Widely tunable and narrow-linewidth violet lasers enabled by UV-transparent materials
Embedding multi-wavelength lasers in photonic waveguide circuits is of interest for next-generation ion traps, such as for miniaturizing optical clocks or upscaling ion-based quantum computing. Critically, this path involves photonic integration of highly coherent lasers in the ultraviolet (UV) rang...
Saved in:
| Published in: | Nature communications Vol. 16; no. 1; pp. 10294 - 9 |
|---|---|
| Main Authors: | , , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group UK
21.11.2025
Nature Publishing Group Nature Portfolio |
| Subjects: | |
| ISSN: | 2041-1723, 2041-1723 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Embedding multi-wavelength lasers in photonic waveguide circuits is of interest for next-generation ion traps, such as for miniaturizing optical clocks or upscaling ion-based quantum computing. Critically, this path involves photonic integration of highly coherent lasers in the ultraviolet (UV) range, which is presently obstructed by the transparency limit of materials used in established integrated waveguides. Here, we demonstrate the first integrated, extended cavity diode laser based solely on UV-transparent materials. We integrate aluminum oxide waveguide circuits with gallium nitride amplifiers to generate milliwatt-level on-chip output power near the ultraviolet range. The extended cavity approach allows for wide wavelength coverage and precise frequency control, which is demonstrated by tuning mode-hop-free to a Sr-transition frequency. Due to the inherent stability of photonic circuits and UV-compatible integration, the intrinsic laser linewidth reaches a record-low value around 300 kHz with better than 43-dB side-mode suppression. These results announce the viability of a novel class of integrated lasers that opens access to the UV.
Integrating UV lasers is of interest for portable optical clocks and ion-based quantum computers, but material absorption has impeded progress. Here, authors demonstrate a violet integrated laser using UV-transparent materials with mW-level output, narrow linewidth and precise frequency control. |
|---|---|
| AbstractList | Embedding multi-wavelength lasers in photonic waveguide circuits is of interest for next-generation ion traps, such as for miniaturizing optical clocks or upscaling ion-based quantum computing. Critically, this path involves photonic integration of highly coherent lasers in the ultraviolet (UV) range, which is presently obstructed by the transparency limit of materials used in established integrated waveguides. Here, we demonstrate the first integrated, extended cavity diode laser based solely on UV-transparent materials. We integrate aluminum oxide waveguide circuits with gallium nitride amplifiers to generate milliwatt-level on-chip output power near the ultraviolet range. The extended cavity approach allows for wide wavelength coverage and precise frequency control, which is demonstrated by tuning mode-hop-free to a Sr-transition frequency. Due to the inherent stability of photonic circuits and UV-compatible integration, the intrinsic laser linewidth reaches a record-low value around 300 kHz with better than 43-dB side-mode suppression. These results announce the viability of a novel class of integrated lasers that opens access to the UV.Integrating UV lasers is of interest for portable optical clocks and ion-based quantum computers, but material absorption has impeded progress. Here, authors demonstrate a violet integrated laser using UV-transparent materials with mW-level output, narrow linewidth and precise frequency control. Embedding multi-wavelength lasers in photonic waveguide circuits is of interest for next-generation ion traps, such as for miniaturizing optical clocks or upscaling ion-based quantum computing. Critically, this path involves photonic integration of highly coherent lasers in the ultraviolet (UV) range, which is presently obstructed by the transparency limit of materials used in established integrated waveguides. Here, we demonstrate the first integrated, extended cavity diode laser based solely on UV-transparent materials. We integrate aluminum oxide waveguide circuits with gallium nitride amplifiers to generate milliwatt-level on-chip output power near the ultraviolet range. The extended cavity approach allows for wide wavelength coverage and precise frequency control, which is demonstrated by tuning mode-hop-free to a Sr-transition frequency. Due to the inherent stability of photonic circuits and UV-compatible integration, the intrinsic laser linewidth reaches a record-low value around 300 kHz with better than 43-dB side-mode suppression. These results announce the viability of a novel class of integrated lasers that opens access to the UV. Abstract Embedding multi-wavelength lasers in photonic waveguide circuits is of interest for next-generation ion traps, such as for miniaturizing optical clocks or upscaling ion-based quantum computing. Critically, this path involves photonic integration of highly coherent lasers in the ultraviolet (UV) range, which is presently obstructed by the transparency limit of materials used in established integrated waveguides. Here, we demonstrate the first integrated, extended cavity diode laser based solely on UV-transparent materials. We integrate aluminum oxide waveguide circuits with gallium nitride amplifiers to generate milliwatt-level on-chip output power near the ultraviolet range. The extended cavity approach allows for wide wavelength coverage and precise frequency control, which is demonstrated by tuning mode-hop-free to a Sr-transition frequency. Due to the inherent stability of photonic circuits and UV-compatible integration, the intrinsic laser linewidth reaches a record-low value around 300 kHz with better than 43-dB side-mode suppression. These results announce the viability of a novel class of integrated lasers that opens access to the UV. Embedding multi-wavelength lasers in photonic waveguide circuits is of interest for next-generation ion traps, such as for miniaturizing optical clocks or upscaling ion-based quantum computing. Critically, this path involves photonic integration of highly coherent lasers in the ultraviolet (UV) range, which is presently obstructed by the transparency limit of materials used in established integrated waveguides. Here, we demonstrate the first integrated, extended cavity diode laser based solely on UV-transparent materials. We integrate aluminum oxide waveguide circuits with gallium nitride amplifiers to generate milliwatt-level on-chip output power near the ultraviolet range. The extended cavity approach allows for wide wavelength coverage and precise frequency control, which is demonstrated by tuning mode-hop-free to a Sr-transition frequency. Due to the inherent stability of photonic circuits and UV-compatible integration, the intrinsic laser linewidth reaches a record-low value around 300 kHz with better than 43-dB side-mode suppression. These results announce the viability of a novel class of integrated lasers that opens access to the UV.Embedding multi-wavelength lasers in photonic waveguide circuits is of interest for next-generation ion traps, such as for miniaturizing optical clocks or upscaling ion-based quantum computing. Critically, this path involves photonic integration of highly coherent lasers in the ultraviolet (UV) range, which is presently obstructed by the transparency limit of materials used in established integrated waveguides. Here, we demonstrate the first integrated, extended cavity diode laser based solely on UV-transparent materials. We integrate aluminum oxide waveguide circuits with gallium nitride amplifiers to generate milliwatt-level on-chip output power near the ultraviolet range. The extended cavity approach allows for wide wavelength coverage and precise frequency control, which is demonstrated by tuning mode-hop-free to a Sr-transition frequency. Due to the inherent stability of photonic circuits and UV-compatible integration, the intrinsic laser linewidth reaches a record-low value around 300 kHz with better than 43-dB side-mode suppression. These results announce the viability of a novel class of integrated lasers that opens access to the UV. Embedding multi-wavelength lasers in photonic waveguide circuits is of interest for next-generation ion traps, such as for miniaturizing optical clocks or upscaling ion-based quantum computing. Critically, this path involves photonic integration of highly coherent lasers in the ultraviolet (UV) range, which is presently obstructed by the transparency limit of materials used in established integrated waveguides. Here, we demonstrate the first integrated, extended cavity diode laser based solely on UV-transparent materials. We integrate aluminum oxide waveguide circuits with gallium nitride amplifiers to generate milliwatt-level on-chip output power near the ultraviolet range. The extended cavity approach allows for wide wavelength coverage and precise frequency control, which is demonstrated by tuning mode-hop-free to a Sr-transition frequency. Due to the inherent stability of photonic circuits and UV-compatible integration, the intrinsic laser linewidth reaches a record-low value around 300 kHz with better than 43-dB side-mode suppression. These results announce the viability of a novel class of integrated lasers that opens access to the UV. Integrating UV lasers is of interest for portable optical clocks and ion-based quantum computers, but material absorption has impeded progress. Here, authors demonstrate a violet integrated laser using UV-transparent materials with mW-level output, narrow linewidth and precise frequency control. |
| ArticleNumber | 10294 |
| Author | van Rees, A. García-Blanco, S. M. Winkler, L. V. Hendriks, W. A. P. M. Dijkstra, M. van Kerkhof, J. do Nascimento Jr, A. R. Franken, C. A. A. van der Slot, P. J. M. Boller, K.-J. Dekker, R. Kienzler, D. Mardani, S. |
| Author_xml | – sequence: 1 givenname: C. A. A. orcidid: 0000-0003-1847-0812 surname: Franken fullname: Franken, C. A. A. email: c.a.a.franken@utwente.nl organization: Laser Physics and Nonlinear Optics, Department of Science and Technology, MESA+ Institute of Nanotechnology, University of Twente – sequence: 2 givenname: W. A. P. M. surname: Hendriks fullname: Hendriks, W. A. P. M. organization: Integrated Optical Systems, Department of Science and Technology, MESA+ Institute of Nanotechnology, University of Twente, Aluvia Photonics B.V – sequence: 3 givenname: L. V. orcidid: 0009-0007-2669-8223 surname: Winkler fullname: Winkler, L. V. organization: Laser Physics and Nonlinear Optics, Department of Science and Technology, MESA+ Institute of Nanotechnology, University of Twente, TOPTICA Photonics SE – sequence: 4 givenname: A. R. orcidid: 0009-0007-7645-7022 surname: do Nascimento Jr fullname: do Nascimento Jr, A. R. organization: PHIX B.V – sequence: 5 givenname: A. orcidid: 0000-0002-8862-5413 surname: van Rees fullname: van Rees, A. organization: Laser Physics and Nonlinear Optics, Department of Science and Technology, MESA+ Institute of Nanotechnology, University of Twente – sequence: 6 givenname: M. surname: Dijkstra fullname: Dijkstra, M. organization: Integrated Optical Systems, Department of Science and Technology, MESA+ Institute of Nanotechnology, University of Twente – sequence: 7 givenname: S. surname: Mardani fullname: Mardani, S. organization: Integrated Optical Systems, Department of Science and Technology, MESA+ Institute of Nanotechnology, University of Twente – sequence: 8 givenname: D. surname: Kienzler fullname: Kienzler, D. organization: Department of Physics, ETH Zurich, Quantum Center, ETH Zurich – sequence: 9 givenname: R. surname: Dekker fullname: Dekker, R. organization: LioniX International B.V – sequence: 10 givenname: J. surname: van Kerkhof fullname: van Kerkhof, J. organization: PHIX B.V – sequence: 11 givenname: P. J. M. orcidid: 0000-0001-7473-1752 surname: van der Slot fullname: van der Slot, P. J. M. organization: Laser Physics and Nonlinear Optics, Department of Science and Technology, MESA+ Institute of Nanotechnology, University of Twente, Nonlinear Nanophotonics, Department of Science and Technology, MESA+ Institute of Nanotechnology, University of Twente – sequence: 12 givenname: S. M. surname: García-Blanco fullname: García-Blanco, S. M. organization: Integrated Optical Systems, Department of Science and Technology, MESA+ Institute of Nanotechnology, University of Twente, Aluvia Photonics B.V – sequence: 13 givenname: K.-J. orcidid: 0000-0001-6628-610X surname: Boller fullname: Boller, K.-J. organization: Laser Physics and Nonlinear Optics, Department of Science and Technology, MESA+ Institute of Nanotechnology, University of Twente |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/41271687$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU1v1DAQhi1URMvSP8ABReLCJeDxV5wjqvioVIkLC0fLjifFq6y92AnV_nvMphTEgbnMyHremfG8T8lZTBEJeQ70NVCu3xQBQnUtZbJVkgG07BG5YFRACx3jZ3_V5-SylB2twXvQQjwh5wJYB0p3F2T7NXicjs28ROsmbGz0TbQ5p7t2ChHvgp-_NT9CmnBuJlswlwZPpG_csdl-aedsYznYjHFu9nbGHOxUnpHHY014eZ83ZPv-3eerj-3Npw_XV29v2oFLztreDYr3IyovLQo-qK73nWJWQ2cpygG4shKcYwqBUTuCZ73jimmkSgmn-YZcr319sjtzyGFv89EkG8zpIeVbY_MchgnNKJnTjjLW6VFI4bWmVgEoR3Vdo07fkFdrr0NO3xcss9mHMuA02YhpKYazTtSbSgkVffkPuktLjvWnJ4pzCUxV6sU9tbg9-of1fh-_AmwFhpxKyTg-IEDNL5PNarKpJpuTyYZVEV9FpcLxFvOf2f9R_QRGxqav |
| Cites_doi | 10.1103/PhysRevB.19.3107 10.1117/12.2552264 10.1109/JQE.1986.1072909 10.1116/1.1418404 10.1063/1.5038044 10.1063/1.5088164 10.1364/OE.505892 10.1364/AOP.411024 10.1038/s41586-022-05119-9 10.1063/1.3194139 10.1038/s41598-023-46877-4 10.1364/OL.486758 10.1063/1.5052502 10.1143/JJAP.46.1713 10.1016/S0022-3093(05)80513-7 10.1109/JPROC.2018.2861576 10.1364/OME.393058 10.1116/5.0065951 10.1364/OE.386356 10.1364/OL.551736 10.1109/JLT.2021.3089881 10.1021/acsphotonics.2c00891 10.1364/ASSL.2019.ATu1A.4 10.1364/OPTICA.6.000745 10.4028/www.scientific.net/AMR.900.333 10.1103/PhysRevA.56.2699 10.1364/OPTICA.489504 10.1103/PhysRev.112.1940 10.1126/science.1231298 10.1063/1.1929851 10.1364/OE.416398 10.1364/OE.492510 10.1063/5.0052163 10.3390/photonics7010004 10.1063/1.4824771 10.1007/s11128-004-3105-1 10.1364/OL.38.002521 10.1038/nnano.2016.139 10.1063/5.0231827 10.1117/12.3043811 10.1063/5.0081660 10.1364/OE.398906 10.1109/JQE.1984.1072472 10.1109/JQE.1982.1071522 10.1103/PhysRev.133.A553 10.1109/JSTQE.2018.2793945 10.1038/s41566-022-01120-w 10.1364/AO.18.001847 10.1038/s41467-022-31989-8 10.1016/S0040-6090(02)01262-2 10.1103/PhysRevD.94.124043 10.1109/JSTQE.2012.2234445 10.1080/23746149.2020.1833753 10.1038/s41534-023-00737-1 10.1021/acsphotonics.0c01382 10.1364/OE.523985 10.1038/s41566-021-00761-7 10.1016/j.physleta.2017.04.043 10.3390/app11136004 10.1103/PRXQuantum.2.020343 10.1103/PhysRevX.11.041033 10.1007/s00340-014-5932-9 10.1364/OL.433636 10.1109/JSTQE.2015.2422752 10.1364/OE.402802 10.1103/RevModPhys.87.637 10.1364/OE.26.011147 10.1103/PhysRevA.99.061801 10.1117/12.2227580 10.1038/s41586-020-2811-x 10.1002/mop.11185 10.1038/s41566-019-0359-9 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 DOA |
| DOI | 10.1038/s41467-025-65211-2 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC Biological Science Collection Proquest Central ProQuest Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic DOAJ Directory of Open Access Journals (WRLC) |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ (selected full-text) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2041-1723 |
| EndPage | 9 |
| ExternalDocumentID | oai_doaj_org_article_f52b8b02278f454d880a6116b089bce4 41271687 10_1038_s41467_025_65211_2 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Dutch Research Council (NWO) under the grant ”Ultra-narrowband lasers on a chip” (16718) |
| GroupedDBID | --- 0R~ 39C 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ AASML ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFFHD AFKRA AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M48 P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 |
| ID | FETCH-LOGICAL-c3532-9bc639fe6d5ae43c679d762a817a0e5c136a51bb26e120af1d29b3628e0664b83 |
| IEDL.DBID | M7P |
| ISSN | 2041-1723 |
| IngestDate | Mon Nov 24 19:21:17 EST 2025 Sat Nov 22 19:12:48 EST 2025 Sun Nov 23 03:42:22 EST 2025 Tue Nov 25 01:40:47 EST 2025 Thu Nov 27 01:02:02 EST 2025 Sat Nov 22 01:14:26 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2025. The Author(s). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3532-9bc639fe6d5ae43c679d762a817a0e5c136a51bb26e120af1d29b3628e0664b83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0009-0007-2669-8223 0000-0001-6628-610X 0000-0001-7473-1752 0009-0007-7645-7022 0000-0003-1847-0812 0000-0002-8862-5413 |
| OpenAccessLink | https://www.proquest.com/docview/3274335126?pq-origsite=%requestingapplication% |
| PMID | 41271687 |
| PQID | 3274335126 |
| PQPubID | 546298 |
| PageCount | 9 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f52b8b02278f454d880a6116b089bce4 proquest_miscellaneous_3274204551 proquest_journals_3274335126 pubmed_primary_41271687 crossref_primary_10_1038_s41467_025_65211_2 springer_journals_10_1038_s41467_025_65211_2 |
| PublicationCentury | 2000 |
| PublicationDate | 20251121 |
| PublicationDateYYYYMMDD | 2025-11-21 |
| PublicationDate_xml | – month: 11 year: 2025 text: 20251121 day: 21 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Nature communications |
| PublicationTitleAbbrev | Nat Commun |
| PublicationTitleAlternate | Nat Commun |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | 65211_CR38 65211_CR39 65211_CR45 65211_CR46 65211_CR47 65211_CR48 65211_CR41 65211_CR42 65211_CR2 65211_CR43 65211_CR1 65211_CR44 65211_CR4 65211_CR3 65211_CR6 65211_CR5 65211_CR40 65211_CR8 65211_CR7 D Zhu (65211_CR75) 2021; 13 65211_CR9 65211_CR27 65211_CR28 65211_CR29 65211_CR34 65211_CR35 65211_CR36 65211_CR37 65211_CR30 65211_CR74 65211_CR31 65211_CR32 65211_CR76 65211_CR33 65211_CR77 65211_CR70 65211_CR71 65211_CR72 65211_CR73 Y Fan (65211_CR24) 2020; 28 65211_CR16 65211_CR17 65211_CR18 65211_CR19 65211_CR23 65211_CR67 65211_CR68 65211_CR25 65211_CR69 65211_CR26 65211_CR63 65211_CR20 65211_CR64 65211_CR21 65211_CR65 65211_CR22 65211_CR66 65211_CR60 65211_CR61 65211_CR62 65211_CR49 65211_CR12 65211_CR56 65211_CR13 65211_CR57 65211_CR14 65211_CR58 65211_CR15 65211_CR59 65211_CR52 65211_CR53 65211_CR10 65211_CR54 65211_CR11 65211_CR55 65211_CR50 65211_CR51 |
| References_xml | – ident: 65211_CR16 doi: 10.1103/PhysRevB.19.3107 – ident: 65211_CR21 – ident: 65211_CR44 doi: 10.1117/12.2552264 – ident: 65211_CR65 doi: 10.1109/JQE.1986.1072909 – ident: 65211_CR54 doi: 10.1116/1.1418404 – ident: 65211_CR33 doi: 10.1063/1.5038044 – ident: 65211_CR51 doi: 10.1063/1.5088164 – ident: 65211_CR13 doi: 10.1364/OE.505892 – volume: 13 start-page: 242 year: 2021 ident: 65211_CR75 publication-title: Adv. Opt. Photon. doi: 10.1364/AOP.411024 – ident: 65211_CR32 doi: 10.1038/s41586-022-05119-9 – ident: 65211_CR43 doi: 10.1063/1.3194139 – ident: 65211_CR50 doi: 10.1038/s41598-023-46877-4 – ident: 65211_CR29 doi: 10.1364/OL.486758 – ident: 65211_CR14 doi: 10.1063/1.5052502 – ident: 65211_CR3 – ident: 65211_CR53 doi: 10.1143/JJAP.46.1713 – ident: 65211_CR76 doi: 10.1016/S0022-3093(05)80513-7 – ident: 65211_CR10 doi: 10.1109/JPROC.2018.2861576 – ident: 65211_CR61 doi: 10.1364/OME.393058 – ident: 65211_CR12 doi: 10.1116/5.0065951 – ident: 65211_CR42 doi: 10.1364/OE.386356 – ident: 65211_CR46 doi: 10.1364/OL.551736 – ident: 65211_CR57 doi: 10.1109/JLT.2021.3089881 – ident: 65211_CR41 doi: 10.1021/acsphotonics.2c00891 – ident: 65211_CR58 doi: 10.1364/ASSL.2019.ATu1A.4 – ident: 65211_CR25 doi: 10.1364/OPTICA.6.000745 – ident: 65211_CR74 doi: 10.4028/www.scientific.net/AMR.900.333 – ident: 65211_CR56 doi: 10.1103/PhysRevA.56.2699 – ident: 65211_CR23 doi: 10.1364/OPTICA.489504 – ident: 65211_CR45 doi: 10.1103/PhysRev.112.1940 – ident: 65211_CR4 doi: 10.1126/science.1231298 – ident: 65211_CR64 doi: 10.1063/1.1929851 – ident: 65211_CR47 doi: 10.1364/OE.416398 – ident: 65211_CR17 doi: 10.1364/OE.492510 – ident: 65211_CR19 doi: 10.1063/5.0052163 – ident: 65211_CR26 doi: 10.3390/photonics7010004 – ident: 65211_CR77 doi: 10.1063/1.4824771 – ident: 65211_CR11 doi: 10.1007/s11128-004-3105-1 – ident: 65211_CR55 doi: 10.1364/OL.38.002521 – ident: 65211_CR6 doi: 10.1038/nnano.2016.139 – ident: 65211_CR59 doi: 10.1063/5.0231827 – ident: 65211_CR60 doi: 10.1117/12.3043811 – ident: 65211_CR31 doi: 10.1063/5.0081660 – volume: 28 start-page: 21713 year: 2020 ident: 65211_CR24 publication-title: Opt. Express doi: 10.1364/OE.398906 – ident: 65211_CR70 doi: 10.1109/JQE.1984.1072472 – ident: 65211_CR69 doi: 10.1109/JQE.1982.1071522 – ident: 65211_CR67 doi: 10.1103/PhysRev.133.A553 – ident: 65211_CR9 doi: 10.1109/JSTQE.2018.2793945 – ident: 65211_CR30 doi: 10.1038/s41566-022-01120-w – ident: 65211_CR62 doi: 10.1364/AO.18.001847 – ident: 65211_CR18 doi: 10.1038/s41467-022-31989-8 – ident: 65211_CR39 doi: 10.1016/S0040-6090(02)01262-2 – ident: 65211_CR52 doi: 10.1103/PhysRevD.94.124043 – ident: 65211_CR63 doi: 10.1109/JSTQE.2012.2234445 – ident: 65211_CR34 doi: 10.1080/23746149.2020.1833753 – ident: 65211_CR22 doi: 10.1038/s41534-023-00737-1 – ident: 65211_CR37 doi: 10.1021/acsphotonics.0c01382 – ident: 65211_CR28 doi: 10.1364/OE.523985 – ident: 65211_CR40 doi: 10.1038/s41566-021-00761-7 – ident: 65211_CR72 doi: 10.1016/j.physleta.2017.04.043 – ident: 65211_CR20 – ident: 65211_CR68 doi: 10.3390/app11136004 – ident: 65211_CR5 doi: 10.1103/PRXQuantum.2.020343 – ident: 65211_CR7 doi: 10.1103/PhysRevX.11.041033 – ident: 65211_CR2 doi: 10.1007/s00340-014-5932-9 – ident: 65211_CR27 doi: 10.1364/OL.433636 – ident: 65211_CR48 doi: 10.1109/JSTQE.2015.2422752 – ident: 65211_CR35 doi: 10.1364/OE.402802 – ident: 65211_CR1 doi: 10.1103/RevModPhys.87.637 – ident: 65211_CR15 doi: 10.1364/OE.26.011147 – ident: 65211_CR71 doi: 10.1103/PhysRevA.99.061801 – ident: 65211_CR73 doi: 10.1117/12.2227580 – ident: 65211_CR8 doi: 10.1038/s41586-020-2811-x – ident: 65211_CR38 doi: 10.1002/mop.11185 – ident: 65211_CR66 – ident: 65211_CR49 – ident: 65211_CR36 doi: 10.1038/s41566-019-0359-9 |
| SSID | ssj0000391844 |
| Score | 2.487204 |
| Snippet | Embedding multi-wavelength lasers in photonic waveguide circuits is of interest for next-generation ion traps, such as for miniaturizing optical clocks or... Abstract Embedding multi-wavelength lasers in photonic waveguide circuits is of interest for next-generation ion traps, such as for miniaturizing optical... |
| SourceID | doaj proquest pubmed crossref springer |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 10294 |
| SubjectTerms | 639/624/1020/1093 639/624/1075/1079 639/624/400/1021 639/925/927/1021 Aluminum Aluminum oxide Circuits Clocks Computers Diodes Embedding Frequency control Gallium Gallium nitrides Humanities and Social Sciences Ion traps (instrumentation) Laser applications Lasers Light Material absorption multidisciplinary Photonics Propagation Quantum computers Quantum computing Science Science (multidisciplinary) Semiconductor lasers Semiconductors Silica Silicon nitride Ultraviolet lasers Waveguides |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals (WRLC) dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hqkhcEOUZKMhI3CBq_Fz72FZUnCoOLPRm-Sl6SVE3C9p_z9jObosAceGaWJH9zdjzjSb-BuCNjCamUGVDtcIEJedeh2h6nTLTytBgdKjNJhbn5_riwny81eqr_BPW5IEbcEdZMq99EbrTWUgR0d-colT5QRsfUlUCRdZzK5mqZzA3mLqI-ZbMwPXRStQzoXRvVRiyaM9-iURVsP9PLPO3CmkNPGcP4P7MGMlxm-kB3EnjQ7jbekhuHsHySxGq2pBpXW9BETdGMlZlxb4wyB-XcfpKavl9IsiUke2RVEdG4jdk-bmfqrx5uRM2EaSvzSMfw_Ls_afTD_3cK6EPXHLWIxbINXJSUbokeFALE_Gcc5ou3JBkoFw5Sb1nKlE2uEwjMx6Dl07IOYTX_AnsjVdjegZEcu9TEY3RkWPoMiZi1HcpDZl5ITLt4O0WN_utSWLYWsrm2jaULaJsK8qWdXBSoN2NLHLW9QEa2c5Gtv8ycgeHW8PYeY-tLMeEmnMkLKqD17vXuDtKycON6WrdxhTBfYmzftoMupuJoAyTRb3o4N3Wwjcf__uCnv-PBb2Ae6y4YvFDegh70_U6vYT98H26XF2_qr78E5ON8y4 priority: 102 providerName: Directory of Open Access Journals |
| Title | Widely tunable and narrow-linewidth violet lasers enabled by UV-transparent materials |
| URI | https://link.springer.com/article/10.1038/s41467-025-65211-2 https://www.ncbi.nlm.nih.gov/pubmed/41271687 https://www.proquest.com/docview/3274335126 https://www.proquest.com/docview/3274204551 https://doaj.org/article/f52b8b02278f454d880a6116b089bce4 |
| Volume | 16 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ (selected full-text) customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (selected full-text only) customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: P5Z dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database (ProQuest) customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M7P dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: 7X7 dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: PIMPY dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFiQuvAuBsjISN4gaP2OfEEWt4MAqQiwsXKw4dqCXbNnNgvbfM3ayWyEeFy4-JFZkZ8Yzn2fsbwCeSm98aBJtqFa4QWnbXDfe5Dq0TCtDG6ObVGyinE71fG6qMeC2Go9Vbm1iMtR-0cQY-THH7RPn6J7Ui4tveawaFbOrYwmNPTiILAk8Hd2rdjGWyH6uhRjvyhRcH69EsgyxhqtCx0Vz9os_SrT9f8Kav-VJk_s5u_m_A78FN0bgSV4OmnIbroTuDlwbSlFu7sLsY-S72pB-nS5TkbrzpEsEjXkEoj_Off-VpCx-TxBwI2gkIfX0xG3I7EPeJ5b0eLWsJ4iCB8W-B7Oz0_evXudjyYW84ZKz3LgGIUsblJd1ELxRpfFoLmtNy7oIsqFc1ZI6x1SgrKhb6plx6AN1QOginOaHsN8tuvAAiOTOhcg9oz1HD2iMR_BQh1C0zAnR0gyebX-8vRiYNWzKiHNtBzFZFJNNYrIsg5Mom13PyIqdHiyWX-y4yGwrmdMukiLqVkjh0TbVilLlCo0TCyKDo62I7LhUV_ZSPhk82b3GRRYzJ3UXFuuhT-Ttlzjq-4NG7EYiKMM9py4zeL5VkcuP_31CD_89lkdwnUUtjSpKj2C_X67DY7jafO_PV8sJ7JXzMrV6Agcnp9Pq3SRFEyZpAWBbyc_4pnrztvr0E0QQCPo |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL70eggJHgRKPGj3jtA0K8qlYtqx660JuJH4FesmU3S7V_it_I2Em2QjxuPXBNLMuOv_lmJra_AXhWeu2DS7KhSmKCUte5cl7nKtRMSU2dVi4VmxiNx-roSB-swY_hLkw8VjlwYiJqP3XxH_kWx_SJc3RP8tXJtzxWjYq7q0MJjQ4We2F5iinb_OXuO1zf54xtvz98u5P3VQVyx0vOcm0deuU6SF9WQXAnR9ojI1SKjqoilI5yWZXUWiYDZUVVU8-0RZpXAb2zsIpjvxfgIoYRTKWjggerfzpRbV0J0d_NKbjamovERLFmrERHSXP2i_9LZQL-FNv-ti-b3N329f_tQ92Aa31gTV53lnAT1kJzCy53pTaXt2HyKep5LUm7SJfFSNV40iQByjwG2qfHvv1K0imFlmBCgUExCamlJ3ZJJh_zNqnAx6tzLcEovzPcOzA5lzndhfVm2oT7QEpubYjaOspz9PBaewyOqhCKmlkhaprBi2GhzUmnHGLSjj9XpoOFQViYBAvDMngTsbBqGVW_04Pp7IvpScTUJbPKRtFHVYtSeOTeSlIqbaFwYkFksDFAwvRUNDdneMjg6eo1kkjcGaqaMF10bWJdghJHfa9D4GokiHPMqdUog80Bkmed_31CD_49lidwZefww77Z3x3vPYSrLFpINA-6AevtbBEewSX3vT2ezx4nEyPw-byh-hM2ml0o |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qZREX9iVQwEhwgqjxkox9QAgoI6qi0RwY6M3EG_SSKTMZqvlr_DqenWQqxHLrgWtiWXb8vS1-73sAT0qnnLeJNlRWGKCEkEvrVC59YLJS1CppU7OJ0WQiDw_VdAt-DLUwMa1y0IlJUbu5jf_IdzmGT5yXseAl9GkR073xy-NveewgFW9ah3YaHUQO_PoEw7fli_09POunjI3ffnjzLu87DOSWl5zlyli00MFXrqy94LYaKYfaoZZ0VBe-tJRXdUmNYZWnrKgDdUwZVPnSo6UWRnKc9xycH0XS8pQ2ON3834nM61KIvk6n4HJ3KZJWiv1jKzSaNGe_2MLUMuBPfu5vd7TJ9I2v_s8f7Rpc6R1u8qqTkOuw5ZsbcLFrwbm-CbNPkedrTdpVKiIjdeNIk4gp8-iAnxy59itJ2QstwUADnWXi00hHzJrMPuZtYoePJXUtQe-_E-hbMDuTPd2G7Wbe-LtASm6Mj5w70nG0_Eo5dJpq74vAjBCBZvBsOHR93DGK6JQJwKXuIKIRIjpBRLMMXkdcbEZGNvD0YL74onvlokPJjDSRDFIGUQqHOrmuKK1MIXFjXmSwM8BD9ypqqU-xkcHjzWtULvHGqG78fNWNif0KSlz1nQ6Nm5UIyjDWlqMMng_wPJ387xu69--1PIJLiFD9fn9ycB8usygsUVLoDmy3i5V_ABfs9_ZouXiYpI3A57NG6k_SQWXl |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Widely+tunable+and+narrow-linewidth+violet+lasers+enabled+by+UV-transparent+materials&rft.jtitle=Nature+communications&rft.au=Franken%2C+C+A+A&rft.au=Hendriks%2C+W+A+P+M&rft.au=Winkler%2C+L+V&rft.au=do+Nascimento%2C+Jr%2C+A+R&rft.date=2025-11-21&rft.eissn=2041-1723&rft.volume=16&rft.issue=1&rft.spage=10294&rft_id=info:doi/10.1038%2Fs41467-025-65211-2&rft_id=info%3Apmid%2F41271687&rft.externalDocID=41271687 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |