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct5002363
– ident: 10.1002/jcc.24664-BIB0007|jcc24664-cit-0008
– volume: 138
  start-page: 174106
  year: 2013
  ident: 10.1002/jcc.24664-BIB0023|jcc24664-cit-0024
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4802007
– volume: 49
  start-page: 197
  year: 2009
  ident: 10.1002/jcc.24664-BIB0019|jcc24664-cit-0020
  publication-title: Methods
  doi: 10.1016/j.ymeth.2009.04.013
– volume: 268
  start-page: 765
  year: 1977
  ident: 10.1002/jcc.24664-BIB0001|jcc24664-cit-0002
  publication-title: Nature
  doi: 10.1038/268765a0
– volume: 11
  start-page: 5002
  year: 2015
  ident: 10.1002/jcc.24664-BIB0034|jcc24664-cit-0035
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.5b00553
– volume: 106
  start-page: 19765
  year: 2009
  ident: 10.1002/jcc.24664-BIB0018|jcc24664-cit-0019
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0909088106
– volume: 10
  start-page: e1003767
  year: 2014
  ident: 10.1002/jcc.24664-BIB0028|jcc24664-cit-0029
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1003767
– volume: 6
  start-page: e1001015
  year: 2010
  ident: 10.1002/jcc.24664-BIB0020|jcc24664-cit-0021
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1001015
SSID ssj0003564
Score 2.3625805
Snippet We present an efficient density‐based adaptive‐resolution clustering method APLoD for analyzing large‐scale molecular dynamics (MD) trajectories. APLoD...
We present an efficient density-based adaptive-resolution clustering method APLoD for analyzing large-scale molecular dynamics (MD) trajectories. APLoD...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 152
SubjectTerms Algorithms
Binding sites
Biochemistry
clustering algorithm
Density
density peaks
kNN search
Ligands
Markov analysis
Markov State Models
Molecular chemistry
molecular dynamics
Molecular Dynamics Simulation
Proteins
Proteins - chemistry
Title Adaptive partitioning by local density‐peaks: An efficient density‐based clustering algorithm for analyzing molecular dynamics trajectories
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcc.24664
https://www.ncbi.nlm.nih.gov/pubmed/27868222
https://www.proquest.com/docview/1848479263
https://www.proquest.com/docview/1842547410
Volume 38
WOSCitedRecordID wos000398424600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1096-987X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003564
  issn: 0192-8651
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7tdpHgwvtRWFYGceASNnESx4ZTVagQQiuEWKm3yB470KVNqyZFKif-we5v3F-ytvOAFSAhcYviSWzZM55vxsk3AM8iXmSY8SIQyqVuhOaBYpEMjBICqeP4KrQvNpEdHfHpVHzYgVfdvzANP0SfcHOW4fdrZ-BSVYc_SUNPEF9QR46-C3vU6m0ygL3XHyfH7_uNOE4b9igLYgLO0qgjFgrpYf_wZXf0G8a8DFm9z5nc-K_R3oTrLdQko0Y3bsGOKW_D1XFX4e0OnI60XLntjqycArWpWaK2xHs4ot3H7fX2_MfZysiv1UsyKonxlBPWU_3S6jyhJjjfONIF9wY5_7xcz-ovC2IhMZGO9-S7u7_oavESvS3lYoYVqdfyxB8c2Ij9LhxP3nwavw3aAg0BxmmcBFzHzMTUUJQ6Q9TC7uKFKrIUkXqutIRFKk4wNaZQYRGHyJSVMQmzSsFMEt-DQbkszQOwo-dpJpQREdqQL2UiUZnGQmCiJeNGD-F5t045tuzlrojGPG94l2luZzj3MzyEp73oqqHs-JPQfrfYeWu1VW6jXeusBWXxEJ70zXZR3CGKLM1y42VsTG1xWDiE-42S9L3QjDMHuOxgvS78vfv83XjsLx7-u-gjuEYdpghdwnAfBvV6Yx7DFfxWz6r1AexmU37QmsAFzTIOog
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB4tXaTlwvtRWMAgDlzCJk7i2IhLVagWKBVCu9LeInvsQJc2rdoUqZz4B_Ab-SXYzgNWgITELYonsWXPeL4ZJ98APIp4kWHGi0Aol7oRmgeKRTIwSgikjuOr0L7YRDaZ8JMT8XYHnrX_wtT8EF3CzVmG36-dgbuE9MFP1tBTxCfUsaOfg93EqlHag93n70bH424njtOaPsqimICzNGqZhUJ60D181h_9BjLPYlbvdEaX_m-4l-FiAzbJoNaOK7BjyquwN2xrvF2DrwMtl27DI0unQk1ylqgt8T6OaPd5e7X9_uXb0siP66dkUBLjSSesr_ql1flCTXC2cbQL7g1y9n6xmlYf5sSCYiId88lnd3_eVuMlelvK-RTXpFrJU390YGP263A8enE0PAyaEg0BxmmcBFzHzMTUUJQ6Q9TC7uOFKrIUkXq2tIRFKk4wNaZQYRGHyJSVMQmzasFMEt-AXrkozS2wo-dpJpQREdqgL2UiUZnGQmCiJeNG9-Fxu1A5NvzlrozGLK-Zl2luZzj3M9yHh53osibt-JPQfrvaeWO369zGu9ZdC8riPjzomu2iuGMUWZrFxsvYqNoisbAPN2st6XqhGWcOctnBemX4e_f5q-HQX9z-d9H7sHd49Gacj19OXt-BC9QhjNClD_ehV6025i6cx0_VdL2611jCD4Z4Eao
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB4tuwi48H4UFjCIA5fsJnbixIhL1aXisapWiJX2FtljB7q0adSmSOXEP4DfyC_Bdh6wAiQkblE8iS17xvPNOPkG4EmUFSmmWREI5VI3QmeB4pEMjBICqeP4KrQvNpFOJtnJiTjagufdvzANP0SfcHOW4fdrZ-Cm0sX-T9bQU8Q96tjRz8FOnAhuzXLn4O34-LDfiVnS0EdZFBNkPIk6ZqGQ7vcPn_VHv4HMs5jVO53xlf8b7lW43IJNMmy04xpsmfI6XBx1Nd5uwNehlpXb8EjlVKhNzhK1Id7HEe0-b6833798q4z8uHpGhiUxnnTC-qpfWp0v1ARna0e74N4gZ-8Xy2n9YU4sKCbSMZ98dvfnXTVeojelnE9xReqlPPVHBzZmvwnH4xfvRi-DtkRDgCxhcZBpxg2jhqLUKaIWdh8vVJEmiNSzpcU8UizGxJhChQULkSsrY2Ju1YKbmN2C7XJRmjtgR58lqVBGRGiDvoSLWKUaC4GxljwzegBPu4XKseUvd2U0ZnnDvExzO8O5n-EBPO5Fq4a0409Cu91q563drnIb71p3LShnA3jUN9tFcccosjSLtZexUbVFYuEAbjda0vdC04w7yGUH65Xh793nr0cjf3H330UfwoWjg3F--Gry5h5cog5ghC57uAvb9XJt7sN5_FRPV8sHrSH8APqzESU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+partitioning+by+local+density%E2%80%90peaks%3A+An+efficient+density%E2%80%90based+clustering+algorithm+for+analyzing+molecular+dynamics+trajectories&rft.jtitle=Journal+of+computational+chemistry&rft.au=Liu%2C+Song&rft.au=Zhu%2C+Lizhe&rft.au=Sheong%2C+Fu+Kit&rft.au=Wang%2C+Wei&rft.date=2017-01-30&rft.issn=0192-8651&rft.eissn=1096-987X&rft.volume=38&rft.issue=3&rft.spage=152&rft.epage=160&rft_id=info:doi/10.1002%2Fjcc.24664&rft.externalDBID=10.1002%252Fjcc.24664&rft.externalDocID=JCC24664
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0192-8651&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0192-8651&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0192-8651&client=summon