Density functional theory for molecular and periodic systems using density fitting and continuous fast multipole method: Stress tensor
A full implementation of the analytical stress tensor for periodic systems is reported in the TURBOMOLE program package within the framework of Kohn–Sham density functional theory using Gaussian‐type orbitals as basis functions. It is the extension of the implementation of analytical energy gradient...
Uloženo v:
| Vydáno v: | Journal of computational chemistry Ročník 40; číslo 29; s. 2563 - 2570 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Hoboken, USA
John Wiley & Sons, Inc
05.11.2019
Wiley Subscription Services, Inc |
| Témata: | |
| ISSN: | 0192-8651, 1096-987X, 1096-987X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | A full implementation of the analytical stress tensor for periodic systems is reported in the TURBOMOLE program package within the framework of Kohn–Sham density functional theory using Gaussian‐type orbitals as basis functions. It is the extension of the implementation of analytical energy gradients (Lazarski et al., Journal of Computational Chemistry 2016, 37, 2518–2526) to the stress tensor for the purpose of optimization of lattice vectors. Its key component is the efficient calculation of the Coulomb contribution by combining density fitting approximation and continuous fast multipole method. For the exchange‐correlation (XC) part the hierarchical numerical integration scheme (Burow and Sierka, Journal of Chemical Theory and Computation 2011, 7, 3097–3104) is extended to XC weight derivatives and stress tensor. The computational efficiency and favorable scaling behavior of the stress tensor implementation are demonstrated for various model systems. The overall computational effort for energy gradient and stress tensor for the largest systems investigated is shown to be at most two and a half times the computational effort for the Kohn–Sham matrix formation. © 2019 Wiley Periodicals, Inc.
An implementation of analytical stress tensor in the TURBOMOLE program package within the framework of Kohn–Sham density functional theory using Gaussian‐type orbitals as basis functions is reported. Its key component is a combination of density fitting approximation and continuous fast multipole method, which allows an efficient evaluation of the Coulomb contribution. The computational efficiency and favorable scaling behavior of the implementation are demonstrated for various model systems. The overall computational effort for the energy gradient and stress tensor calculation is shown to be at most two and a half times that of a single Kohn–Sham matrix formation. |
|---|---|
| AbstractList | A full implementation of the analytical stress tensor for periodic systems is reported in the TURBOMOLE program package within the framework of Kohn–Sham density functional theory using Gaussian‐type orbitals as basis functions. It is the extension of the implementation of analytical energy gradients (Lazarski et al., Journal of Computational Chemistry 2016, 37, 2518–2526) to the stress tensor for the purpose of optimization of lattice vectors. Its key component is the efficient calculation of the Coulomb contribution by combining density fitting approximation and continuous fast multipole method. For the exchange‐correlation (XC) part the hierarchical numerical integration scheme (Burow and Sierka, Journal of Chemical Theory and Computation 2011, 7, 3097–3104) is extended to XC weight derivatives and stress tensor. The computational efficiency and favorable scaling behavior of the stress tensor implementation are demonstrated for various model systems. The overall computational effort for energy gradient and stress tensor for the largest systems investigated is shown to be at most two and a half times the computational effort for the Kohn–Sham matrix formation. © 2019 Wiley Periodicals, Inc. A full implementation of the analytical stress tensor for periodic systems is reported in the TURBOMOLE program package within the framework of Kohn-Sham density functional theory using Gaussian-type orbitals as basis functions. It is the extension of the implementation of analytical energy gradients (Lazarski et al., Journal of Computational Chemistry 2016, 37, 2518-2526) to the stress tensor for the purpose of optimization of lattice vectors. Its key component is the efficient calculation of the Coulomb contribution by combining density fitting approximation and continuous fast multipole method. For the exchange-correlation (XC) part the hierarchical numerical integration scheme (Burow and Sierka, Journal of Chemical Theory and Computation 2011, 7, 3097-3104) is extended to XC weight derivatives and stress tensor. The computational efficiency and favorable scaling behavior of the stress tensor implementation are demonstrated for various model systems. The overall computational effort for energy gradient and stress tensor for the largest systems investigated is shown to be at most two and a half times the computational effort for the Kohn-Sham matrix formation. © 2019 Wiley Periodicals, Inc.A full implementation of the analytical stress tensor for periodic systems is reported in the TURBOMOLE program package within the framework of Kohn-Sham density functional theory using Gaussian-type orbitals as basis functions. It is the extension of the implementation of analytical energy gradients (Lazarski et al., Journal of Computational Chemistry 2016, 37, 2518-2526) to the stress tensor for the purpose of optimization of lattice vectors. Its key component is the efficient calculation of the Coulomb contribution by combining density fitting approximation and continuous fast multipole method. For the exchange-correlation (XC) part the hierarchical numerical integration scheme (Burow and Sierka, Journal of Chemical Theory and Computation 2011, 7, 3097-3104) is extended to XC weight derivatives and stress tensor. The computational efficiency and favorable scaling behavior of the stress tensor implementation are demonstrated for various model systems. The overall computational effort for energy gradient and stress tensor for the largest systems investigated is shown to be at most two and a half times the computational effort for the Kohn-Sham matrix formation. © 2019 Wiley Periodicals, Inc. A full implementation of the analytical stress tensor for periodic systems is reported in the TURBOMOLE program package within the framework of Kohn–Sham density functional theory using Gaussian‐type orbitals as basis functions. It is the extension of the implementation of analytical energy gradients (Lazarski et al., Journal of Computational Chemistry 2016, 37, 2518–2526) to the stress tensor for the purpose of optimization of lattice vectors. Its key component is the efficient calculation of the Coulomb contribution by combining density fitting approximation and continuous fast multipole method. For the exchange‐correlation (XC) part the hierarchical numerical integration scheme (Burow and Sierka, Journal of Chemical Theory and Computation 2011, 7, 3097–3104) is extended to XC weight derivatives and stress tensor. The computational efficiency and favorable scaling behavior of the stress tensor implementation are demonstrated for various model systems. The overall computational effort for energy gradient and stress tensor for the largest systems investigated is shown to be at most two and a half times the computational effort for the Kohn–Sham matrix formation. © 2019 Wiley Periodicals, Inc. An implementation of analytical stress tensor in the TURBOMOLE program package within the framework of Kohn–Sham density functional theory using Gaussian‐type orbitals as basis functions is reported. Its key component is a combination of density fitting approximation and continuous fast multipole method, which allows an efficient evaluation of the Coulomb contribution. The computational efficiency and favorable scaling behavior of the implementation are demonstrated for various model systems. The overall computational effort for the energy gradient and stress tensor calculation is shown to be at most two and a half times that of a single Kohn–Sham matrix formation. |
| Author | Sierka, Marek Becker, Martin |
| Author_xml | – sequence: 1 givenname: Martin surname: Becker fullname: Becker, Martin organization: Friedrich‐Schiller‐Universität Jena, Löbdergraben 32 – sequence: 2 givenname: Marek orcidid: 0000-0001-8153-3682 surname: Sierka fullname: Sierka, Marek email: marek.sierka@uni-jena.de organization: Friedrich‐Schiller‐Universität Jena, Löbdergraben 32 |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31322769$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kctO3DAUhq0KVAbaRV8AWWJDFwFfJk7MDk1vIKQu2krdRY5zAh459uCL0LxAn7tOB7pAgtW56Pt_HZ3_EO057wChD5ScUULY-VrrMyYI52_QghIpKtk2v_fQglDJqlbU9AAdxrgmhPBaLN-iA045Y42QC_TnE7ho0haP2elkvFMWpzvwoWx8wJO3oLNVASs34A0E4wejcdzGBFPEORp3i4cnC5PSPM-o9q702eeIRxUTnrJNZlPc8ATpzg8X-EcKECNORezDO7Q_Khvh_WM9Qr--fP65-lbdfP96tbq8qTSvOa-UbMcWtFRtswTgpNXD2IzLkaih72tV9i3jVHAiewpAuGqJpr3Sfc0bUKznR-h057sJ_j5DTN1kogZrlYNya8eYoExwzkhBT56ha59D-c9MSbmkdS1FoY4fqdxPMHSbYCYVtt3ThwvwcQfo4GMMMP5HKOnm9LqSXvcvvcKeP2O1SWpOJQVl7GuKB2Nh-7J1d71a7RR_Afenrf8 |
| CitedBy_id | crossref_primary_10_1063_5_0246433 crossref_primary_10_1021_acs_jpca_5c02937 crossref_primary_10_1103_PhysRevB_106_085108 crossref_primary_10_1063_5_0004635 crossref_primary_10_1063_5_0209704 crossref_primary_10_3390_cryst9120665 crossref_primary_10_3390_ma12162605 |
| Cites_doi | 10.1063/1.1545778 10.1063/1.4971292 10.1103/PhysRevB.26.1743 10.1103/PhysRevLett.91.146401 10.1016/S0009-2614(97)01329-8 10.1126/science.271.5245.51 10.1088/0953-8984/21/39/395502 10.1063/1.468081 10.1080/00268979709482119 10.1063/1.472866 10.1073/pnas.0408475102 10.1063/1.469408 10.1016/0009-2614(94)01128-1 10.1103/PhysRevA.42.6354 10.1103/PhysRevB.61.16440 10.1021/jp990629s 10.1002/jcc.23961 10.1063/1.465054 10.1016/0010-4655(95)00139-5 10.1063/1.3693411 10.1103/PhysRevA.34.785 10.1016/0009-2614(92)85009-Y 10.1021/acs.jctc.5b00252 10.1063/1.1567253 10.1016/0009-2614(89)85118-8 10.1016/0009-2614(93)89151-7 10.1002/wcms.1162 10.1103/PhysRevLett.77.3865 10.1063/1.2370949 10.1016/0010-4655(96)00078-1 10.1063/1.471163 10.1063/1.3267858 10.1063/1.468354 10.1016/j.cpc.2015.01.003 10.1063/1.1771634 10.1002/wcms.98 10.1103/PhysRevB.61.5141 10.1103/PhysRevB.33.8822 10.1016/0301-0104(73)80059-X 10.1002/jcc.23153 10.1063/1.468836 10.1002/qua.24658 10.1021/ct200412r 10.1103/PhysRevLett.22.807 10.1080/00268976900100941 10.1063/1.3459061 10.1103/PhysRevB.33.8800 10.1063/1.438728 10.1063/1.1357441 10.1002/wcms.81 10.1080/00268970903193028 10.1103/PhysRevB.71.035109 10.1016/0009-2614(96)00600-8 10.1016/0009-2614(95)00838-U 10.1016/0927-0256(96)00008-0 10.1016/0009-2614(95)01301-6 10.1016/j.cpc.2004.12.014 10.1063/1.464906 10.1063/1.456354 10.1063/1.4812183 10.1103/PhysRevA.38.1697 10.1103/PhysRevA.38.3098 10.1103/PhysRevB.37.785 10.1080/00268976.2015.1078009 10.1139/p80-159 10.1016/S0009-2614(98)00468-0 10.1021/ct500172n 10.1002/jcc.24477 |
| ContentType | Journal Article |
| Copyright | 2019 Wiley Periodicals, Inc. |
| Copyright_xml | – notice: 2019 Wiley Periodicals, Inc. |
| DBID | AAYXX CITATION NPM JQ2 7X8 |
| DOI | 10.1002/jcc.26033 |
| DatabaseName | CrossRef PubMed ProQuest Computer Science Collection MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed ProQuest Computer Science Collection MEDLINE - Academic |
| DatabaseTitleList | CrossRef ProQuest Computer Science Collection MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1096-987X |
| EndPage | 2570 |
| ExternalDocumentID | 31322769 10_1002_jcc_26033 JCC26033 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft funderid: SI 938/8 – fundername: Turbomole GmbH – fundername: Deutsche Forschungsgemeinschaft grantid: SI 938/8 |
| GroupedDBID | --- -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 36B 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD ESX F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RWK RX1 RYL SUPJJ TN5 UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YQT ZZTAW ~IA ~KM ~WT AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY CITATION O8X NPM JQ2 7X8 |
| ID | FETCH-LOGICAL-c3533-a98f8ec9a874ee308cdf7f4f0adbb5a9a882316309b1ee03a80c1bacb537ea2b3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000477232200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0192-8651 1096-987X |
| IngestDate | Fri Jul 11 08:45:50 EDT 2025 Fri Jul 25 19:12:59 EDT 2025 Wed Feb 19 02:30:36 EST 2025 Sat Nov 29 03:23:40 EST 2025 Tue Nov 18 22:23:45 EST 2025 Wed Jan 22 16:39:44 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 29 |
| Keywords | Gaussian basis sets ab initio calculations density fitting continuous fast multipole method density functional theory |
| Language | English |
| License | 2019 Wiley Periodicals, Inc. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3533-a98f8ec9a874ee308cdf7f4f0adbb5a9a882316309b1ee03a80c1bacb537ea2b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-8153-3682 |
| PMID | 31322769 |
| PQID | 2299415596 |
| PQPubID | 48816 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_2261263320 proquest_journals_2299415596 pubmed_primary_31322769 crossref_primary_10_1002_jcc_26033 crossref_citationtrail_10_1002_jcc_26033 wiley_primary_10_1002_jcc_26033_JCC26033 |
| PublicationCentury | 2000 |
| PublicationDate | November 5, 2019 |
| PublicationDateYYYYMMDD | 2019-11-05 |
| PublicationDate_xml | – month: 11 year: 2019 text: November 5, 2019 day: 05 |
| PublicationDecade | 2010 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: New York |
| PublicationTitle | Journal of computational chemistry |
| PublicationTitleAlternate | J Comput Chem |
| PublicationYear | 2019 |
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
| References | 2004; 121 2015; 36 2003; 118 2010; 108 1986; 33 1986; 34 1988; 37 1988; 38 2016; 145 1989; 162 1996; 104 2016; 37 1979; 71 1996; 105 1996; 77 1994; 101 1990; 42 1982; 26 2014; 4 2003; 91 1997; 92 2005; 102 1992; 199 2000; 61 2005; 71 2012; 136 1995; 242 1993; 213 1996; 257 1998; 289 1998; 283 1996; 6 2006; 125 2014; 10 2009; 21 1994; 230 2015; 11 1996; 94 1999; 103 2009; 131 1969; 17 2014; 114 1996; 98 2011; 7 1996; 248 1980; 58 2012; 2 2015; 190 2005; 167 2015; 113 2013; 34 1993; 98 1989; 90 2013; 139 1996; 271 2010; 133 1969; 22 1995; 102 2015 1973; 2 2001; 114 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_1_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 |
| References_xml | – volume: 71 start-page: 035109 year: 2005 publication-title: Phys. Rev. B – volume: 102 start-page: 346 year: 1995 publication-title: J. Chem. Phys. – volume: 6 start-page: 15 year: 1996 publication-title: Comp. Mater. Sci. – volume: 271 start-page: 51 year: 1996 publication-title: Science – volume: 121 start-page: 2886 year: 2004 publication-title: J. Chem. Phys. – volume: 101 start-page: 8894 year: 1994 publication-title: J. Chem. Phys. – volume: 242 start-page: 652 year: 1995 publication-title: Chem. Phys. Lett. – volume: 17 start-page: 197 year: 1969 publication-title: Mol. Phys. – volume: 131 start-page: 214101 year: 2009 publication-title: J. Chem. Phys. – volume: 21 start-page: 395502 year: 2009 publication-title: J. Phys.: Condens. Mater. – volume: 37 start-page: 2518 year: 2016 publication-title: J. Comput. Chem. – volume: 61 start-page: 16440 year: 2000 publication-title: Phys. Rev. B – volume: 114 start-page: 1287 year: 2014 publication-title: Int. J. Quantum Chem. – volume: 91 start-page: 146401 year: 2003 publication-title: Phys. Rev. Lett. – volume: 36 start-page: 1521 year: 2015 publication-title: J. Comput. Chem. – volume: 77 start-page: 3865 year: 1996 publication-title: Phys. Rev. Lett. – volume: 118 start-page: 9136 year: 2003 publication-title: J. Chem. Phys. – volume: 98 start-page: 5612 year: 1993 publication-title: J. Chem. Phys. – volume: 167 start-page: 103 year: 2005 publication-title: Comput. Phys. Commun. – volume: 2 start-page: 41 year: 1973 publication-title: Chem. Phys. – volume: 26 start-page: 1743 year: 1982 publication-title: Phys. Rev. B – volume: 101 start-page: 6593 year: 1994 publication-title: J. Chem. Phys. – volume: 7 start-page: 3097 year: 2011 publication-title: J. Chem. Theory Comput. – volume: 10 start-page: 1994 year: 2014 publication-title: J. Chem. Theory Comput. – volume: 145 start-page: 224103 year: 2016 publication-title: J. Chem. Phys. – volume: 90 start-page: 6371 year: 1989 publication-title: J. Chem. Phys. – volume: 105 start-page: 10983 year: 1996 publication-title: J. Chem. Phys. – volume: 139 start-page: 024102 year: 2013 publication-title: J. Chem. Phys. – volume: 190 start-page: 33 year: 2015 publication-title: Comput. Phys. Commun. – volume: 4 start-page: 91 year: 2014 publication-title: WIREs Comput. Mol. Sci. – volume: 61 start-page: 5141 year: 2000 publication-title: Phys. Rev. B – volume: 162 start-page: 165 year: 1989 publication-title: Chem. Phys. Lett. – volume: 104 start-page: 4685 year: 1996 publication-title: J. Chem. Phys. – year: 2015 – volume: 37 start-page: 785 year: 1988 publication-title: Phys. Rev. B – volume: 108 start-page: 223 year: 2010 publication-title: Mol. Phys. – volume: 230 start-page: 8 year: 1994 publication-title: Chem. Phys. Lett. – volume: 58 start-page: 1200 year: 1980 publication-title: Can. J. Phys. – volume: 94 start-page: 31 year: 1996 publication-title: Comput. Phys. Commun. – volume: 92 start-page: 477 year: 1997 publication-title: Mol. Phys. – volume: 248 start-page: 43 year: 1996 publication-title: Chem. Phys. Lett. – volume: 33 start-page: 8800 year: 1986 publication-title: Phys. Rev. B – volume: 2 start-page: 548 year: 2012 publication-title: WIREs Comput. Mol. Sci. – volume: 118 start-page: 5776 year: 2003 publication-title: J. Chem. Phys. – volume: 102 start-page: 6692 year: 2005 publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 103 start-page: 4782 year: 1999 publication-title: J. Phys. Chem. A – volume: 199 start-page: 557 year: 1992 publication-title: Chem. Phys. Lett. – volume: 102 start-page: 8448 year: 1995 publication-title: J. Chem. Phys. – volume: 71 start-page: 3396 year: 1979 publication-title: J. Chem. Phys. – volume: 136 start-page: 114105 year: 2012 publication-title: J. Chem. Phys. – volume: 38 start-page: 3098 year: 1988 publication-title: Phys. Rev. A – volume: 22 start-page: 807 year: 1969 publication-title: Phys. Rev. Lett. – volume: 34 start-page: 785 year: 1986 publication-title: Phys. Rev. A – volume: 42 start-page: 6354 year: 1990 publication-title: Phys. Rev. A – volume: 283 start-page: 61 year: 1998 publication-title: Chem. Phys. Lett. – volume: 125 start-page: 194109 year: 2006 publication-title: J. Chem. Phys. – volume: 114 start-page: 6572 year: 2001 publication-title: J. Chem. Phys. – volume: 2 start-page: 73 year: 2012 publication-title: WIREs Comput. Mol. Sci. – volume: 38 start-page: 1697 year: 1988 publication-title: Phys. Rev. A – volume: 213 start-page: 514 year: 1993 publication-title: Chem. Phys. Lett. – volume: 113 start-page: 3128 year: 2015 publication-title: Mol. Phys. – volume: 98 start-page: 181 year: 1996 publication-title: Comput. Phys. Commun. – volume: 34 start-page: 451 year: 2013 publication-title: J. Comput. Chem. – volume: 33 start-page: 8822 year: 1986 publication-title: Phys. Rev. B – volume: 98 start-page: 1398 year: 1993 publication-title: J. Chem. Phys. – volume: 11 start-page: 3029 year: 2015 publication-title: J. Chem. Theory Comput. – volume: 133 start-page: 044102 year: 2010 publication-title: J. Chem. Phys. – volume: 289 start-page: 611 year: 1998 publication-title: Chem. Phys. Lett. – volume: 257 start-page: 213 year: 1996 publication-title: Chem. Phys. Lett. – ident: e_1_2_6_30_1 doi: 10.1063/1.1545778 – ident: e_1_2_6_70_1 doi: 10.1063/1.4971292 – ident: e_1_2_6_33_1 doi: 10.1103/PhysRevB.26.1743 – ident: e_1_2_6_60_1 doi: 10.1103/PhysRevLett.91.146401 – ident: e_1_2_6_65_1 doi: 10.1016/S0009-2614(97)01329-8 – ident: e_1_2_6_8_1 doi: 10.1126/science.271.5245.51 – ident: e_1_2_6_45_1 – ident: e_1_2_6_2_1 doi: 10.1088/0953-8984/21/39/395502 – ident: e_1_2_6_63_1 doi: 10.1063/1.468081 – ident: e_1_2_6_5_1 doi: 10.1080/00268979709482119 – ident: e_1_2_6_22_1 doi: 10.1063/1.472866 – ident: e_1_2_6_32_1 doi: 10.1073/pnas.0408475102 – ident: e_1_2_6_69_1 doi: 10.1063/1.469408 – ident: e_1_2_6_34_1 doi: 10.1016/0009-2614(94)01128-1 – ident: e_1_2_6_18_1 doi: 10.1103/PhysRevA.42.6354 – ident: e_1_2_6_13_1 doi: 10.1103/PhysRevB.61.16440 – ident: e_1_2_6_36_1 doi: 10.1021/jp990629s – ident: e_1_2_6_44_1 doi: 10.1002/jcc.23961 – ident: e_1_2_6_23_1 doi: 10.1063/1.465054 – ident: e_1_2_6_3_1 doi: 10.1016/0010-4655(95)00139-5 – ident: e_1_2_6_1_1 doi: 10.1063/1.3693411 – ident: e_1_2_6_53_1 doi: 10.1103/PhysRevA.34.785 – ident: e_1_2_6_50_1 doi: 10.1016/0009-2614(92)85009-Y – ident: e_1_2_6_16_1 doi: 10.1021/acs.jctc.5b00252 – ident: e_1_2_6_39_1 doi: 10.1063/1.1567253 – ident: e_1_2_6_46_1 doi: 10.1016/0009-2614(89)85118-8 – ident: e_1_2_6_25_1 doi: 10.1016/0009-2614(93)89151-7 – ident: e_1_2_6_47_1 doi: 10.1002/wcms.1162 – ident: e_1_2_6_58_1 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_2_6_40_1 doi: 10.1063/1.2370949 – ident: e_1_2_6_12_1 doi: 10.1016/0010-4655(96)00078-1 – ident: e_1_2_6_35_1 doi: 10.1063/1.471163 – ident: e_1_2_6_15_1 doi: 10.1063/1.3267858 – ident: e_1_2_6_26_1 doi: 10.1063/1.468354 – ident: e_1_2_6_48_1 – ident: e_1_2_6_66_1 doi: 10.1016/j.cpc.2015.01.003 – ident: e_1_2_6_31_1 doi: 10.1063/1.1771634 – ident: e_1_2_6_9_1 doi: 10.1002/wcms.98 – ident: e_1_2_6_28_1 doi: 10.1103/PhysRevB.61.5141 – ident: e_1_2_6_57_1 doi: 10.1103/PhysRevB.33.8822 – ident: e_1_2_6_17_1 doi: 10.1016/0301-0104(73)80059-X – ident: e_1_2_6_68_1 doi: 10.1002/jcc.23153 – ident: e_1_2_6_14_1 doi: 10.1063/1.468836 – ident: e_1_2_6_11_1 doi: 10.1002/qua.24658 – ident: e_1_2_6_43_1 doi: 10.1021/ct200412r – ident: e_1_2_6_54_1 doi: 10.1103/PhysRevLett.22.807 – ident: e_1_2_6_49_1 doi: 10.1080/00268976900100941 – ident: e_1_2_6_24_1 doi: 10.1063/1.3459061 – ident: e_1_2_6_59_1 doi: 10.1103/PhysRevB.33.8800 – ident: e_1_2_6_19_1 doi: 10.1063/1.438728 – ident: e_1_2_6_29_1 doi: 10.1063/1.1357441 – ident: e_1_2_6_10_1 doi: 10.1002/wcms.81 – ident: e_1_2_6_67_1 doi: 10.1080/00268970903193028 – ident: e_1_2_6_6_1 doi: 10.1103/PhysRevB.71.035109 – ident: e_1_2_6_62_1 doi: 10.1016/0009-2614(96)00600-8 – ident: e_1_2_6_20_1 doi: 10.1016/0009-2614(95)00838-U – ident: e_1_2_6_4_1 doi: 10.1016/0927-0256(96)00008-0 – ident: e_1_2_6_27_1 doi: 10.1016/0009-2614(95)01301-6 – ident: e_1_2_6_7_1 doi: 10.1016/j.cpc.2004.12.014 – ident: e_1_2_6_55_1 doi: 10.1063/1.464906 – ident: e_1_2_6_21_1 doi: 10.1063/1.456354 – ident: e_1_2_6_37_1 doi: 10.1063/1.4812183 – ident: e_1_2_6_52_1 doi: 10.1103/PhysRevA.38.1697 – ident: e_1_2_6_51_1 doi: 10.1103/PhysRevA.38.3098 – ident: e_1_2_6_56_1 doi: 10.1103/PhysRevB.37.785 – ident: e_1_2_6_38_1 doi: 10.1080/00268976.2015.1078009 – ident: e_1_2_6_61_1 doi: 10.1139/p80-159 – ident: e_1_2_6_64_1 doi: 10.1016/S0009-2614(98)00468-0 – ident: e_1_2_6_41_1 doi: 10.1021/ct500172n – ident: e_1_2_6_42_1 doi: 10.1002/jcc.24477 |
| SSID | ssj0003564 |
| Score | 2.3729136 |
| Snippet | A full implementation of the analytical stress tensor for periodic systems is reported in the TURBOMOLE program package within the framework of Kohn–Sham... A full implementation of the analytical stress tensor for periodic systems is reported in the TURBOMOLE program package within the framework of Kohn-Sham... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2563 |
| SubjectTerms | ab initio calculations Basis functions Computational chemistry Computational efficiency continuous fast multipole method density fitting Density functional theory Energy gradient Functionals Gaussian basis sets Mathematical analysis Multipoles Numerical integration Optimization Organic chemistry Tensors |
| Title | Density functional theory for molecular and periodic systems using density fitting and continuous fast multipole method: Stress tensor |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcc.26033 https://www.ncbi.nlm.nih.gov/pubmed/31322769 https://www.proquest.com/docview/2299415596 https://www.proquest.com/docview/2261263320 |
| Volume | 40 |
| WOSCitedRecordID | wos000477232200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1096-987X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003564 issn: 0192-8651 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEB_uQ9AXv09XzyOKD77Ua5u2SfRJ9lxEjkPUk30raTKRFW1luyv4D_h3O0nayqGC4FtJp0lIMplfk5nfADyWmcFSk6YpXeikwFQnEm2WVBYdx0xIE4i0P5yKszO5XKo3O_B8jIWJ_BDTgZvXjLBfewXXTX_8izT0kzFPCYxzvgv7PqiK_rz2T94uzk-njZiXkT2KQEwiqzIbiYXS_Hj6-KI5-g1jXoSsweYsrv1Xb6_D1QFqshdxbdyAHWxvwuX5mOHtFvw48d7rm-_MG7d4JshCYCOVdGv2Zcycy3RrmWdE7uzKsMj93DPvMf-R2bGKVXCgDqLe_X3Vbrttz5zuNyw6LVJtLOarfsbehQgV5r3nu_VtOF-8fD9_lQx5GRLDCR0mWkkn0SgtRYHIU2msE65wqbZNU2oq93eLFU9VkyGmXMvUZI02TckF6rzhB7DXdi3eBSZtJYRDAmllUThFM2UIEhHmsY1GdGIGT8bpqc1AWu5zZ3yuI91yXtPA1mFgZ_BoEv0amTr-JHQ4znE9KGtf52SSPa5S1QweTq9pLvzdiW6RhotkCApWnOfpDO7EtTG14tkvc1Ep6mxYAn9vvn49n4eHe_8ueh-uEEhTIf6xPIS9zXqLD-CS-bZZ9esj2BVLeTSs_J8AZQiK |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEB_OPeF88ftj9dQoPvhSr23aJhFfZM_l1HURvZN7K2kylRVtZbsr-A_4dztJ2sqhguBbSadpyGQyP5KZ3wA8konBXJOlKZ3pKMNYRxJtEhUWa46JkMYTaX9YiOVSnp6qtzvwbMiFCfwQ44Gbswy_XzsDdwfSB79YQz8Z84TQOOfnYDcruJAT2D18Nz9ZjDsxzwN9FKGYSBZ5MjALxenB-PFZf_QbyDyLWb3TmV_6v-Fehos92GTPw-q4AjvYXIW92VDj7Rr8OHTx65vvzLm3cCrIfGojtbRr9mWonct0Y5njRG7tyrDA_twxFzP_kdmhi5UPofaiLgB-1Wzbbcdq3W1YCFuk3lioWP2Uvfc5KszFz7fr63Ayf3E8O4r6ygyR4YQPI61kLdEoLUWGyGNpbC3qrI61rapcU7u7XSx4rKoEMeZaxiaptKlyLlCnFb8Bk6Zt8BYwaQshaiSYlmdZrUhVhkARoR5bacRaTOHxoJ_S9LTlrnrG5zIQLqclTWzpJ3YKD0fRr4Gr409C-4OSy95cuzIlp-yQlSqm8GB8Tbpwtye6QZoukiEwWHCexlO4GRbH-BfHf5mKQtFg_Rr4--_LV7OZf7j976L3Ye_o-M2iXLxcvr4DFwiyKZ8Nme_DZLPe4l04b75tVt36Xm8APwGMHguS |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB4tXQRceD8KCxjEgUt2kzgPG3FBLRWPqloBi_YWOfYYdbUkq6ZF4g_wuxnbTdAKkJC4Rc7EsTwz9id75huAZyLRmCvyNKkyFWUYq0igSaLCoOWYlEJ7Iu3P83KxEMfH8nAHXva5MIEfYjhwc57h12vn4Hhm7MEv1tATrfcJjXN-AXazXObZCHanH2ZH82El5nmgjyIUE4kiT3pmoTg9GD4-vx_9BjLPY1a_6cyu_d9wr8PVLdhkr4J13IAdbG7C5Ulf4-0W_Ji6-PX1d-a2t3AqyHxqI7W0K_a1r53LVGOY40RuzVKzwP7cMRcz_4WZvoulD6H2oi4Aftls2k3HrOrWLIQtUm8sVKx-wT76HBXm4ufb1W04mr3-NHkTbSszRJoTPoyUFFaglkqUGSKPhTa2tJmNlanrXFG7u10seCzrBDHmSsQ6qZWuc16iSmt-B0ZN2-A9YMIUZWmRYFqeZVaSqjSBIkI9plaIthzD814_ld7SlrvqGadVIFxOK5rYyk_sGJ4OomeBq-NPQnu9kqutu3ZVSpuyQ1ayGMOT4TXpwt2eqAZpukiGwGDBeRqP4W4wjuEvjv8yLQtJg_U28PffV-8mE_9w_99FH8Olw-msmr9dvH8AVwixSZ8Mme_BaL3a4EO4qL-tl93q0db-fwIH9gsN |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Density+functional+theory+for+molecular+and+periodic+systems+using+density+fitting+and+continuous+fast+multipole+method%3A+Stress+tensor&rft.jtitle=Journal+of+computational+chemistry&rft.au=Becker%2C+Martin&rft.au=Sierka%2C+Marek&rft.date=2019-11-05&rft.eissn=1096-987X&rft.volume=40&rft.issue=29&rft.spage=2563&rft_id=info:doi/10.1002%2Fjcc.26033&rft_id=info%3Apmid%2F31322769&rft.externalDocID=31322769 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0192-8651&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0192-8651&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0192-8651&client=summon |