Density functional theory for molecular and periodic systems using density fitting and continuous fast multipole method: Stress tensor

A full implementation of the analytical stress tensor for periodic systems is reported in the TURBOMOLE program package within the framework of Kohn–Sham density functional theory using Gaussian‐type orbitals as basis functions. It is the extension of the implementation of analytical energy gradient...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of computational chemistry Ročník 40; číslo 29; s. 2563 - 2570
Hlavní autoři: Becker, Martin, Sierka, Marek
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken, USA John Wiley & Sons, Inc 05.11.2019
Wiley Subscription Services, Inc
Témata:
ISSN:0192-8651, 1096-987X, 1096-987X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A full implementation of the analytical stress tensor for periodic systems is reported in the TURBOMOLE program package within the framework of Kohn–Sham density functional theory using Gaussian‐type orbitals as basis functions. It is the extension of the implementation of analytical energy gradients (Lazarski et al., Journal of Computational Chemistry 2016, 37, 2518–2526) to the stress tensor for the purpose of optimization of lattice vectors. Its key component is the efficient calculation of the Coulomb contribution by combining density fitting approximation and continuous fast multipole method. For the exchange‐correlation (XC) part the hierarchical numerical integration scheme (Burow and Sierka, Journal of Chemical Theory and Computation 2011, 7, 3097–3104) is extended to XC weight derivatives and stress tensor. The computational efficiency and favorable scaling behavior of the stress tensor implementation are demonstrated for various model systems. The overall computational effort for energy gradient and stress tensor for the largest systems investigated is shown to be at most two and a half times the computational effort for the Kohn–Sham matrix formation. © 2019 Wiley Periodicals, Inc. An implementation of analytical stress tensor in the TURBOMOLE program package within the framework of Kohn–Sham density functional theory using Gaussian‐type orbitals as basis functions is reported. Its key component is a combination of density fitting approximation and continuous fast multipole method, which allows an efficient evaluation of the Coulomb contribution. The computational efficiency and favorable scaling behavior of the implementation are demonstrated for various model systems. The overall computational effort for the energy gradient and stress tensor calculation is shown to be at most two and a half times that of a single Kohn–Sham matrix formation.
AbstractList A full implementation of the analytical stress tensor for periodic systems is reported in the TURBOMOLE program package within the framework of Kohn–Sham density functional theory using Gaussian‐type orbitals as basis functions. It is the extension of the implementation of analytical energy gradients (Lazarski et al., Journal of Computational Chemistry 2016, 37, 2518–2526) to the stress tensor for the purpose of optimization of lattice vectors. Its key component is the efficient calculation of the Coulomb contribution by combining density fitting approximation and continuous fast multipole method. For the exchange‐correlation (XC) part the hierarchical numerical integration scheme (Burow and Sierka, Journal of Chemical Theory and Computation 2011, 7, 3097–3104) is extended to XC weight derivatives and stress tensor. The computational efficiency and favorable scaling behavior of the stress tensor implementation are demonstrated for various model systems. The overall computational effort for energy gradient and stress tensor for the largest systems investigated is shown to be at most two and a half times the computational effort for the Kohn–Sham matrix formation. © 2019 Wiley Periodicals, Inc.
A full implementation of the analytical stress tensor for periodic systems is reported in the TURBOMOLE program package within the framework of Kohn-Sham density functional theory using Gaussian-type orbitals as basis functions. It is the extension of the implementation of analytical energy gradients (Lazarski et al., Journal of Computational Chemistry 2016, 37, 2518-2526) to the stress tensor for the purpose of optimization of lattice vectors. Its key component is the efficient calculation of the Coulomb contribution by combining density fitting approximation and continuous fast multipole method. For the exchange-correlation (XC) part the hierarchical numerical integration scheme (Burow and Sierka, Journal of Chemical Theory and Computation 2011, 7, 3097-3104) is extended to XC weight derivatives and stress tensor. The computational efficiency and favorable scaling behavior of the stress tensor implementation are demonstrated for various model systems. The overall computational effort for energy gradient and stress tensor for the largest systems investigated is shown to be at most two and a half times the computational effort for the Kohn-Sham matrix formation. © 2019 Wiley Periodicals, Inc.A full implementation of the analytical stress tensor for periodic systems is reported in the TURBOMOLE program package within the framework of Kohn-Sham density functional theory using Gaussian-type orbitals as basis functions. It is the extension of the implementation of analytical energy gradients (Lazarski et al., Journal of Computational Chemistry 2016, 37, 2518-2526) to the stress tensor for the purpose of optimization of lattice vectors. Its key component is the efficient calculation of the Coulomb contribution by combining density fitting approximation and continuous fast multipole method. For the exchange-correlation (XC) part the hierarchical numerical integration scheme (Burow and Sierka, Journal of Chemical Theory and Computation 2011, 7, 3097-3104) is extended to XC weight derivatives and stress tensor. The computational efficiency and favorable scaling behavior of the stress tensor implementation are demonstrated for various model systems. The overall computational effort for energy gradient and stress tensor for the largest systems investigated is shown to be at most two and a half times the computational effort for the Kohn-Sham matrix formation. © 2019 Wiley Periodicals, Inc.
A full implementation of the analytical stress tensor for periodic systems is reported in the TURBOMOLE program package within the framework of Kohn–Sham density functional theory using Gaussian‐type orbitals as basis functions. It is the extension of the implementation of analytical energy gradients (Lazarski et al., Journal of Computational Chemistry 2016, 37, 2518–2526) to the stress tensor for the purpose of optimization of lattice vectors. Its key component is the efficient calculation of the Coulomb contribution by combining density fitting approximation and continuous fast multipole method. For the exchange‐correlation (XC) part the hierarchical numerical integration scheme (Burow and Sierka, Journal of Chemical Theory and Computation 2011, 7, 3097–3104) is extended to XC weight derivatives and stress tensor. The computational efficiency and favorable scaling behavior of the stress tensor implementation are demonstrated for various model systems. The overall computational effort for energy gradient and stress tensor for the largest systems investigated is shown to be at most two and a half times the computational effort for the Kohn–Sham matrix formation. © 2019 Wiley Periodicals, Inc. An implementation of analytical stress tensor in the TURBOMOLE program package within the framework of Kohn–Sham density functional theory using Gaussian‐type orbitals as basis functions is reported. Its key component is a combination of density fitting approximation and continuous fast multipole method, which allows an efficient evaluation of the Coulomb contribution. The computational efficiency and favorable scaling behavior of the implementation are demonstrated for various model systems. The overall computational effort for the energy gradient and stress tensor calculation is shown to be at most two and a half times that of a single Kohn–Sham matrix formation.
Author Sierka, Marek
Becker, Martin
Author_xml – sequence: 1
  givenname: Martin
  surname: Becker
  fullname: Becker, Martin
  organization: Friedrich‐Schiller‐Universität Jena, Löbdergraben 32
– sequence: 2
  givenname: Marek
  orcidid: 0000-0001-8153-3682
  surname: Sierka
  fullname: Sierka, Marek
  email: marek.sierka@uni-jena.de
  organization: Friedrich‐Schiller‐Universität Jena, Löbdergraben 32
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31322769$$D View this record in MEDLINE/PubMed
BookMark eNp9kctO3DAUhq0KVAbaRV8AWWJDFwFfJk7MDk1vIKQu2krdRY5zAh459uCL0LxAn7tOB7pAgtW56Pt_HZ3_EO057wChD5ScUULY-VrrMyYI52_QghIpKtk2v_fQglDJqlbU9AAdxrgmhPBaLN-iA045Y42QC_TnE7ho0haP2elkvFMWpzvwoWx8wJO3oLNVASs34A0E4wejcdzGBFPEORp3i4cnC5PSPM-o9q702eeIRxUTnrJNZlPc8ATpzg8X-EcKECNORezDO7Q_Khvh_WM9Qr--fP65-lbdfP96tbq8qTSvOa-UbMcWtFRtswTgpNXD2IzLkaih72tV9i3jVHAiewpAuGqJpr3Sfc0bUKznR-h057sJ_j5DTN1kogZrlYNya8eYoExwzkhBT56ha59D-c9MSbmkdS1FoY4fqdxPMHSbYCYVtt3ThwvwcQfo4GMMMP5HKOnm9LqSXvcvvcKeP2O1SWpOJQVl7GuKB2Nh-7J1d71a7RR_Afenrf8
CitedBy_id crossref_primary_10_1063_5_0246433
crossref_primary_10_1021_acs_jpca_5c02937
crossref_primary_10_1103_PhysRevB_106_085108
crossref_primary_10_1063_5_0004635
crossref_primary_10_1063_5_0209704
crossref_primary_10_3390_cryst9120665
crossref_primary_10_3390_ma12162605
Cites_doi 10.1063/1.1545778
10.1063/1.4971292
10.1103/PhysRevB.26.1743
10.1103/PhysRevLett.91.146401
10.1016/S0009-2614(97)01329-8
10.1126/science.271.5245.51
10.1088/0953-8984/21/39/395502
10.1063/1.468081
10.1080/00268979709482119
10.1063/1.472866
10.1073/pnas.0408475102
10.1063/1.469408
10.1016/0009-2614(94)01128-1
10.1103/PhysRevA.42.6354
10.1103/PhysRevB.61.16440
10.1021/jp990629s
10.1002/jcc.23961
10.1063/1.465054
10.1016/0010-4655(95)00139-5
10.1063/1.3693411
10.1103/PhysRevA.34.785
10.1016/0009-2614(92)85009-Y
10.1021/acs.jctc.5b00252
10.1063/1.1567253
10.1016/0009-2614(89)85118-8
10.1016/0009-2614(93)89151-7
10.1002/wcms.1162
10.1103/PhysRevLett.77.3865
10.1063/1.2370949
10.1016/0010-4655(96)00078-1
10.1063/1.471163
10.1063/1.3267858
10.1063/1.468354
10.1016/j.cpc.2015.01.003
10.1063/1.1771634
10.1002/wcms.98
10.1103/PhysRevB.61.5141
10.1103/PhysRevB.33.8822
10.1016/0301-0104(73)80059-X
10.1002/jcc.23153
10.1063/1.468836
10.1002/qua.24658
10.1021/ct200412r
10.1103/PhysRevLett.22.807
10.1080/00268976900100941
10.1063/1.3459061
10.1103/PhysRevB.33.8800
10.1063/1.438728
10.1063/1.1357441
10.1002/wcms.81
10.1080/00268970903193028
10.1103/PhysRevB.71.035109
10.1016/0009-2614(96)00600-8
10.1016/0009-2614(95)00838-U
10.1016/0927-0256(96)00008-0
10.1016/0009-2614(95)01301-6
10.1016/j.cpc.2004.12.014
10.1063/1.464906
10.1063/1.456354
10.1063/1.4812183
10.1103/PhysRevA.38.1697
10.1103/PhysRevA.38.3098
10.1103/PhysRevB.37.785
10.1080/00268976.2015.1078009
10.1139/p80-159
10.1016/S0009-2614(98)00468-0
10.1021/ct500172n
10.1002/jcc.24477
ContentType Journal Article
Copyright 2019 Wiley Periodicals, Inc.
Copyright_xml – notice: 2019 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
NPM
JQ2
7X8
DOI 10.1002/jcc.26033
DatabaseName CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList CrossRef
ProQuest Computer Science Collection
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1096-987X
EndPage 2570
ExternalDocumentID 31322769
10_1002_jcc_26033
JCC26033
Genre article
Journal Article
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  funderid: SI 938/8
– fundername: Turbomole GmbH
– fundername: Deutsche Forschungsgemeinschaft
  grantid: SI 938/8
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
36B
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWK
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YQT
ZZTAW
~IA
~KM
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
O8X
NPM
JQ2
7X8
ID FETCH-LOGICAL-c3533-a98f8ec9a874ee308cdf7f4f0adbb5a9a882316309b1ee03a80c1bacb537ea2b3
IEDL.DBID DRFUL
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000477232200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0192-8651
1096-987X
IngestDate Fri Jul 11 08:45:50 EDT 2025
Fri Jul 25 19:12:59 EDT 2025
Wed Feb 19 02:30:36 EST 2025
Sat Nov 29 03:23:40 EST 2025
Tue Nov 18 22:23:45 EST 2025
Wed Jan 22 16:39:44 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 29
Keywords Gaussian basis sets
ab initio calculations
density fitting
continuous fast multipole method
density functional theory
Language English
License 2019 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3533-a98f8ec9a874ee308cdf7f4f0adbb5a9a882316309b1ee03a80c1bacb537ea2b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8153-3682
PMID 31322769
PQID 2299415596
PQPubID 48816
PageCount 8
ParticipantIDs proquest_miscellaneous_2261263320
proquest_journals_2299415596
pubmed_primary_31322769
crossref_primary_10_1002_jcc_26033
crossref_citationtrail_10_1002_jcc_26033
wiley_primary_10_1002_jcc_26033_JCC26033
PublicationCentury 2000
PublicationDate November 5, 2019
PublicationDateYYYYMMDD 2019-11-05
PublicationDate_xml – month: 11
  year: 2019
  text: November 5, 2019
  day: 05
PublicationDecade 2010
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: New York
PublicationTitle Journal of computational chemistry
PublicationTitleAlternate J Comput Chem
PublicationYear 2019
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2004; 121
2015; 36
2003; 118
2010; 108
1986; 33
1986; 34
1988; 37
1988; 38
2016; 145
1989; 162
1996; 104
2016; 37
1979; 71
1996; 105
1996; 77
1994; 101
1990; 42
1982; 26
2014; 4
2003; 91
1997; 92
2005; 102
1992; 199
2000; 61
2005; 71
2012; 136
1995; 242
1993; 213
1996; 257
1998; 289
1998; 283
1996; 6
2006; 125
2014; 10
2009; 21
1994; 230
2015; 11
1996; 94
1999; 103
2009; 131
1969; 17
2014; 114
1996; 98
2011; 7
1996; 248
1980; 58
2012; 2
2015; 190
2005; 167
2015; 113
2013; 34
1993; 98
1989; 90
2013; 139
1996; 271
2010; 133
1969; 22
1995; 102
2015
1973; 2
2001; 114
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_1_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
References_xml – volume: 71
  start-page: 035109
  year: 2005
  publication-title: Phys. Rev. B
– volume: 102
  start-page: 346
  year: 1995
  publication-title: J. Chem. Phys.
– volume: 6
  start-page: 15
  year: 1996
  publication-title: Comp. Mater. Sci.
– volume: 271
  start-page: 51
  year: 1996
  publication-title: Science
– volume: 121
  start-page: 2886
  year: 2004
  publication-title: J. Chem. Phys.
– volume: 101
  start-page: 8894
  year: 1994
  publication-title: J. Chem. Phys.
– volume: 242
  start-page: 652
  year: 1995
  publication-title: Chem. Phys. Lett.
– volume: 17
  start-page: 197
  year: 1969
  publication-title: Mol. Phys.
– volume: 131
  start-page: 214101
  year: 2009
  publication-title: J. Chem. Phys.
– volume: 21
  start-page: 395502
  year: 2009
  publication-title: J. Phys.: Condens. Mater.
– volume: 37
  start-page: 2518
  year: 2016
  publication-title: J. Comput. Chem.
– volume: 61
  start-page: 16440
  year: 2000
  publication-title: Phys. Rev. B
– volume: 114
  start-page: 1287
  year: 2014
  publication-title: Int. J. Quantum Chem.
– volume: 91
  start-page: 146401
  year: 2003
  publication-title: Phys. Rev. Lett.
– volume: 36
  start-page: 1521
  year: 2015
  publication-title: J. Comput. Chem.
– volume: 77
  start-page: 3865
  year: 1996
  publication-title: Phys. Rev. Lett.
– volume: 118
  start-page: 9136
  year: 2003
  publication-title: J. Chem. Phys.
– volume: 98
  start-page: 5612
  year: 1993
  publication-title: J. Chem. Phys.
– volume: 167
  start-page: 103
  year: 2005
  publication-title: Comput. Phys. Commun.
– volume: 2
  start-page: 41
  year: 1973
  publication-title: Chem. Phys.
– volume: 26
  start-page: 1743
  year: 1982
  publication-title: Phys. Rev. B
– volume: 101
  start-page: 6593
  year: 1994
  publication-title: J. Chem. Phys.
– volume: 7
  start-page: 3097
  year: 2011
  publication-title: J. Chem. Theory Comput.
– volume: 10
  start-page: 1994
  year: 2014
  publication-title: J. Chem. Theory Comput.
– volume: 145
  start-page: 224103
  year: 2016
  publication-title: J. Chem. Phys.
– volume: 90
  start-page: 6371
  year: 1989
  publication-title: J. Chem. Phys.
– volume: 105
  start-page: 10983
  year: 1996
  publication-title: J. Chem. Phys.
– volume: 139
  start-page: 024102
  year: 2013
  publication-title: J. Chem. Phys.
– volume: 190
  start-page: 33
  year: 2015
  publication-title: Comput. Phys. Commun.
– volume: 4
  start-page: 91
  year: 2014
  publication-title: WIREs Comput. Mol. Sci.
– volume: 61
  start-page: 5141
  year: 2000
  publication-title: Phys. Rev. B
– volume: 162
  start-page: 165
  year: 1989
  publication-title: Chem. Phys. Lett.
– volume: 104
  start-page: 4685
  year: 1996
  publication-title: J. Chem. Phys.
– year: 2015
– volume: 37
  start-page: 785
  year: 1988
  publication-title: Phys. Rev. B
– volume: 108
  start-page: 223
  year: 2010
  publication-title: Mol. Phys.
– volume: 230
  start-page: 8
  year: 1994
  publication-title: Chem. Phys. Lett.
– volume: 58
  start-page: 1200
  year: 1980
  publication-title: Can. J. Phys.
– volume: 94
  start-page: 31
  year: 1996
  publication-title: Comput. Phys. Commun.
– volume: 92
  start-page: 477
  year: 1997
  publication-title: Mol. Phys.
– volume: 248
  start-page: 43
  year: 1996
  publication-title: Chem. Phys. Lett.
– volume: 33
  start-page: 8800
  year: 1986
  publication-title: Phys. Rev. B
– volume: 2
  start-page: 548
  year: 2012
  publication-title: WIREs Comput. Mol. Sci.
– volume: 118
  start-page: 5776
  year: 2003
  publication-title: J. Chem. Phys.
– volume: 102
  start-page: 6692
  year: 2005
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 103
  start-page: 4782
  year: 1999
  publication-title: J. Phys. Chem. A
– volume: 199
  start-page: 557
  year: 1992
  publication-title: Chem. Phys. Lett.
– volume: 102
  start-page: 8448
  year: 1995
  publication-title: J. Chem. Phys.
– volume: 71
  start-page: 3396
  year: 1979
  publication-title: J. Chem. Phys.
– volume: 136
  start-page: 114105
  year: 2012
  publication-title: J. Chem. Phys.
– volume: 38
  start-page: 3098
  year: 1988
  publication-title: Phys. Rev. A
– volume: 22
  start-page: 807
  year: 1969
  publication-title: Phys. Rev. Lett.
– volume: 34
  start-page: 785
  year: 1986
  publication-title: Phys. Rev. A
– volume: 42
  start-page: 6354
  year: 1990
  publication-title: Phys. Rev. A
– volume: 283
  start-page: 61
  year: 1998
  publication-title: Chem. Phys. Lett.
– volume: 125
  start-page: 194109
  year: 2006
  publication-title: J. Chem. Phys.
– volume: 114
  start-page: 6572
  year: 2001
  publication-title: J. Chem. Phys.
– volume: 2
  start-page: 73
  year: 2012
  publication-title: WIREs Comput. Mol. Sci.
– volume: 38
  start-page: 1697
  year: 1988
  publication-title: Phys. Rev. A
– volume: 213
  start-page: 514
  year: 1993
  publication-title: Chem. Phys. Lett.
– volume: 113
  start-page: 3128
  year: 2015
  publication-title: Mol. Phys.
– volume: 98
  start-page: 181
  year: 1996
  publication-title: Comput. Phys. Commun.
– volume: 34
  start-page: 451
  year: 2013
  publication-title: J. Comput. Chem.
– volume: 33
  start-page: 8822
  year: 1986
  publication-title: Phys. Rev. B
– volume: 98
  start-page: 1398
  year: 1993
  publication-title: J. Chem. Phys.
– volume: 11
  start-page: 3029
  year: 2015
  publication-title: J. Chem. Theory Comput.
– volume: 133
  start-page: 044102
  year: 2010
  publication-title: J. Chem. Phys.
– volume: 289
  start-page: 611
  year: 1998
  publication-title: Chem. Phys. Lett.
– volume: 257
  start-page: 213
  year: 1996
  publication-title: Chem. Phys. Lett.
– ident: e_1_2_6_30_1
  doi: 10.1063/1.1545778
– ident: e_1_2_6_70_1
  doi: 10.1063/1.4971292
– ident: e_1_2_6_33_1
  doi: 10.1103/PhysRevB.26.1743
– ident: e_1_2_6_60_1
  doi: 10.1103/PhysRevLett.91.146401
– ident: e_1_2_6_65_1
  doi: 10.1016/S0009-2614(97)01329-8
– ident: e_1_2_6_8_1
  doi: 10.1126/science.271.5245.51
– ident: e_1_2_6_45_1
– ident: e_1_2_6_2_1
  doi: 10.1088/0953-8984/21/39/395502
– ident: e_1_2_6_63_1
  doi: 10.1063/1.468081
– ident: e_1_2_6_5_1
  doi: 10.1080/00268979709482119
– ident: e_1_2_6_22_1
  doi: 10.1063/1.472866
– ident: e_1_2_6_32_1
  doi: 10.1073/pnas.0408475102
– ident: e_1_2_6_69_1
  doi: 10.1063/1.469408
– ident: e_1_2_6_34_1
  doi: 10.1016/0009-2614(94)01128-1
– ident: e_1_2_6_18_1
  doi: 10.1103/PhysRevA.42.6354
– ident: e_1_2_6_13_1
  doi: 10.1103/PhysRevB.61.16440
– ident: e_1_2_6_36_1
  doi: 10.1021/jp990629s
– ident: e_1_2_6_44_1
  doi: 10.1002/jcc.23961
– ident: e_1_2_6_23_1
  doi: 10.1063/1.465054
– ident: e_1_2_6_3_1
  doi: 10.1016/0010-4655(95)00139-5
– ident: e_1_2_6_1_1
  doi: 10.1063/1.3693411
– ident: e_1_2_6_53_1
  doi: 10.1103/PhysRevA.34.785
– ident: e_1_2_6_50_1
  doi: 10.1016/0009-2614(92)85009-Y
– ident: e_1_2_6_16_1
  doi: 10.1021/acs.jctc.5b00252
– ident: e_1_2_6_39_1
  doi: 10.1063/1.1567253
– ident: e_1_2_6_46_1
  doi: 10.1016/0009-2614(89)85118-8
– ident: e_1_2_6_25_1
  doi: 10.1016/0009-2614(93)89151-7
– ident: e_1_2_6_47_1
  doi: 10.1002/wcms.1162
– ident: e_1_2_6_58_1
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_2_6_40_1
  doi: 10.1063/1.2370949
– ident: e_1_2_6_12_1
  doi: 10.1016/0010-4655(96)00078-1
– ident: e_1_2_6_35_1
  doi: 10.1063/1.471163
– ident: e_1_2_6_15_1
  doi: 10.1063/1.3267858
– ident: e_1_2_6_26_1
  doi: 10.1063/1.468354
– ident: e_1_2_6_48_1
– ident: e_1_2_6_66_1
  doi: 10.1016/j.cpc.2015.01.003
– ident: e_1_2_6_31_1
  doi: 10.1063/1.1771634
– ident: e_1_2_6_9_1
  doi: 10.1002/wcms.98
– ident: e_1_2_6_28_1
  doi: 10.1103/PhysRevB.61.5141
– ident: e_1_2_6_57_1
  doi: 10.1103/PhysRevB.33.8822
– ident: e_1_2_6_17_1
  doi: 10.1016/0301-0104(73)80059-X
– ident: e_1_2_6_68_1
  doi: 10.1002/jcc.23153
– ident: e_1_2_6_14_1
  doi: 10.1063/1.468836
– ident: e_1_2_6_11_1
  doi: 10.1002/qua.24658
– ident: e_1_2_6_43_1
  doi: 10.1021/ct200412r
– ident: e_1_2_6_54_1
  doi: 10.1103/PhysRevLett.22.807
– ident: e_1_2_6_49_1
  doi: 10.1080/00268976900100941
– ident: e_1_2_6_24_1
  doi: 10.1063/1.3459061
– ident: e_1_2_6_59_1
  doi: 10.1103/PhysRevB.33.8800
– ident: e_1_2_6_19_1
  doi: 10.1063/1.438728
– ident: e_1_2_6_29_1
  doi: 10.1063/1.1357441
– ident: e_1_2_6_10_1
  doi: 10.1002/wcms.81
– ident: e_1_2_6_67_1
  doi: 10.1080/00268970903193028
– ident: e_1_2_6_6_1
  doi: 10.1103/PhysRevB.71.035109
– ident: e_1_2_6_62_1
  doi: 10.1016/0009-2614(96)00600-8
– ident: e_1_2_6_20_1
  doi: 10.1016/0009-2614(95)00838-U
– ident: e_1_2_6_4_1
  doi: 10.1016/0927-0256(96)00008-0
– ident: e_1_2_6_27_1
  doi: 10.1016/0009-2614(95)01301-6
– ident: e_1_2_6_7_1
  doi: 10.1016/j.cpc.2004.12.014
– ident: e_1_2_6_55_1
  doi: 10.1063/1.464906
– ident: e_1_2_6_21_1
  doi: 10.1063/1.456354
– ident: e_1_2_6_37_1
  doi: 10.1063/1.4812183
– ident: e_1_2_6_52_1
  doi: 10.1103/PhysRevA.38.1697
– ident: e_1_2_6_51_1
  doi: 10.1103/PhysRevA.38.3098
– ident: e_1_2_6_56_1
  doi: 10.1103/PhysRevB.37.785
– ident: e_1_2_6_38_1
  doi: 10.1080/00268976.2015.1078009
– ident: e_1_2_6_61_1
  doi: 10.1139/p80-159
– ident: e_1_2_6_64_1
  doi: 10.1016/S0009-2614(98)00468-0
– ident: e_1_2_6_41_1
  doi: 10.1021/ct500172n
– ident: e_1_2_6_42_1
  doi: 10.1002/jcc.24477
SSID ssj0003564
Score 2.3729136
Snippet A full implementation of the analytical stress tensor for periodic systems is reported in the TURBOMOLE program package within the framework of Kohn–Sham...
A full implementation of the analytical stress tensor for periodic systems is reported in the TURBOMOLE program package within the framework of Kohn-Sham...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2563
SubjectTerms ab initio calculations
Basis functions
Computational chemistry
Computational efficiency
continuous fast multipole method
density fitting
Density functional theory
Energy gradient
Functionals
Gaussian basis sets
Mathematical analysis
Multipoles
Numerical integration
Optimization
Organic chemistry
Tensors
Title Density functional theory for molecular and periodic systems using density fitting and continuous fast multipole method: Stress tensor
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcc.26033
https://www.ncbi.nlm.nih.gov/pubmed/31322769
https://www.proquest.com/docview/2299415596
https://www.proquest.com/docview/2261263320
Volume 40
WOSCitedRecordID wos000477232200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1096-987X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003564
  issn: 0192-8651
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEB_uQ9AXv09XzyOKD77Ua5u2SfRJ9lxEjkPUk30raTKRFW1luyv4D_h3O0nayqGC4FtJp0lIMplfk5nfADyWmcFSk6YpXeikwFQnEm2WVBYdx0xIE4i0P5yKszO5XKo3O_B8jIWJ_BDTgZvXjLBfewXXTX_8izT0kzFPCYxzvgv7PqiK_rz2T94uzk-njZiXkT2KQEwiqzIbiYXS_Hj6-KI5-g1jXoSsweYsrv1Xb6_D1QFqshdxbdyAHWxvwuX5mOHtFvw48d7rm-_MG7d4JshCYCOVdGv2Zcycy3RrmWdE7uzKsMj93DPvMf-R2bGKVXCgDqLe_X3Vbrttz5zuNyw6LVJtLOarfsbehQgV5r3nu_VtOF-8fD9_lQx5GRLDCR0mWkkn0SgtRYHIU2msE65wqbZNU2oq93eLFU9VkyGmXMvUZI02TckF6rzhB7DXdi3eBSZtJYRDAmllUThFM2UIEhHmsY1GdGIGT8bpqc1AWu5zZ3yuI91yXtPA1mFgZ_BoEv0amTr-JHQ4znE9KGtf52SSPa5S1QweTq9pLvzdiW6RhotkCApWnOfpDO7EtTG14tkvc1Ep6mxYAn9vvn49n4eHe_8ueh-uEEhTIf6xPIS9zXqLD-CS-bZZ9esj2BVLeTSs_J8AZQiK
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEB_OPeF88ftj9dQoPvhSr23aJhFfZM_l1HURvZN7K2kylRVtZbsr-A_4dztJ2sqhguBbSadpyGQyP5KZ3wA8konBXJOlKZ3pKMNYRxJtEhUWa46JkMYTaX9YiOVSnp6qtzvwbMiFCfwQ44Gbswy_XzsDdwfSB79YQz8Z84TQOOfnYDcruJAT2D18Nz9ZjDsxzwN9FKGYSBZ5MjALxenB-PFZf_QbyDyLWb3TmV_6v-Fehos92GTPw-q4AjvYXIW92VDj7Rr8OHTx65vvzLm3cCrIfGojtbRr9mWonct0Y5njRG7tyrDA_twxFzP_kdmhi5UPofaiLgB-1Wzbbcdq3W1YCFuk3lioWP2Uvfc5KszFz7fr63Ayf3E8O4r6ygyR4YQPI61kLdEoLUWGyGNpbC3qrI61rapcU7u7XSx4rKoEMeZaxiaptKlyLlCnFb8Bk6Zt8BYwaQshaiSYlmdZrUhVhkARoR5bacRaTOHxoJ_S9LTlrnrG5zIQLqclTWzpJ3YKD0fRr4Gr409C-4OSy95cuzIlp-yQlSqm8GB8Tbpwtye6QZoukiEwWHCexlO4GRbH-BfHf5mKQtFg_Rr4--_LV7OZf7j976L3Ye_o-M2iXLxcvr4DFwiyKZ8Nme_DZLPe4l04b75tVt36Xm8APwGMHguS
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB4tXQRceD8KCxjEgUt2kzgPG3FBLRWPqloBi_YWOfYYdbUkq6ZF4g_wuxnbTdAKkJC4Rc7EsTwz9id75huAZyLRmCvyNKkyFWUYq0igSaLCoOWYlEJ7Iu3P83KxEMfH8nAHXva5MIEfYjhwc57h12vn4Hhm7MEv1tATrfcJjXN-AXazXObZCHanH2ZH82El5nmgjyIUE4kiT3pmoTg9GD4-vx_9BjLPY1a_6cyu_d9wr8PVLdhkr4J13IAdbG7C5Ulf4-0W_Ji6-PX1d-a2t3AqyHxqI7W0K_a1r53LVGOY40RuzVKzwP7cMRcz_4WZvoulD6H2oi4Aftls2k3HrOrWLIQtUm8sVKx-wT76HBXm4ufb1W04mr3-NHkTbSszRJoTPoyUFFaglkqUGSKPhTa2tJmNlanrXFG7u10seCzrBDHmSsQ6qZWuc16iSmt-B0ZN2-A9YMIUZWmRYFqeZVaSqjSBIkI9plaIthzD814_ld7SlrvqGadVIFxOK5rYyk_sGJ4OomeBq-NPQnu9kqutu3ZVSpuyQ1ayGMOT4TXpwt2eqAZpukiGwGDBeRqP4W4wjuEvjv8yLQtJg_U28PffV-8mE_9w_99FH8Olw-msmr9dvH8AVwixSZ8Mme_BaL3a4EO4qL-tl93q0db-fwIH9gsN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Density+functional+theory+for+molecular+and+periodic+systems+using+density+fitting+and+continuous+fast+multipole+method%3A+Stress+tensor&rft.jtitle=Journal+of+computational+chemistry&rft.au=Becker%2C+Martin&rft.au=Sierka%2C+Marek&rft.date=2019-11-05&rft.eissn=1096-987X&rft.volume=40&rft.issue=29&rft.spage=2563&rft_id=info:doi/10.1002%2Fjcc.26033&rft_id=info%3Apmid%2F31322769&rft.externalDocID=31322769
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0192-8651&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0192-8651&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0192-8651&client=summon