Adaptive partitioning by local density‐peaks: An efficient density‐based clustering algorithm for analyzing molecular dynamics trajectories
We present an efficient density‐based adaptive‐resolution clustering method APLoD for analyzing large‐scale molecular dynamics (MD) trajectories. APLoD performs the k‐nearest‐neighbors search to estimate the density of MD conformations in a local fashion, which can group MD conformations in the same...
Gespeichert in:
| Veröffentlicht in: | Journal of computational chemistry Jg. 38; H. 3; S. 152 - 160 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
Wiley Subscription Services, Inc
30.01.2017
|
| Schlagworte: | |
| ISSN: | 0192-8651, 1096-987X, 1096-987X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We present an efficient density‐based adaptive‐resolution clustering method APLoD for analyzing large‐scale molecular dynamics (MD) trajectories. APLoD performs the k‐nearest‐neighbors search to estimate the density of MD conformations in a local fashion, which can group MD conformations in the same high‐density region into a cluster. APLoD greatly improves the popular density peaks algorithm by reducing the running time and the memory usage by 2–3 orders of magnitude for systems ranging from alanine dipeptide to a 370‐residue Maltose‐binding protein. In addition, we demonstrate that APLoD can produce clusters with various sizes that are adaptive to the underlying density (i.e., larger clusters at low‐density regions, while smaller clusters at high‐density regions), which is a clear advantage over other popular clustering algorithms including k‐centers and k‐medoids. We anticipate that APLoD can be widely applied to split ultra‐large MD datasets containing millions of conformations for subsequent construction of Markov State Models. © 2016 Wiley Periodicals, Inc.
Incorporating the k‐nearest‐neighbors search into the density peaks clustering algorithm results in a novel clustering method Adaptive Partitioning by Local Density‐peaks (APLoD) for analyzing of molecular dynamics (MD) trajectories. APLoD is highly efficient and applicable to large MD datasets containing millions of frames. The density‐based feature and adaptive resolution of APLoD make it particularly useful in constructing Markov State Models for complex processes, especially those with heterogeneous metastable regions. |
|---|---|
| AbstractList | We present an efficient density-based adaptive-resolution clustering method APLoD for analyzing large-scale molecular dynamics (MD) trajectories. APLoD performs the k-nearest-neighbors search to estimate the density of MD conformations in a local fashion, which can group MD conformations in the same high-density region into a cluster. APLoD greatly improves the popular density peaks algorithm by reducing the running time and the memory usage by 2-3 orders of magnitude for systems ranging from alanine dipeptide to a 370-residue Maltose-binding protein. In addition, we demonstrate that APLoD can produce clusters with various sizes that are adaptive to the underlying density (i.e., larger clusters at low-density regions, while smaller clusters at high-density regions), which is a clear advantage over other popular clustering algorithms including k-centers and k-medoids. We anticipate that APLoD can be widely applied to split ultra-large MD datasets containing millions of conformations for subsequent construction of Markov State Models. © 2016 Wiley Periodicals, Inc. We present an efficient density-based adaptive-resolution clustering method APLoD for analyzing large-scale molecular dynamics (MD) trajectories. APLoD performs the k-nearest-neighbors search to estimate the density of MD conformations in a local fashion, which can group MD conformations in the same high-density region into a cluster. APLoD greatly improves the popular density peaks algorithm by reducing the running time and the memory usage by 2-3 orders of magnitude for systems ranging from alanine dipeptide to a 370-residue Maltose-binding protein. In addition, we demonstrate that APLoD can produce clusters with various sizes that are adaptive to the underlying density (i.e., larger clusters at low-density regions, while smaller clusters at high-density regions), which is a clear advantage over other popular clustering algorithms including k-centers and k-medoids. We anticipate that APLoD can be widely applied to split ultra-large MD datasets containing millions of conformations for subsequent construction of Markov State Models. © 2016 Wiley Periodicals, Inc.We present an efficient density-based adaptive-resolution clustering method APLoD for analyzing large-scale molecular dynamics (MD) trajectories. APLoD performs the k-nearest-neighbors search to estimate the density of MD conformations in a local fashion, which can group MD conformations in the same high-density region into a cluster. APLoD greatly improves the popular density peaks algorithm by reducing the running time and the memory usage by 2-3 orders of magnitude for systems ranging from alanine dipeptide to a 370-residue Maltose-binding protein. In addition, we demonstrate that APLoD can produce clusters with various sizes that are adaptive to the underlying density (i.e., larger clusters at low-density regions, while smaller clusters at high-density regions), which is a clear advantage over other popular clustering algorithms including k-centers and k-medoids. We anticipate that APLoD can be widely applied to split ultra-large MD datasets containing millions of conformations for subsequent construction of Markov State Models. © 2016 Wiley Periodicals, Inc. We present an efficient density-based adaptive-resolution clustering method APLoD for analyzing large-scale molecular dynamics (MD) trajectories. APLoD performs the k-nearest-neighbors search to estimate the density of MD conformations in a local fashion, which can group MD conformations in the same high-density region into a cluster. APLoD greatly improves the popular density peaks algorithm by reducing the running time and the memory usage by 2-3 orders of magnitude for systems ranging from alanine dipeptide to a 370-residue Maltose-binding protein. In addition, we demonstrate that APLoD can produce clusters with various sizes that are adaptive to the underlying density (i.e., larger clusters at low-density regions, while smaller clusters at high-density regions), which is a clear advantage over other popular clustering algorithms including k-centers and k-medoids. We anticipate that APLoD can be widely applied to split ultra-large MD datasets containing millions of conformations for subsequent construction of Markov State Models. We present an efficient density‐based adaptive‐resolution clustering method APLoD for analyzing large‐scale molecular dynamics (MD) trajectories. APLoD performs the k‐nearest‐neighbors search to estimate the density of MD conformations in a local fashion, which can group MD conformations in the same high‐density region into a cluster. APLoD greatly improves the popular density peaks algorithm by reducing the running time and the memory usage by 2–3 orders of magnitude for systems ranging from alanine dipeptide to a 370‐residue Maltose‐binding protein. In addition, we demonstrate that APLoD can produce clusters with various sizes that are adaptive to the underlying density (i.e., larger clusters at low‐density regions, while smaller clusters at high‐density regions), which is a clear advantage over other popular clustering algorithms including k‐centers and k‐medoids. We anticipate that APLoD can be widely applied to split ultra‐large MD datasets containing millions of conformations for subsequent construction of Markov State Models. © 2016 Wiley Periodicals, Inc. Incorporating the k‐nearest‐neighbors search into the density peaks clustering algorithm results in a novel clustering method Adaptive Partitioning by Local Density‐peaks (APLoD) for analyzing of molecular dynamics (MD) trajectories. APLoD is highly efficient and applicable to large MD datasets containing millions of frames. The density‐based feature and adaptive resolution of APLoD make it particularly useful in constructing Markov State Models for complex processes, especially those with heterogeneous metastable regions. |
| Author | Zhu, Lizhe Sheong, Fu Kit Huang, Xuhui Liu, Song Wang, Wei |
| Author_xml | – sequence: 1 givenname: Song surname: Liu fullname: Liu, Song organization: The Hong Kong University of Science and Technology – sequence: 2 givenname: Lizhe surname: Zhu fullname: Zhu, Lizhe email: chlizhezhu@ust.hk organization: Center of Systems Biology and Human Health, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology – sequence: 3 givenname: Fu Kit surname: Sheong fullname: Sheong, Fu Kit organization: The Hong Kong University of Science and Technology – sequence: 4 givenname: Wei surname: Wang fullname: Wang, Wei organization: Center of Systems Biology and Human Health, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology – sequence: 5 givenname: Xuhui surname: Huang fullname: Huang, Xuhui email: xuhuihuang@ust.hk organization: Center of Systems Biology and Human Health, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27868222$$D View this record in MEDLINE/PubMed |
| BookMark | eNp90cFu1DAQBmALFdFt4cALIEtc4JDWdhwn4bZaFVpUiQtI3CJnMileHDvYTlF64g3gGXkSst2CUCU4WbK_-SXPf0QOnHdIyFPOTjhj4nQLcCKkUvIBWXFWq6yuyo8HZMV4LbJKFfyQHMW4ZYzlhZKPyKEoK1UJIVbk-7rTYzLXSEcdkknGO-OuaDtT60Fb2qGLJs0_v_0YUX-Or-jaUex7AwZd-uu11RE7CnaKCcMuQdsrH0z6NNDeB6qdtvPN7n7wFmGyOtBudnowEGkKeouQFo7xMXnYaxvxyd15TD68Pnu_Oc8u37252KwvM8iLXGZVlyvMBQrQXQnQ1aihb_uyABBMyKqQire5hAKxb1mfM1DtYlAqWXcKZX5MXuxzx-C_TBhTM5gIaK126KfY8EqKQpaSs4U-v0e3fgrLh25VJctaqHxRz-7U1A7YNWMwgw5z83vVC3i5BxB8jAH7P4SzZldjs9TY3Na42NN7FkzSu3KWXRn7v4mvxuL87-jm7Wazn_gFyoKzvw |
| CODEN | JCCHDD |
| CitedBy_id | crossref_primary_10_1016_j_cbpa_2022_102156 crossref_primary_10_1016_j_knosys_2020_106350 crossref_primary_10_1073_pnas_2221048120 crossref_primary_10_1063_5_0025797 crossref_primary_10_3390_a11020019 crossref_primary_10_1016_j_patrec_2018_01_020 crossref_primary_10_1016_j_bpj_2023_03_028 crossref_primary_10_3390_ijms22126576 crossref_primary_10_1038_s42003_021_02822_7 crossref_primary_10_1007_s10916_018_1003_9 crossref_primary_10_1016_j_dsp_2019_04_011 crossref_primary_10_1371_journal_pone_0198948 crossref_primary_10_1002_nadc_20184072078 crossref_primary_10_1002_wcms_1343 |
| Cites_doi | 10.1073/pnas.1315751111 10.1038/ncomms11244 10.1002/prot.21123 10.1371/journal.pcbi.1003020 10.1016/S0024-3795(00)00095-1 10.1063/1.3565032 10.1016/0304-3975(85)90224-5 10.1063/1.2116947 10.1016/j.sbi.2010.10.006 10.1021/acs.jctc.5b00498 10.1063/1.3301140 10.1021/acs.jctc.5b01233 10.1021/jp076377+ 10.1063/1.2959573 10.1016/j.sbi.2014.04.002 10.1063/1.2714538 10.1016/j.eswa.2008.01.039 10.1080/00031305.1992.10475879 10.1016/S0022-2836(83)80304-0 10.1126/science.1242072 10.1016/S0003-2670(01)95359-0 10.1016/j.ymeth.2010.06.002 10.1021/ct4009156 10.1021/acs.jctc.5b00737 10.1371/journal.pcbi.1004404 10.1145/1364782.1364802 10.1021/ct5007168 10.1002/prot.20033 10.1021/ct500827g 10.1002/jcc.23110 10.1021/jp0761665 10.1021/acs.accounts.5b00536 10.1021/ct900620b 10.1073/pnas.1103547108 10.1109/TIT.1982.1056489 10.1287/moor.10.2.180 10.1021/ct5002363 10.1063/1.4802007 10.1016/j.ymeth.2009.04.013 10.1038/268765a0 10.1021/acs.jctc.5b00553 10.1073/pnas.0909088106 10.1371/journal.pcbi.1003767 10.1371/journal.pcbi.1001015 |
| ContentType | Journal Article |
| Copyright | 2016 Wiley Periodicals, Inc. Copyright Wiley Subscription Services, Inc. Jan 30, 2017 |
| Copyright_xml | – notice: 2016 Wiley Periodicals, Inc. – notice: Copyright Wiley Subscription Services, Inc. Jan 30, 2017 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM JQ2 7X8 |
| DOI | 10.1002/jcc.24664 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Computer Science Collection MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Computer Science Collection MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest Computer Science Collection |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1096-987X |
| EndPage | 160 |
| ExternalDocumentID | 4277488021 27868222 10_1002_jcc_24664 JCC24664 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article Feature |
| GrantInformation_xml | – fundername: Innovation and Technology Commission (ITCPD/17‐9) – fundername: Hong Kong Research Grant Council funderid: HKUST C6009‐15G; 16302214; 609813; AoE/M‐09/12; M‐HKUST601/13; T13‐607/12R – fundername: National Science Foundation of China funderid: 21273188 |
| GroupedDBID | --- -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 36B 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD ESX F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RWK RX1 RYL SUPJJ TN5 UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YQT ZZTAW ~IA ~KM ~WT AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY CITATION O8X CGR CUY CVF ECM EIF NPM JQ2 7X8 |
| ID | FETCH-LOGICAL-c3534-8d36e32e2cad7ccd9eacfbf75cc202485461b34c5eefb0f30c6b9eae4649d6e43 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 29 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000398424600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0192-8651 1096-987X |
| IngestDate | Sun Nov 09 14:36:40 EST 2025 Fri Jul 25 19:20:05 EDT 2025 Thu Apr 03 06:56:25 EDT 2025 Sat Nov 29 03:23:35 EST 2025 Tue Nov 18 22:25:14 EST 2025 Wed Jan 22 16:43:01 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Markov State Models clustering algorithm density peaks kNN search molecular dynamics |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions http://doi.wiley.com/10.1002/tdm_license_1 2016 Wiley Periodicals, Inc. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3534-8d36e32e2cad7ccd9eacfbf75cc202485461b34c5eefb0f30c6b9eae4649d6e43 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PMID | 27868222 |
| PQID | 1848479263 |
| PQPubID | 48816 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_1842547410 proquest_journals_1848479263 pubmed_primary_27868222 crossref_primary_10_1002_jcc_24664 crossref_citationtrail_10_1002_jcc_24664 wiley_primary_10_1002_jcc_24664_JCC24664 |
| PublicationCentury | 2000 |
| PublicationDate | January 30, 2017 |
| PublicationDateYYYYMMDD | 2017-01-30 |
| PublicationDate_xml | – month: 01 year: 2017 text: January 30, 2017 day: 30 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | Journal of computational chemistry |
| PublicationTitleAlternate | J Comput Chem |
| PublicationYear | 2017 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2007; 126 2000; 315 2015; 11 2008 2014; 25 2008; 129 1993 2008; 51 2014; 111 1977; 268 2011; 134 2009; 49 2013; 9 2016; 12 2004; 55 2009; 36 2016; 6 2016; 7 1983; 168 1982; 28 2011; 108 2006; 65 2005; 123 2013; 34 2013; 138 1987 2010; 132 2011; 21 1992; 46 1982; 136 2008; 112 2016; 49 1985; 10 2010; 52 1985; 38 2010; 6 1967 2014; 10 2009; 106 2014; 344 Zhang (10.1002/jcc.24664-BIB0036|jcc24664-cit-0037) 2016; 49 Gonzalez (10.1002/jcc.24664-BIB0004|jcc24664-cit-0005) 1985; 38 Park (10.1002/jcc.24664-BIB0010|jcc24664-cit-0011) 2009; 36 Morcos (10.1002/jcc.24664-BIB0020|jcc24664-cit-0021) 2010; 6 Buchete (10.1002/jcc.24664-BIB0017|jcc24664-cit-0018) 2008; 112 Pande (10.1002/jcc.24664-BIB0011|jcc24664-cit-0012) 2010; 52 Prinz (10.1002/jcc.24664-BIB0013|jcc24664-cit-0014) 2011; 134 Vitalini (10.1002/jcc.24664-BIB0033|jcc24664-cit-0034) 2015; 11 Zhu (10.1002/jcc.24664-BIB0037|jcc24664-cit-0038) Zheng (10.1002/jcc.24664-BIB0015|jcc24664-cit-0016) 2008; 112 Da (10.1002/jcc.24664-BIB0024|jcc24664-cit-0025) 2013; 9 10.1002/jcc.24664-BIB0009|jcc24664-cit-0010 Malmstrom (10.1002/jcc.24664-BIB0026|jcc24664-cit-0027) 2014; 10 Coomans (10.1002/jcc.24664-BIB0041|jcc24664-cit-0042) 1982; 136 Deuflhard (10.1002/jcc.24664-BIB0047|jcc24664-cit-0048) 2000; 315 Buch (10.1002/jcc.24664-BIB0022|jcc24664-cit-0023) 2011; 108 Rodriguez (10.1002/jcc.24664-BIB0039|jcc24664-cit-0040) 2014; 344 Chodera (10.1002/jcc.24664-BIB0014|jcc24664-cit-0015) 2007; 126 Da (10.1002/jcc.24664-BIB0035|jcc24664-cit-0036) 2016; 7 Singhal (10.1002/jcc.24664-BIB0049|jcc24664-cit-0050) 2005; 123 Bowman (10.1002/jcc.24664-BIB0019|jcc24664-cit-0020) 2009; 49 Keller (10.1002/jcc.24664-BIB0038|jcc24664-cit-0039) 2010; 132 Altman (10.1002/jcc.24664-BIB0042|jcc24664-cit-0043) 1992; 46 McCammon (10.1002/jcc.24664-BIB0001|jcc24664-cit-0002) 1977; 268 Yao (10.1002/jcc.24664-BIB0023|jcc24664-cit-0024) 2013; 138 Zhao (10.1002/jcc.24664-BIB0044|jcc24664-cit-0045) 2013; 34 Pan (10.1002/jcc.24664-BIB0016|jcc24664-cit-0017) 2008; 129 Levitt (10.1002/jcc.24664-BIB0002|jcc24664-cit-0003) 1983; 168 10.1002/jcc.24664-BIB0043|jcc24664-cit-0044 Hornak (10.1002/jcc.24664-BIB0045|jcc24664-cit-0046) 2006; 65 Kaufman (10.1002/jcc.24664-BIB0005|jcc24664-cit-0006) 2008 Nüske (10.1002/jcc.24664-BIB0027|jcc24664-cit-0028) 2014; 10 10.1002/jcc.24664-BIB0007|jcc24664-cit-0008 Hochbaum (10.1002/jcc.24664-BIB0006|jcc24664-cit-0007) 1985; 10 Jiang (10.1002/jcc.24664-BIB0032|jcc24664-cit-0033) 2015; 11 Sheong (10.1002/jcc.24664-BIB0031|jcc24664-cit-0032) 2015; 11 Gu (10.1002/jcc.24664-BIB0028|jcc24664-cit-0029) 2014; 10 Noé (10.1002/jcc.24664-BIB0034|jcc24664-cit-0035) 2015; 11 Onufriev (10.1002/jcc.24664-BIB0046|jcc24664-cit-0047) 2004; 55 Trendelkamp-Schroer (10.1002/jcc.24664-BIB0048|jcc24664-cit-0049) 2016; 6 Chodera (10.1002/jcc.24664-BIB0012|jcc24664-cit-0013) 2014; 25 Bowman (10.1002/jcc.24664-BIB0050|jcc24664-cit-0051) 2010; 6 Bowman (10.1002/jcc.24664-BIB0021|jcc24664-cit-0022) 2011; 21 Sittel (10.1002/jcc.24664-BIB0040|jcc24664-cit-0041) 2016; 12 Voelz (10.1002/jcc.24664-BIB0025|jcc24664-cit-0026) 2014; 10 Huang (10.1002/jcc.24664-BIB0018|jcc24664-cit-0019) 2009; 106 Shaw (10.1002/jcc.24664-BIB0003|jcc24664-cit-0004) 2008; 51 Lloyd (10.1002/jcc.24664-BIB0008|jcc24664-cit-0009) 1982; 28 Silva (10.1002/jcc.24664-BIB0029|jcc24664-cit-0030) 2014; 111 Zimmerman (10.1002/jcc.24664-BIB0030|jcc24664-cit-0031) 2015; 11 |
| References_xml | – volume: 10 start-page: 1739 year: 2014 publication-title: J. Chem. Theory Comput. – volume: 52 start-page: 99 year: 2010 publication-title: Methods – volume: 268 start-page: 765 year: 1977 publication-title: Nature – volume: 10 start-page: 2648 year: 2014 publication-title: J. Chem. Theory Comput. – volume: 315 start-page: 39 year: 2000 publication-title: Linear Algebra Appl. – publication-title: Phys. Chem. Chem. Phys. – start-page: 281 year: 1967 end-page: 297 – volume: 136 start-page: 15 year: 1982 publication-title: Anal. Chim. Acta – volume: 112 start-page: 6083 year: 2008 publication-title: J. Phys. Chem. B – start-page: 311 year: 1993 end-page: 321 – volume: 11 start-page: e1004404 year: 2015 publication-title: PLoS Comput. Biol. – volume: 7 start-page: 11244 year: 2016 publication-title: Nat. Commun. – volume: 106 start-page: 19765 year: 2009 publication-title: Proc. Natl. Acad. Sci. USA – volume: 9 start-page: e1003020 year: 2013 publication-title: PLoS Comput. Biol. – volume: 21 start-page: 4 year: 2011 publication-title: Curr. Opin. Struct. Biol. – volume: 46 start-page: 175 year: 1992 publication-title: Am. Stat. – volume: 134 start-page: 174105 year: 2011 publication-title: J. Chem. Phys. – volume: 28 start-page: 129 year: 1982 publication-title: IEEE Trans. Inf. Theory – volume: 123 start-page: 204909 year: 2005 publication-title: J. Chem. Phys. – year: 2008 – volume: 49 start-page: 197 year: 2009 publication-title: Methods – volume: 108 start-page: 10184 year: 2011 publication-title: Proc. Natl. Acad. Sci. USA – volume: 112 start-page: 6057 year: 2008 publication-title: J. Phys. Chem. B – volume: 38 start-page: 293 year: 1985 publication-title: Theor. Comput. Sci. – volume: 344 start-page: 1492 year: 2014 publication-title: Science – volume: 6 start-page: 011009 year: 2016 publication-title: Phys. Rev. X – volume: 126 start-page: 155101 year: 2007 publication-title: J. Chem. Phys. – volume: 6 start-page: 787 year: 2010 publication-title: J. Chem. Theory Comput. – volume: 168 start-page: 595 year: 1983 publication-title: J. Mol. Biol. – volume: 36 start-page: 3336 year: 2009 publication-title: Expert Syst. Appl. – volume: 49 start-page: 687 year: 2016 publication-title: Acc. Chem. Res. – volume: 11 start-page: 3992 year: 2015 publication-title: J. Chem. Theory Comput. – year: 1987 – volume: 138 start-page: 174106 year: 2013 publication-title: J. Chem. Phys. – volume: 111 start-page: 7665 year: 2014 publication-title: Proc. Natl. Acad. Sci. USA – volume: 55 start-page: 383 year: 2004 publication-title: Proteins Struct. Funct. Bioinform. – volume: 6 start-page: e1001015 year: 2010 publication-title: PLoS Comput. Biol. – volume: 10 start-page: 180 year: 1985 publication-title: Math. Oper. Res. – volume: 65 start-page: 712 year: 2006 publication-title: Proteins Struct. Funct. Bioinform. – volume: 25 start-page: 135 year: 2014 publication-title: Curr. Opin. Struct. Biol. – volume: 10 start-page: e1003767 year: 2014 publication-title: PLoS Comput. Biol. – volume: 11 start-page: 5002 year: 2015 publication-title: J. Chem. Theory Comput. – volume: 132 start-page: 074110 year: 2010 publication-title: J. Chem. Phys. – volume: 34 start-page: 95 year: 2013 publication-title: J. Comput. Chem. – volume: 11 start-page: 17 year: 2015 publication-title: J. Chem. Theory Comput. – volume: 129 start-page: 064107 year: 2008 publication-title: J. Chem. Phys. – volume: 11 start-page: 5747 year: 2015 publication-title: J. Chem. Theory Comput. – volume: 12 start-page: 2426 year: 2016 publication-title: J. Chem. Theory Comput. – volume: 10 start-page: 5716 year: 2014 publication-title: J. Chem. Theory Comput. – volume: 51 start-page: 91 year: 2008 publication-title: Commun. ACM – volume: 111 start-page: 7665 year: 2014 ident: 10.1002/jcc.24664-BIB0029|jcc24664-cit-0030 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1315751111 – ident: 10.1002/jcc.24664-BIB0043|jcc24664-cit-0044 – volume: 7 start-page: 11244 year: 2016 ident: 10.1002/jcc.24664-BIB0035|jcc24664-cit-0036 publication-title: Nat. Commun. doi: 10.1038/ncomms11244 – ident: 10.1002/jcc.24664-BIB0009|jcc24664-cit-0010 – volume: 65 start-page: 712 year: 2006 ident: 10.1002/jcc.24664-BIB0045|jcc24664-cit-0046 publication-title: Proteins Struct. Funct. Bioinform. doi: 10.1002/prot.21123 – volume: 9 start-page: e1003020 year: 2013 ident: 10.1002/jcc.24664-BIB0024|jcc24664-cit-0025 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1003020 – volume: 315 start-page: 39 year: 2000 ident: 10.1002/jcc.24664-BIB0047|jcc24664-cit-0048 publication-title: Linear Algebra Appl. doi: 10.1016/S0024-3795(00)00095-1 – volume: 134 start-page: 174105 year: 2011 ident: 10.1002/jcc.24664-BIB0013|jcc24664-cit-0014 publication-title: J. Chem. Phys. doi: 10.1063/1.3565032 – volume: 38 start-page: 293 year: 1985 ident: 10.1002/jcc.24664-BIB0004|jcc24664-cit-0005 publication-title: Theor. Comput. Sci. doi: 10.1016/0304-3975(85)90224-5 – volume: 123 start-page: 204909 year: 2005 ident: 10.1002/jcc.24664-BIB0049|jcc24664-cit-0050 publication-title: J. Chem. Phys. doi: 10.1063/1.2116947 – volume: 21 start-page: 4 year: 2011 ident: 10.1002/jcc.24664-BIB0021|jcc24664-cit-0022 publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2010.10.006 – volume: 6 start-page: 011009 year: 2016 ident: 10.1002/jcc.24664-BIB0048|jcc24664-cit-0049 publication-title: Phys. Rev. X – volume: 11 start-page: 3992 year: 2015 ident: 10.1002/jcc.24664-BIB0033|jcc24664-cit-0034 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.5b00498 – volume: 132 start-page: 074110 year: 2010 ident: 10.1002/jcc.24664-BIB0038|jcc24664-cit-0039 publication-title: J. Chem. Phys. doi: 10.1063/1.3301140 – volume: 12 start-page: 2426 year: 2016 ident: 10.1002/jcc.24664-BIB0040|jcc24664-cit-0041 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.5b01233 – volume: 112 start-page: 6083 year: 2008 ident: 10.1002/jcc.24664-BIB0015|jcc24664-cit-0016 publication-title: J. Phys. Chem. B doi: 10.1021/jp076377+ – volume: 129 start-page: 064107 year: 2008 ident: 10.1002/jcc.24664-BIB0016|jcc24664-cit-0017 publication-title: J. Chem. Phys. doi: 10.1063/1.2959573 – volume: 25 start-page: 135 year: 2014 ident: 10.1002/jcc.24664-BIB0012|jcc24664-cit-0013 publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2014.04.002 – volume: 126 start-page: 155101 year: 2007 ident: 10.1002/jcc.24664-BIB0014|jcc24664-cit-0015 publication-title: J. Chem. Phys. doi: 10.1063/1.2714538 – volume: 36 start-page: 3336 year: 2009 ident: 10.1002/jcc.24664-BIB0010|jcc24664-cit-0011 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2008.01.039 – volume: 46 start-page: 175 year: 1992 ident: 10.1002/jcc.24664-BIB0042|jcc24664-cit-0043 publication-title: Am. Stat. doi: 10.1080/00031305.1992.10475879 – volume: 168 start-page: 595 year: 1983 ident: 10.1002/jcc.24664-BIB0002|jcc24664-cit-0003 publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(83)80304-0 – volume: 344 start-page: 1492 year: 2014 ident: 10.1002/jcc.24664-BIB0039|jcc24664-cit-0040 publication-title: Science doi: 10.1126/science.1242072 – volume: 136 start-page: 15 year: 1982 ident: 10.1002/jcc.24664-BIB0041|jcc24664-cit-0042 publication-title: Anal. Chim. Acta doi: 10.1016/S0003-2670(01)95359-0 – volume: 52 start-page: 99 year: 2010 ident: 10.1002/jcc.24664-BIB0011|jcc24664-cit-0012 publication-title: Methods doi: 10.1016/j.ymeth.2010.06.002 – volume: 10 start-page: 1739 year: 2014 ident: 10.1002/jcc.24664-BIB0027|jcc24664-cit-0028 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct4009156 – volume: 11 start-page: 5747 year: 2015 ident: 10.1002/jcc.24664-BIB0030|jcc24664-cit-0031 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.5b00737 – volume: 11 start-page: e1004404 year: 2015 ident: 10.1002/jcc.24664-BIB0032|jcc24664-cit-0033 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1004404 – volume: 51 start-page: 91 year: 2008 ident: 10.1002/jcc.24664-BIB0003|jcc24664-cit-0004 publication-title: Commun. ACM doi: 10.1145/1364782.1364802 – volume: 11 start-page: 17 year: 2015 ident: 10.1002/jcc.24664-BIB0031|jcc24664-cit-0032 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct5007168 – volume-title: Finding Groups in Data: An Introduction to Cluster Analysis year: 2008 ident: 10.1002/jcc.24664-BIB0005|jcc24664-cit-0006 – volume: 55 start-page: 383 year: 2004 ident: 10.1002/jcc.24664-BIB0046|jcc24664-cit-0047 publication-title: Proteins Struct. Funct. Bioinform. doi: 10.1002/prot.20033 – volume: 10 start-page: 5716 year: 2014 ident: 10.1002/jcc.24664-BIB0025|jcc24664-cit-0026 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct500827g – volume: 34 start-page: 95 year: 2013 ident: 10.1002/jcc.24664-BIB0044|jcc24664-cit-0045 publication-title: J. Comput. Chem. doi: 10.1002/jcc.23110 – volume: 112 start-page: 6057 year: 2008 ident: 10.1002/jcc.24664-BIB0017|jcc24664-cit-0018 publication-title: J. Phys. Chem. B doi: 10.1021/jp0761665 – volume: 49 start-page: 687 year: 2016 ident: 10.1002/jcc.24664-BIB0036|jcc24664-cit-0037 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.5b00536 – volume: 6 start-page: 787 year: 2010 ident: 10.1002/jcc.24664-BIB0050|jcc24664-cit-0051 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct900620b – volume: 108 start-page: 10184 year: 2011 ident: 10.1002/jcc.24664-BIB0022|jcc24664-cit-0023 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1103547108 – volume: 28 start-page: 129 year: 1982 ident: 10.1002/jcc.24664-BIB0008|jcc24664-cit-0009 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1982.1056489 – ident: 10.1002/jcc.24664-BIB0037|jcc24664-cit-0038 publication-title: Phys. Chem. Chem. Phys. – volume: 10 start-page: 180 year: 1985 ident: 10.1002/jcc.24664-BIB0006|jcc24664-cit-0007 publication-title: Math. Oper. Res. doi: 10.1287/moor.10.2.180 – volume: 10 start-page: 2648 year: 2014 ident: 10.1002/jcc.24664-BIB0026|jcc24664-cit-0027 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct5002363 – ident: 10.1002/jcc.24664-BIB0007|jcc24664-cit-0008 – volume: 138 start-page: 174106 year: 2013 ident: 10.1002/jcc.24664-BIB0023|jcc24664-cit-0024 publication-title: J. Chem. Phys. doi: 10.1063/1.4802007 – volume: 49 start-page: 197 year: 2009 ident: 10.1002/jcc.24664-BIB0019|jcc24664-cit-0020 publication-title: Methods doi: 10.1016/j.ymeth.2009.04.013 – volume: 268 start-page: 765 year: 1977 ident: 10.1002/jcc.24664-BIB0001|jcc24664-cit-0002 publication-title: Nature doi: 10.1038/268765a0 – volume: 11 start-page: 5002 year: 2015 ident: 10.1002/jcc.24664-BIB0034|jcc24664-cit-0035 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.5b00553 – volume: 106 start-page: 19765 year: 2009 ident: 10.1002/jcc.24664-BIB0018|jcc24664-cit-0019 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0909088106 – volume: 10 start-page: e1003767 year: 2014 ident: 10.1002/jcc.24664-BIB0028|jcc24664-cit-0029 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1003767 – volume: 6 start-page: e1001015 year: 2010 ident: 10.1002/jcc.24664-BIB0020|jcc24664-cit-0021 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1001015 |
| SSID | ssj0003564 |
| Score | 2.3626697 |
| Snippet | We present an efficient density‐based adaptive‐resolution clustering method APLoD for analyzing large‐scale molecular dynamics (MD) trajectories. APLoD... We present an efficient density-based adaptive-resolution clustering method APLoD for analyzing large-scale molecular dynamics (MD) trajectories. APLoD... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 152 |
| SubjectTerms | Algorithms Binding sites Biochemistry clustering algorithm Density density peaks kNN search Ligands Markov analysis Markov State Models Molecular chemistry molecular dynamics Molecular Dynamics Simulation Proteins Proteins - chemistry |
| Title | Adaptive partitioning by local density‐peaks: An efficient density‐based clustering algorithm for analyzing molecular dynamics trajectories |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcc.24664 https://www.ncbi.nlm.nih.gov/pubmed/27868222 https://www.proquest.com/docview/1848479263 https://www.proquest.com/docview/1842547410 |
| Volume | 38 |
| WOSCitedRecordID | wos000398424600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1096-987X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003564 issn: 0192-8651 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7tdpHYC2-WwrIyiAOXsInt2A6cqkKF0GqFEIt6ixzHgS5tWjUpUjnxD-A38ksYOw9YARIStyiZ2JY9j8_j5BuARzGNWaKZDRDKy4BLlgRKZDooeGQLZbhQPnXx7kSenqrpNHm9A8-6f2Eafog-4eYsw_trZ-A6q45_koaeG_OEOnL0XdijqLd8AHvP30zOTnpHzOKGPQpBDA4gjjpioZAe9y9fDEe_YcyLkNXHnMnV_xrtNbjSQk0yanTjOuzY8gZcHncV3m7C11GuV87dkZVToDY1S7It8RGO5O7j9nr7_cu3ldUfq6dkVBLrKScwUv3y1EXCnJj5xpEuuBb0_P1yPas_LAhCYqId78lnd3_R1eIl-bbUi5mpSL3W5_7gAHfst-Bs8uLt-GXQFmgIDIsZD1TOhGXUUqNzaUyeoBcvskLGxlDPlcZFlDFuYmuLLCxYaESGMpYLnuTCcnYbBuWytHeA8EjaWLLMJCZBNaGaa81DGymjigIbGcLjbp1S07KXuyIa87ThXaYpznDqZ3gID3vRVUPZ8Sehw26x09ZqqxR3uxisEyqwuwf9Y1wUd4iiS7vceBncUyMOC4dw0ChJ3wuVSjjAhYP1uvD37tNX47G_uPvvovdgnzpMEbqE4SEM6vXG3odL5lM9q9ZHsCun6qg1gR8b1g2o |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD4aHdJ4gXEvbGAQD7xkS3xLMvFSFaoBpUJoQ3uLHMdh3dq0alOk8sQ_GL-RX8Kxc4EJkJB4i5IT27LP5fNx8h2AZ4IKFitmPITyocdDFnuRTJWX88DkkeYycqmLj8NwNIpOTuL3G_Ci-Rem4odoE27WMpy_tgZuE9L7P1lDz7Teo5Yd_QpsclQj0YHNlx8Gx8PWEzNR0UchisERiKBhFvLpfvvy5Xj0G8i8jFld0Bnc-L_hbsP1GmySXqUdN2HDFLdgq9_UeLsNF71Mza3DI3OrQnVylqRr4mIcyezn7eX6-9dvc6POlwekVxDjSCcwVv3y1MbCjOjJytIu2BbU5NNsMS5PpwRBMVGW-eSLvT9tqvGSbF2o6VgvSblQZ-7oAPfsd-B48Oqof-jVJRo8zQTjXpQxaRg1VKss1DqL0Y_naR4KraljS-MySBnXwpg89XPma5mijOGSx5k0nN2FTjErzH0gPAiNCFmqYx2jolDFleK-CSId5Tk20oXnzUIluuYvt2U0JknFvEwTnOHEzXAXnrai84q0409CO81qJ7XdLhPc72K4jqnE7p60j3FR7DGKKsxs5WRwV41IzO_CvUpL2l5oGEkLuXCwThn-3n3ypt93Fw_-XfQxbB0evRsmw9ejtw_hGrUIw7fpwx3olIuV2YWr-nM5Xi4e1ZbwA83bELA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLbGhtheuI8VBhjEAy9hie04MeKl6qi4VNWEGNpb5PiydbRp1KZI5Yl_AL-RX8Kxc4EJkJB4i5IT27LP5fNx8h2EnsQkpkJSEwCUTwKWUBGkPJeBZZGxqWI89amLD6NkPE5PTsTRBnrR_gtT80N0CTdnGd5fOwM3pbYHP1lDz5V6Rhw7-iW0xWLBwSy3Dt8Nj0edJ6ZxTR8FKAZGEEcts1BIDrqXL8aj30DmRczqg87w2v8N9zq62oBN3K-14wbaMMVNtD1oa7zdQl_7WpbO4eHSqVCTnMX5GvsYh7X7vL1af__yrTTy4_I57hfYeNIJiFW_PHWxUGM1XTnaBdeCnJ7OF5PqbIYBFGPpmE8-u_uzthov1utCziZqiauFPPdHB7Bnv42Ohy_fD14FTYmGQNGYsiDVlBtKDFFSJ0ppAX7c5jaJlSKeLY3xKKdMxcbYPLQ0VDwHGcM4E5obRnfRZjEvzB7CLEpMnNBcCSVAUYhkUrLQRKlKrYVGeuhpu1CZavjLXRmNaVYzL5MMZjjzM9xDjzvRsibt-JPQfrvaWWO3ywz2uxCuBeHQ3aPuMSyKO0aRhZmvvAzsqgGJhT10p9aSrheSpNxBLhisV4a_d5-9GQz8xd1_F32IrhwdDrPR6_Hbe2iHOIARuuzhPtqsFitzH11Wn6rJcvGgMYQfQx8QKw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+partitioning+by+local+density%E2%80%90peaks%3A+An+efficient+density%E2%80%90based+clustering+algorithm+for+analyzing+molecular+dynamics+trajectories&rft.jtitle=Journal+of+computational+chemistry&rft.au=Liu%2C+Song&rft.au=Zhu%2C+Lizhe&rft.au=Sheong%2C+Fu+Kit&rft.au=Wang%2C+Wei&rft.date=2017-01-30&rft.issn=0192-8651&rft.eissn=1096-987X&rft.volume=38&rft.issue=3&rft.spage=152&rft.epage=160&rft_id=info:doi/10.1002%2Fjcc.24664&rft.externalDBID=10.1002%252Fjcc.24664&rft.externalDocID=JCC24664 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0192-8651&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0192-8651&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0192-8651&client=summon |