Non-Coding RNA Analysis Using the Rfam Database
Rfam is a database of non-coding RNA families in which each family is represented by a multiple sequence alignment, a consensus secondary structure, and a covariance model. Using a combination of manual and literature-based curation and a custom software pipeline, Rfam converts descriptions of RNA f...
Saved in:
| Published in: | Current protocols in bioinformatics Vol. 62; no. 1; p. e51 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
01.06.2018
|
| Subjects: | |
| ISSN: | 1934-340X, 1934-340X |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Rfam is a database of non-coding RNA families in which each family is represented by a multiple sequence alignment, a consensus secondary structure, and a covariance model. Using a combination of manual and literature-based curation and a custom software pipeline, Rfam converts descriptions of RNA families found in the scientific literature into computational models that can be used to annotate RNAs belonging to those families in any DNA or RNA sequence. Valuable research outputs that are often locked up in figures and supplementary information files are encapsulated in Rfam entries and made accessible through the Rfam Web site. The data produced by Rfam have a broad application, from genome annotation to providing training sets for algorithm development. This article gives an overview of how to search and navigate the Rfam Web site, and how to annotate sequences with RNA families. The Rfam database is freely available at http://rfam.org. © 2018 by John Wiley & Sons, Inc. |
|---|---|
| AbstractList | Rfam is a database of non-coding RNA families in which each family is represented by a multiple sequence alignment, a consensus secondary structure, and a covariance model. Using a combination of manual and literature-based curation and a custom software pipeline, Rfam converts descriptions of RNA families found in the scientific literature into computational models that can be used to annotate RNAs belonging to those families in any DNA or RNA sequence. Valuable research outputs that are often locked up in figures and supplementary information files are encapsulated in Rfam entries and made accessible through the Rfam Web site. The data produced by Rfam have a broad application, from genome annotation to providing training sets for algorithm development. This article gives an overview of how to search and navigate the Rfam Web site, and how to annotate sequences with RNA families. The Rfam database is freely available at http://rfam.org. © 2018 by John Wiley & Sons, Inc.Rfam is a database of non-coding RNA families in which each family is represented by a multiple sequence alignment, a consensus secondary structure, and a covariance model. Using a combination of manual and literature-based curation and a custom software pipeline, Rfam converts descriptions of RNA families found in the scientific literature into computational models that can be used to annotate RNAs belonging to those families in any DNA or RNA sequence. Valuable research outputs that are often locked up in figures and supplementary information files are encapsulated in Rfam entries and made accessible through the Rfam Web site. The data produced by Rfam have a broad application, from genome annotation to providing training sets for algorithm development. This article gives an overview of how to search and navigate the Rfam Web site, and how to annotate sequences with RNA families. The Rfam database is freely available at http://rfam.org. © 2018 by John Wiley & Sons, Inc. Rfam is a database of non-coding RNA families in which each family is represented by a multiple sequence alignment, a consensus secondary structure, and a covariance model. Using a combination of manual and literature-based curation and a custom software pipeline, Rfam converts descriptions of RNA families found in the scientific literature into computational models that can be used to annotate RNAs belonging to those families in any DNA or RNA sequence. Valuable research outputs that are often locked up in figures and supplementary information files are encapsulated in Rfam entries and made accessible through the Rfam Web site. The data produced by Rfam have a broad application, from genome annotation to providing training sets for algorithm development. This article gives an overview of how to search and navigate the Rfam Web site, and how to annotate sequences with RNA families. The Rfam database is freely available at http://rfam.org. © 2018 by John Wiley & Sons, Inc. |
| Author | Finn, Robert D Bateman, Alex Nawrocki, Eric P Petrov, Anton I Argasinska, Joanna Kalvari, Ioanna Quinones-Olvera, Natalia |
| Author_xml | – sequence: 1 givenname: Ioanna surname: Kalvari fullname: Kalvari, Ioanna organization: European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom – sequence: 2 givenname: Eric P surname: Nawrocki fullname: Nawrocki, Eric P organization: National Center for Biotechnology Information, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland – sequence: 3 givenname: Joanna surname: Argasinska fullname: Argasinska, Joanna organization: European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom – sequence: 4 givenname: Natalia surname: Quinones-Olvera fullname: Quinones-Olvera, Natalia organization: Systems Biology Graduate Program, Harvard University, Cambridge, Massachusetts – sequence: 5 givenname: Robert D surname: Finn fullname: Finn, Robert D organization: European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom – sequence: 6 givenname: Alex surname: Bateman fullname: Bateman, Alex organization: European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom – sequence: 7 givenname: Anton I surname: Petrov fullname: Petrov, Anton I organization: European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29927072$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNT0tLw0AYXKRiay3-A8nRS9pvH8lmjyHWB5QKxYK38O0jGsjLbHLovzdiBecywzAMM9dk1rSNI-SWwpoCsI3pdLmO6AVZUMVFyAW8z_7pOVl5X2oAwbgCzq7InCnFJEi2IJt924RZa8vmIzjs0yBtsDr50gdH_2MNny44FFgHDzigRu9uyGWBlXerMy_J8XH7lj2Hu9enlyzdhYZHnIZGOsuxkLHWIJ1UkdNxYhJGjUIGCqRCa6aFExilEgxHnogEFTXWckPZktz_9nZ9-zU6P-R16Y2rKmxcO_qcQSSTWFAhpujdOTrq2tm868sa-1P-d5J9A_RnUiU |
| CitedBy_id | crossref_primary_10_3390_ijms20143480 crossref_primary_10_3390_ncrna5010015 crossref_primary_10_3389_fmars_2024_1461451 crossref_primary_10_1038_s42003_021_01659_4 crossref_primary_10_1016_j_fbio_2025_105993 crossref_primary_10_1007_s11738_020_3013_8 crossref_primary_10_3389_fmicb_2021_713462 crossref_primary_10_1128_JB_00413_20 crossref_primary_10_3390_ani10071198 crossref_primary_10_3390_microorganisms10112100 crossref_primary_10_1111_jipb_13413 crossref_primary_10_1007_s10725_023_01020_1 crossref_primary_10_3389_fmicb_2023_1137611 crossref_primary_10_1016_j_yjmcc_2020_10_005 crossref_primary_10_1038_s41597_025_05288_y crossref_primary_10_1038_s41598_021_95106_3 crossref_primary_10_1371_journal_pntd_0007612 crossref_primary_10_3390_ijms20205122 crossref_primary_10_3389_fcimb_2020_600325 crossref_primary_10_3390_antibiotics10010045 crossref_primary_10_1016_j_virusres_2023_199090 crossref_primary_10_3389_fcimb_2025_1621341 crossref_primary_10_1080_15476286_2025_2523696 crossref_primary_10_1128_mSystems_00239_18 crossref_primary_10_12688_openreseurope_20863_1 crossref_primary_10_48130_vegres_0024_0031 crossref_primary_10_3389_fmicb_2023_1309703 crossref_primary_10_3390_biology14040440 crossref_primary_10_1186_s12870_021_03193_1 crossref_primary_10_1038_s41598_021_81784_6 crossref_primary_10_1038_s41597_024_03404_y crossref_primary_10_1371_journal_ppat_1012187 crossref_primary_10_3389_fcell_2020_562940 crossref_primary_10_1186_s40659_020_0272_1 crossref_primary_10_1016_j_ygeno_2021_03_014 crossref_primary_10_1089_zeb_2022_0040 crossref_primary_10_1111_1755_0998_13504 crossref_primary_10_1016_j_ygeno_2021_11_018 crossref_primary_10_1016_j_plgene_2021_100311 crossref_primary_10_1038_s41594_019_0327_6 crossref_primary_10_3390_jof7090699 crossref_primary_10_3390_jof6010007 crossref_primary_10_1186_s12863_025_01318_1 crossref_primary_10_3389_fpls_2021_633310 crossref_primary_10_1016_j_jbiotec_2022_02_006 crossref_primary_10_1186_s12915_025_02304_w crossref_primary_10_1093_treephys_tpab138 crossref_primary_10_1093_gigascience_giab013 crossref_primary_10_1002_mco2_70243 crossref_primary_10_1038_s41438_020_00343_8 crossref_primary_10_3389_fgene_2022_958641 crossref_primary_10_3390_biomedicines12020395 crossref_primary_10_1371_journal_pone_0296959 crossref_primary_10_1016_j_syapm_2020_126132 crossref_primary_10_1016_j_tim_2022_03_007 crossref_primary_10_3389_fmicb_2023_1112307 crossref_primary_10_1016_j_aquaculture_2024_741356 crossref_primary_10_1038_s41597_024_03150_1 crossref_primary_10_3389_fmicb_2022_871937 crossref_primary_10_12688_openreseurope_20864_1 crossref_primary_10_3390_ncrna6030039 crossref_primary_10_1093_molbev_msac062 crossref_primary_10_1007_s12223_022_00996_z crossref_primary_10_1186_s12915_021_01053_w crossref_primary_10_1038_s42003_021_01650_z crossref_primary_10_1371_journal_pone_0320282 crossref_primary_10_7717_peerj_18542 crossref_primary_10_33073_pjm_2021_016 crossref_primary_10_3390_biom15050616 crossref_primary_10_1016_j_anireprosci_2022_106956 crossref_primary_10_1016_j_ygeno_2019_12_019 crossref_primary_10_1093_gigascience_giab081 crossref_primary_10_1007_s10126_023_10254_z crossref_primary_10_3389_fgene_2020_00664 crossref_primary_10_1186_s12864_023_09309_1 crossref_primary_10_3390_ani14081202 crossref_primary_10_1016_j_aquaculture_2019_04_034 crossref_primary_10_1038_s41597_025_04480_4 crossref_primary_10_3390_insects15120988 crossref_primary_10_1128_Spectrum_00044_21 crossref_primary_10_1111_jpn_13312 crossref_primary_10_1093_bib_bbaa354 crossref_primary_10_3390_jof10090602 crossref_primary_10_1007_s00040_024_01016_8 crossref_primary_10_1016_j_hpj_2019_11_004 crossref_primary_10_1371_journal_pcbi_1007564 crossref_primary_10_3389_fcimb_2022_990312 crossref_primary_10_3389_fpls_2023_1275399 crossref_primary_10_1016_j_cbd_2025_101487 crossref_primary_10_1016_j_cbd_2022_101045 crossref_primary_10_1038_s41586_024_07473_2 crossref_primary_10_3389_fgene_2021_718266 crossref_primary_10_3892_etm_2023_11966 crossref_primary_10_1038_s41559_022_01898_6 crossref_primary_10_3390_biology14091107 crossref_primary_10_1007_s00344_024_11444_2 crossref_primary_10_1093_g3journal_jkae185 crossref_primary_10_1016_j_ympev_2021_107208 crossref_primary_10_1159_000546304 crossref_primary_10_1007_s12088_022_01050_9 crossref_primary_10_1016_j_ygeno_2020_07_036 crossref_primary_10_1016_j_scitotenv_2022_159304 crossref_primary_10_1093_jxb_eraa018 crossref_primary_10_1093_nar_gkae231 crossref_primary_10_1007_s13205_021_03000_6 crossref_primary_10_1515_hsz_2020_0230 crossref_primary_10_3390_cells9071574 crossref_primary_10_1371_journal_ppat_1012138 crossref_primary_10_1073_pnas_2001332117 crossref_primary_10_1007_s00344_022_10893_x crossref_primary_10_1016_j_idairyj_2025_106183 crossref_primary_10_3389_fcimb_2020_00256 crossref_primary_10_1080_21501203_2023_2256764 crossref_primary_10_1186_s13568_022_01482_y crossref_primary_10_1111_1755_0998_13439 crossref_primary_10_1007_s13205_023_03816_4 crossref_primary_10_1093_nargab_lqad072 crossref_primary_10_3390_d16070392 crossref_primary_10_1111_gcb_70502 crossref_primary_10_1038_s41597_025_04661_1 crossref_primary_10_1186_s12864_022_08913_x crossref_primary_10_3390_ijms22158197 crossref_primary_10_1016_j_ygeno_2021_01_024 crossref_primary_10_3389_fpls_2023_1148303 crossref_primary_10_1016_j_gene_2022_147009 crossref_primary_10_1111_tpj_15399 crossref_primary_10_1111_tpj_16125 crossref_primary_10_1038_s41396_020_0658_7 crossref_primary_10_1371_journal_pone_0257878 crossref_primary_10_3390_genes12091365 crossref_primary_10_1016_j_tig_2021_06_007 crossref_primary_10_1093_gigascience_giac093 crossref_primary_10_1093_hr_uhad120 crossref_primary_10_3390_ani11020535 crossref_primary_10_1111_jen_13000 crossref_primary_10_1016_j_csbj_2020_03_022 crossref_primary_10_7717_peerj_8914 crossref_primary_10_3389_fpls_2023_1068796 crossref_primary_10_1093_nar_gkaf708 crossref_primary_10_1007_s10482_024_02045_w crossref_primary_10_1038_s41467_025_60048_1 crossref_primary_10_1093_nar_gkaa1047 crossref_primary_10_3389_fgene_2023_1221491 crossref_primary_10_3390_ncrna9020018 crossref_primary_10_1186_s40659_023_00414_9 crossref_primary_10_1002_edn3_335 crossref_primary_10_1186_s12870_021_03148_6 crossref_primary_10_3389_fpls_2022_899054 crossref_primary_10_1016_j_ygeno_2021_01_017 crossref_primary_10_3389_fgene_2023_1329939 crossref_primary_10_1016_j_plgene_2025_100504 crossref_primary_10_1111_tpj_15848 crossref_primary_10_1016_j_hpj_2024_11_005 crossref_primary_10_1016_j_bbagrm_2022_194815 crossref_primary_10_3389_fvets_2023_1140655 crossref_primary_10_1016_j_molp_2020_12_019 crossref_primary_10_1007_s40484_020_0223_4 crossref_primary_10_3390_microorganisms11071768 crossref_primary_10_1016_j_biortech_2024_131751 crossref_primary_10_1016_j_funbio_2020_03_008 crossref_primary_10_3390_biomedicines11041230 crossref_primary_10_1016_j_ymeth_2019_11_001 crossref_primary_10_1080_21501203_2019_1708492 crossref_primary_10_1038_s12276_024_01239_6 crossref_primary_10_1016_j_pmpp_2024_102379 crossref_primary_10_1073_pnas_2107005119 crossref_primary_10_1093_pcp_pcae081 crossref_primary_10_1038_s41597_023_02171_6 crossref_primary_10_1111_pce_15104 crossref_primary_10_3390_plants13121676 crossref_primary_10_1016_j_csbj_2021_08_038 crossref_primary_10_1186_s40168_021_01173_z crossref_primary_10_1038_s41597_024_03680_8 crossref_primary_10_3389_fpls_2022_1003835 crossref_primary_10_1016_j_hpj_2022_12_004 crossref_primary_10_1093_hr_uhab049 crossref_primary_10_1186_s12859_021_04544_3 crossref_primary_10_1126_science_aaz2582 crossref_primary_10_1038_s42003_023_05044_1 crossref_primary_10_1128_MRA_00312_20 crossref_primary_10_1093_nar_gkab565 crossref_primary_10_1186_s12864_022_08628_z crossref_primary_10_1016_j_compbiomed_2021_104603 crossref_primary_10_1093_bib_bbae372 crossref_primary_10_3389_fnins_2023_1145307 crossref_primary_10_1002_etc_5266 crossref_primary_10_1126_science_abe8526 crossref_primary_10_1038_s41564_021_01014_7 crossref_primary_10_1186_s12859_021_04532_7 crossref_primary_10_1016_j_ijbiomac_2025_144578 crossref_primary_10_1186_s12859_019_2782_9 crossref_primary_10_1371_journal_ppat_1010149 crossref_primary_10_3390_cells10040921 crossref_primary_10_1093_molbev_msaa281 crossref_primary_10_1186_s40793_025_00773_8 crossref_primary_10_3389_fpls_2022_1022169 crossref_primary_10_1186_s12920_024_01890_y crossref_primary_10_1111_tpj_70005 crossref_primary_10_1371_journal_pbio_3002948 crossref_primary_10_1186_s12864_023_09686_7 crossref_primary_10_1016_j_biotechadv_2020_107512 crossref_primary_10_1002_mco2_70257 crossref_primary_10_3390_horticulturae8010041 crossref_primary_10_1038_s41598_021_99683_1 crossref_primary_10_3390_md20110692 crossref_primary_10_3390_ncrna4030017 crossref_primary_10_1111_mmi_15313 crossref_primary_10_7717_peerj_9882 crossref_primary_10_1128_MRA_01015_20 crossref_primary_10_3390_jof7090710 crossref_primary_10_12688_openreseurope_20439_1 crossref_primary_10_1261_rna_077123_120 crossref_primary_10_1093_plcell_koae308 crossref_primary_10_3390_cancers15102833 crossref_primary_10_1261_rna_078768_121 crossref_primary_10_1093_molbev_msab280 crossref_primary_10_3389_fpls_2022_863330 crossref_primary_10_1080_12298093_2023_2175428 crossref_primary_10_1099_mgen_0_000821 crossref_primary_10_1177_11779322231162777 crossref_primary_10_12688_openreseurope_20499_1 crossref_primary_10_1099_mgen_0_001239 crossref_primary_10_1080_07391102_2022_2116110 crossref_primary_10_3389_fpls_2021_695439 crossref_primary_10_1111_1755_0998_13850 crossref_primary_10_3390_antibiotics13050380 crossref_primary_10_1016_j_tibtech_2020_03_013 crossref_primary_10_1038_s41597_025_05849_1 crossref_primary_10_1093_nar_gkae1023 crossref_primary_10_1093_molbev_msab030 crossref_primary_10_1128_msystems_00584_19 crossref_primary_10_3389_fpls_2022_1001583 crossref_primary_10_1038_s41598_019_55287_4 crossref_primary_10_12688_openreseurope_20489_1 crossref_primary_10_1371_journal_pone_0289693 crossref_primary_10_1128_MRA_01055_20 crossref_primary_10_1016_j_ijbiomac_2022_12_298 crossref_primary_10_12688_wellcomeopenres_15194_2 crossref_primary_10_12688_wellcomeopenres_15194_1 crossref_primary_10_3390_plants12152773 crossref_primary_10_1093_treephys_tpad102 crossref_primary_10_1093_bib_bbab075 crossref_primary_10_1371_journal_pgen_1011835 crossref_primary_10_1016_j_biotechadv_2021_107739 crossref_primary_10_1007_s13131_024_2403_y crossref_primary_10_1007_s00253_020_11056_2 crossref_primary_10_1101_gr_277483_122 crossref_primary_10_1111_jwas_12870 crossref_primary_10_3389_fmars_2024_1403559 crossref_primary_10_1038_s41467_024_55383_8 crossref_primary_10_1186_s12915_023_01643_w crossref_primary_10_3390_plants14111650 crossref_primary_10_1038_s41597_025_05204_4 crossref_primary_10_1186_s12864_022_08927_5 crossref_primary_10_3389_fvets_2022_976603 crossref_primary_10_1016_j_gene_2022_146459 crossref_primary_10_3390_metabo14110636 crossref_primary_10_1016_j_fbio_2021_101448 crossref_primary_10_1038_s41597_025_05073_x crossref_primary_10_1186_s12864_024_11192_3 crossref_primary_10_1371_journal_pntd_0013108 crossref_primary_10_1016_j_synbio_2025_08_013 crossref_primary_10_1371_journal_ppat_1008717 crossref_primary_10_1128_spectrum_01537_24 crossref_primary_10_1073_pnas_2103579118 crossref_primary_10_3390_antibiotics10080947 crossref_primary_10_1038_s41597_025_05121_6 crossref_primary_10_1093_nargab_lqaa080 crossref_primary_10_1016_j_envpol_2020_115378 crossref_primary_10_1093_nar_gkad312 crossref_primary_10_1038_s41597_023_02218_8 crossref_primary_10_12688_openreseurope_20658_1 crossref_primary_10_12688_openreseurope_20658_2 crossref_primary_10_3389_fnins_2021_671249 crossref_primary_10_1016_j_cell_2021_02_008 crossref_primary_10_1007_s00344_021_10486_0 crossref_primary_10_1186_s12864_020_6593_1 crossref_primary_10_3390_ani14121795 |
| ContentType | Journal Article |
| Copyright | Copyright © 2018 John Wiley & Sons, Inc. |
| Copyright_xml | – notice: Copyright © 2018 John Wiley & Sons, Inc. |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1002/cpbi.51 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| EISSN | 1934-340X |
| ExternalDocumentID | 29927072 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Intramural |
| GrantInformation_xml | – fundername: Intramural NIH HHS grantid: ZIB LM622435 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/M011690/1 |
| GroupedDBID | ABJNI AGHNM ALMA_UNASSIGNED_HOLDINGS CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c3531-c7ed3af76bb07e795eb68c821c9a209079adc19333321170c3a3848a91cdd3c12 |
| IEDL.DBID | 7X8 |
| ISSN | 1934-340X |
| IngestDate | Wed Oct 01 15:02:45 EDT 2025 Sat May 31 02:08:43 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 1 |
| Keywords | RNA family non-coding RNA genome annotation Infernal Rfam |
| Language | English |
| License | Copyright © 2018 John Wiley & Sons, Inc. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3531-c7ed3af76bb07e795eb68c821c9a209079adc19333321170c3a3848a91cdd3c12 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 29927072 |
| PQID | 2057864144 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2057864144 pubmed_primary_29927072 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-06-00 20180601 |
| PublicationDateYYYYMMDD | 2018-06-01 |
| PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-00 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Current protocols in bioinformatics |
| PublicationTitleAlternate | Curr Protoc Bioinformatics |
| PublicationYear | 2018 |
| SSID | ssib004239032 |
| Score | 2.5912635 |
| Snippet | Rfam is a database of non-coding RNA families in which each family is represented by a multiple sequence alignment, a consensus secondary structure, and a... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | e51 |
| SubjectTerms | Base Sequence Databases, Nucleic Acid Genome, Human Humans Molecular Sequence Annotation Nucleic Acid Conformation Riboswitch - genetics RNA, Untranslated - chemistry RNA, Untranslated - genetics Sequence Alignment Sequence Analysis, RNA |
| Title | Non-Coding RNA Analysis Using the Rfam Database |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/29927072 https://www.proquest.com/docview/2057864144 |
| Volume | 62 |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qevDiA1_riwhe47ZJ2yQnWVYXL5ZlUeit5Al7sK3u6u930nbRiyDYQ26FdjKZ75tkMh9CNxRAPWLaEa00J0lwY2VdRpiSqVEAgMb7VmyC57koCjnrN9yWfVnlOia2gdrWJuyRQ5IOvpUlwP_vmjcSVKPC6WovobGJBgyoTPBqXvyMtZDRtxplQFMSwpKo6O7Nhr6jI9PoxW0a_04tW4iZ7v334_bRbk8u8bjzhgO04apDNMrrikzqgFF4no_xug0JbqsFMBBAPPfqFd-rlQqYdoRepg_Pk0fSyyQQw2AFEcOdZcrzTOuIOy5TpzNhBI2NVDSC5Fcqa8AA8NCgM2OYYiIRSsbGWmZieoy2qrpypwhDMhYLLVMrvEwMFVpl1jBqvaaRSxM_RNfr_y_BDcPZgqpc_bEsvy0wRCedEcum65dRAuJRHnF69oe3z9EOUBLRFWNdoIGHRegu0bb5XC2W71ft_MKYz56-AP9_roA |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-Coding+RNA+Analysis+Using+the+Rfam+Database&rft.jtitle=Current+protocols+in+bioinformatics&rft.au=Kalvari%2C+Ioanna&rft.au=Nawrocki%2C+Eric+P&rft.au=Argasinska%2C+Joanna&rft.au=Quinones-Olvera%2C+Natalia&rft.date=2018-06-01&rft.eissn=1934-340X&rft.volume=62&rft.issue=1&rft.spage=e51&rft_id=info:doi/10.1002%2Fcpbi.51&rft_id=info%3Apmid%2F29927072&rft_id=info%3Apmid%2F29927072&rft.externalDocID=29927072 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1934-340X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1934-340X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1934-340X&client=summon |