Non-Coding RNA Analysis Using the Rfam Database

Rfam is a database of non-coding RNA families in which each family is represented by a multiple sequence alignment, a consensus secondary structure, and a covariance model. Using a combination of manual and literature-based curation and a custom software pipeline, Rfam converts descriptions of RNA f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current protocols in bioinformatics Jg. 62; H. 1; S. e51
Hauptverfasser: Kalvari, Ioanna, Nawrocki, Eric P, Argasinska, Joanna, Quinones-Olvera, Natalia, Finn, Robert D, Bateman, Alex, Petrov, Anton I
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 01.06.2018
Schlagworte:
ISSN:1934-340X, 1934-340X
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Rfam is a database of non-coding RNA families in which each family is represented by a multiple sequence alignment, a consensus secondary structure, and a covariance model. Using a combination of manual and literature-based curation and a custom software pipeline, Rfam converts descriptions of RNA families found in the scientific literature into computational models that can be used to annotate RNAs belonging to those families in any DNA or RNA sequence. Valuable research outputs that are often locked up in figures and supplementary information files are encapsulated in Rfam entries and made accessible through the Rfam Web site. The data produced by Rfam have a broad application, from genome annotation to providing training sets for algorithm development. This article gives an overview of how to search and navigate the Rfam Web site, and how to annotate sequences with RNA families. The Rfam database is freely available at http://rfam.org. © 2018 by John Wiley & Sons, Inc.
AbstractList Rfam is a database of non-coding RNA families in which each family is represented by a multiple sequence alignment, a consensus secondary structure, and a covariance model. Using a combination of manual and literature-based curation and a custom software pipeline, Rfam converts descriptions of RNA families found in the scientific literature into computational models that can be used to annotate RNAs belonging to those families in any DNA or RNA sequence. Valuable research outputs that are often locked up in figures and supplementary information files are encapsulated in Rfam entries and made accessible through the Rfam Web site. The data produced by Rfam have a broad application, from genome annotation to providing training sets for algorithm development. This article gives an overview of how to search and navigate the Rfam Web site, and how to annotate sequences with RNA families. The Rfam database is freely available at http://rfam.org. © 2018 by John Wiley & Sons, Inc.Rfam is a database of non-coding RNA families in which each family is represented by a multiple sequence alignment, a consensus secondary structure, and a covariance model. Using a combination of manual and literature-based curation and a custom software pipeline, Rfam converts descriptions of RNA families found in the scientific literature into computational models that can be used to annotate RNAs belonging to those families in any DNA or RNA sequence. Valuable research outputs that are often locked up in figures and supplementary information files are encapsulated in Rfam entries and made accessible through the Rfam Web site. The data produced by Rfam have a broad application, from genome annotation to providing training sets for algorithm development. This article gives an overview of how to search and navigate the Rfam Web site, and how to annotate sequences with RNA families. The Rfam database is freely available at http://rfam.org. © 2018 by John Wiley & Sons, Inc.
Rfam is a database of non-coding RNA families in which each family is represented by a multiple sequence alignment, a consensus secondary structure, and a covariance model. Using a combination of manual and literature-based curation and a custom software pipeline, Rfam converts descriptions of RNA families found in the scientific literature into computational models that can be used to annotate RNAs belonging to those families in any DNA or RNA sequence. Valuable research outputs that are often locked up in figures and supplementary information files are encapsulated in Rfam entries and made accessible through the Rfam Web site. The data produced by Rfam have a broad application, from genome annotation to providing training sets for algorithm development. This article gives an overview of how to search and navigate the Rfam Web site, and how to annotate sequences with RNA families. The Rfam database is freely available at http://rfam.org. © 2018 by John Wiley & Sons, Inc.
Author Finn, Robert D
Bateman, Alex
Nawrocki, Eric P
Petrov, Anton I
Argasinska, Joanna
Kalvari, Ioanna
Quinones-Olvera, Natalia
Author_xml – sequence: 1
  givenname: Ioanna
  surname: Kalvari
  fullname: Kalvari, Ioanna
  organization: European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
– sequence: 2
  givenname: Eric P
  surname: Nawrocki
  fullname: Nawrocki, Eric P
  organization: National Center for Biotechnology Information, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
– sequence: 3
  givenname: Joanna
  surname: Argasinska
  fullname: Argasinska, Joanna
  organization: European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
– sequence: 4
  givenname: Natalia
  surname: Quinones-Olvera
  fullname: Quinones-Olvera, Natalia
  organization: Systems Biology Graduate Program, Harvard University, Cambridge, Massachusetts
– sequence: 5
  givenname: Robert D
  surname: Finn
  fullname: Finn, Robert D
  organization: European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
– sequence: 6
  givenname: Alex
  surname: Bateman
  fullname: Bateman, Alex
  organization: European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
– sequence: 7
  givenname: Anton I
  surname: Petrov
  fullname: Petrov, Anton I
  organization: European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29927072$$D View this record in MEDLINE/PubMed
BookMark eNpNT0tLw0AYXKRiay3-A8nRS9pvH8lmjyHWB5QKxYK38O0jGsjLbHLovzdiBecywzAMM9dk1rSNI-SWwpoCsI3pdLmO6AVZUMVFyAW8z_7pOVl5X2oAwbgCzq7InCnFJEi2IJt924RZa8vmIzjs0yBtsDr50gdH_2MNny44FFgHDzigRu9uyGWBlXerMy_J8XH7lj2Hu9enlyzdhYZHnIZGOsuxkLHWIJ1UkdNxYhJGjUIGCqRCa6aFExilEgxHnogEFTXWckPZktz_9nZ9-zU6P-R16Y2rKmxcO_qcQSSTWFAhpujdOTrq2tm868sa-1P-d5J9A_RnUiU
CitedBy_id crossref_primary_10_3390_ijms20143480
crossref_primary_10_3390_ncrna5010015
crossref_primary_10_3389_fmars_2024_1461451
crossref_primary_10_1038_s42003_021_01659_4
crossref_primary_10_1016_j_fbio_2025_105993
crossref_primary_10_1007_s11738_020_3013_8
crossref_primary_10_3389_fmicb_2021_713462
crossref_primary_10_1128_JB_00413_20
crossref_primary_10_3390_ani10071198
crossref_primary_10_3390_microorganisms10112100
crossref_primary_10_1111_jipb_13413
crossref_primary_10_1007_s10725_023_01020_1
crossref_primary_10_3389_fmicb_2023_1137611
crossref_primary_10_1016_j_yjmcc_2020_10_005
crossref_primary_10_1038_s41597_025_05288_y
crossref_primary_10_1038_s41598_021_95106_3
crossref_primary_10_1371_journal_pntd_0007612
crossref_primary_10_3390_ijms20205122
crossref_primary_10_3389_fcimb_2020_600325
crossref_primary_10_3390_antibiotics10010045
crossref_primary_10_1016_j_virusres_2023_199090
crossref_primary_10_3389_fcimb_2025_1621341
crossref_primary_10_1080_15476286_2025_2523696
crossref_primary_10_1128_mSystems_00239_18
crossref_primary_10_12688_openreseurope_20863_1
crossref_primary_10_48130_vegres_0024_0031
crossref_primary_10_3389_fmicb_2023_1309703
crossref_primary_10_3390_biology14040440
crossref_primary_10_1186_s12870_021_03193_1
crossref_primary_10_1038_s41598_021_81784_6
crossref_primary_10_1038_s41597_024_03404_y
crossref_primary_10_1371_journal_ppat_1012187
crossref_primary_10_3389_fcell_2020_562940
crossref_primary_10_1186_s40659_020_0272_1
crossref_primary_10_1016_j_ygeno_2021_03_014
crossref_primary_10_1089_zeb_2022_0040
crossref_primary_10_1111_1755_0998_13504
crossref_primary_10_1016_j_ygeno_2021_11_018
crossref_primary_10_1016_j_plgene_2021_100311
crossref_primary_10_1038_s41594_019_0327_6
crossref_primary_10_3390_jof7090699
crossref_primary_10_3390_jof6010007
crossref_primary_10_1186_s12863_025_01318_1
crossref_primary_10_3389_fpls_2021_633310
crossref_primary_10_1016_j_jbiotec_2022_02_006
crossref_primary_10_1186_s12915_025_02304_w
crossref_primary_10_1093_treephys_tpab138
crossref_primary_10_1093_gigascience_giab013
crossref_primary_10_1002_mco2_70243
crossref_primary_10_1038_s41438_020_00343_8
crossref_primary_10_3389_fgene_2022_958641
crossref_primary_10_3390_biomedicines12020395
crossref_primary_10_1371_journal_pone_0296959
crossref_primary_10_1016_j_syapm_2020_126132
crossref_primary_10_1016_j_tim_2022_03_007
crossref_primary_10_3389_fmicb_2023_1112307
crossref_primary_10_1016_j_aquaculture_2024_741356
crossref_primary_10_1038_s41597_024_03150_1
crossref_primary_10_3389_fmicb_2022_871937
crossref_primary_10_12688_openreseurope_20864_1
crossref_primary_10_3390_ncrna6030039
crossref_primary_10_1093_molbev_msac062
crossref_primary_10_1007_s12223_022_00996_z
crossref_primary_10_1186_s12915_021_01053_w
crossref_primary_10_1038_s42003_021_01650_z
crossref_primary_10_1371_journal_pone_0320282
crossref_primary_10_7717_peerj_18542
crossref_primary_10_33073_pjm_2021_016
crossref_primary_10_3390_biom15050616
crossref_primary_10_1016_j_anireprosci_2022_106956
crossref_primary_10_1016_j_ygeno_2019_12_019
crossref_primary_10_1093_gigascience_giab081
crossref_primary_10_1007_s10126_023_10254_z
crossref_primary_10_3389_fgene_2020_00664
crossref_primary_10_1186_s12864_023_09309_1
crossref_primary_10_3390_ani14081202
crossref_primary_10_1016_j_aquaculture_2019_04_034
crossref_primary_10_1038_s41597_025_04480_4
crossref_primary_10_3390_insects15120988
crossref_primary_10_1128_Spectrum_00044_21
crossref_primary_10_1111_jpn_13312
crossref_primary_10_1093_bib_bbaa354
crossref_primary_10_3390_jof10090602
crossref_primary_10_1007_s00040_024_01016_8
crossref_primary_10_1016_j_hpj_2019_11_004
crossref_primary_10_1371_journal_pcbi_1007564
crossref_primary_10_3389_fcimb_2022_990312
crossref_primary_10_3389_fpls_2023_1275399
crossref_primary_10_1016_j_cbd_2025_101487
crossref_primary_10_1016_j_cbd_2022_101045
crossref_primary_10_1038_s41586_024_07473_2
crossref_primary_10_3389_fgene_2021_718266
crossref_primary_10_3892_etm_2023_11966
crossref_primary_10_1038_s41559_022_01898_6
crossref_primary_10_3390_biology14091107
crossref_primary_10_1007_s00344_024_11444_2
crossref_primary_10_1093_g3journal_jkae185
crossref_primary_10_1016_j_ympev_2021_107208
crossref_primary_10_1159_000546304
crossref_primary_10_1007_s12088_022_01050_9
crossref_primary_10_1016_j_ygeno_2020_07_036
crossref_primary_10_1016_j_scitotenv_2022_159304
crossref_primary_10_1093_jxb_eraa018
crossref_primary_10_1093_nar_gkae231
crossref_primary_10_1007_s13205_021_03000_6
crossref_primary_10_1515_hsz_2020_0230
crossref_primary_10_3390_cells9071574
crossref_primary_10_1371_journal_ppat_1012138
crossref_primary_10_1073_pnas_2001332117
crossref_primary_10_1007_s00344_022_10893_x
crossref_primary_10_1016_j_idairyj_2025_106183
crossref_primary_10_3389_fcimb_2020_00256
crossref_primary_10_1080_21501203_2023_2256764
crossref_primary_10_1186_s13568_022_01482_y
crossref_primary_10_1111_1755_0998_13439
crossref_primary_10_1007_s13205_023_03816_4
crossref_primary_10_1093_nargab_lqad072
crossref_primary_10_3390_d16070392
crossref_primary_10_1111_gcb_70502
crossref_primary_10_1038_s41597_025_04661_1
crossref_primary_10_1186_s12864_022_08913_x
crossref_primary_10_3390_ijms22158197
crossref_primary_10_1016_j_ygeno_2021_01_024
crossref_primary_10_3389_fpls_2023_1148303
crossref_primary_10_1016_j_gene_2022_147009
crossref_primary_10_1111_tpj_15399
crossref_primary_10_1111_tpj_16125
crossref_primary_10_1038_s41396_020_0658_7
crossref_primary_10_1371_journal_pone_0257878
crossref_primary_10_3390_genes12091365
crossref_primary_10_1016_j_tig_2021_06_007
crossref_primary_10_1093_gigascience_giac093
crossref_primary_10_1093_hr_uhad120
crossref_primary_10_3390_ani11020535
crossref_primary_10_1111_jen_13000
crossref_primary_10_1016_j_csbj_2020_03_022
crossref_primary_10_7717_peerj_8914
crossref_primary_10_3389_fpls_2023_1068796
crossref_primary_10_1093_nar_gkaf708
crossref_primary_10_1007_s10482_024_02045_w
crossref_primary_10_1038_s41467_025_60048_1
crossref_primary_10_1093_nar_gkaa1047
crossref_primary_10_3389_fgene_2023_1221491
crossref_primary_10_3390_ncrna9020018
crossref_primary_10_1186_s40659_023_00414_9
crossref_primary_10_1002_edn3_335
crossref_primary_10_1186_s12870_021_03148_6
crossref_primary_10_3389_fpls_2022_899054
crossref_primary_10_1016_j_ygeno_2021_01_017
crossref_primary_10_3389_fgene_2023_1329939
crossref_primary_10_1016_j_plgene_2025_100504
crossref_primary_10_1111_tpj_15848
crossref_primary_10_1016_j_hpj_2024_11_005
crossref_primary_10_1016_j_bbagrm_2022_194815
crossref_primary_10_3389_fvets_2023_1140655
crossref_primary_10_1016_j_molp_2020_12_019
crossref_primary_10_1007_s40484_020_0223_4
crossref_primary_10_3390_microorganisms11071768
crossref_primary_10_1016_j_biortech_2024_131751
crossref_primary_10_1016_j_funbio_2020_03_008
crossref_primary_10_3390_biomedicines11041230
crossref_primary_10_1016_j_ymeth_2019_11_001
crossref_primary_10_1080_21501203_2019_1708492
crossref_primary_10_1038_s12276_024_01239_6
crossref_primary_10_1016_j_pmpp_2024_102379
crossref_primary_10_1073_pnas_2107005119
crossref_primary_10_1093_pcp_pcae081
crossref_primary_10_1038_s41597_023_02171_6
crossref_primary_10_1111_pce_15104
crossref_primary_10_3390_plants13121676
crossref_primary_10_1016_j_csbj_2021_08_038
crossref_primary_10_1186_s40168_021_01173_z
crossref_primary_10_1038_s41597_024_03680_8
crossref_primary_10_3389_fpls_2022_1003835
crossref_primary_10_1016_j_hpj_2022_12_004
crossref_primary_10_1093_hr_uhab049
crossref_primary_10_1186_s12859_021_04544_3
crossref_primary_10_1126_science_aaz2582
crossref_primary_10_1038_s42003_023_05044_1
crossref_primary_10_1128_MRA_00312_20
crossref_primary_10_1093_nar_gkab565
crossref_primary_10_1186_s12864_022_08628_z
crossref_primary_10_1016_j_compbiomed_2021_104603
crossref_primary_10_1093_bib_bbae372
crossref_primary_10_3389_fnins_2023_1145307
crossref_primary_10_1002_etc_5266
crossref_primary_10_1126_science_abe8526
crossref_primary_10_1038_s41564_021_01014_7
crossref_primary_10_1186_s12859_021_04532_7
crossref_primary_10_1016_j_ijbiomac_2025_144578
crossref_primary_10_1186_s12859_019_2782_9
crossref_primary_10_1371_journal_ppat_1010149
crossref_primary_10_3390_cells10040921
crossref_primary_10_1093_molbev_msaa281
crossref_primary_10_1186_s40793_025_00773_8
crossref_primary_10_3389_fpls_2022_1022169
crossref_primary_10_1186_s12920_024_01890_y
crossref_primary_10_1111_tpj_70005
crossref_primary_10_1371_journal_pbio_3002948
crossref_primary_10_1186_s12864_023_09686_7
crossref_primary_10_1016_j_biotechadv_2020_107512
crossref_primary_10_1002_mco2_70257
crossref_primary_10_3390_horticulturae8010041
crossref_primary_10_1038_s41598_021_99683_1
crossref_primary_10_3390_md20110692
crossref_primary_10_3390_ncrna4030017
crossref_primary_10_1111_mmi_15313
crossref_primary_10_7717_peerj_9882
crossref_primary_10_1128_MRA_01015_20
crossref_primary_10_3390_jof7090710
crossref_primary_10_12688_openreseurope_20439_1
crossref_primary_10_1261_rna_077123_120
crossref_primary_10_1093_plcell_koae308
crossref_primary_10_3390_cancers15102833
crossref_primary_10_1261_rna_078768_121
crossref_primary_10_1093_molbev_msab280
crossref_primary_10_3389_fpls_2022_863330
crossref_primary_10_1080_12298093_2023_2175428
crossref_primary_10_1099_mgen_0_000821
crossref_primary_10_1177_11779322231162777
crossref_primary_10_12688_openreseurope_20499_1
crossref_primary_10_1099_mgen_0_001239
crossref_primary_10_1080_07391102_2022_2116110
crossref_primary_10_3389_fpls_2021_695439
crossref_primary_10_1111_1755_0998_13850
crossref_primary_10_3390_antibiotics13050380
crossref_primary_10_1016_j_tibtech_2020_03_013
crossref_primary_10_1038_s41597_025_05849_1
crossref_primary_10_1093_nar_gkae1023
crossref_primary_10_1093_molbev_msab030
crossref_primary_10_1128_msystems_00584_19
crossref_primary_10_3389_fpls_2022_1001583
crossref_primary_10_1038_s41598_019_55287_4
crossref_primary_10_12688_openreseurope_20489_1
crossref_primary_10_1371_journal_pone_0289693
crossref_primary_10_1128_MRA_01055_20
crossref_primary_10_1016_j_ijbiomac_2022_12_298
crossref_primary_10_12688_wellcomeopenres_15194_2
crossref_primary_10_12688_wellcomeopenres_15194_1
crossref_primary_10_3390_plants12152773
crossref_primary_10_1093_treephys_tpad102
crossref_primary_10_1093_bib_bbab075
crossref_primary_10_1371_journal_pgen_1011835
crossref_primary_10_1016_j_biotechadv_2021_107739
crossref_primary_10_1007_s13131_024_2403_y
crossref_primary_10_1007_s00253_020_11056_2
crossref_primary_10_1101_gr_277483_122
crossref_primary_10_1111_jwas_12870
crossref_primary_10_3389_fmars_2024_1403559
crossref_primary_10_1038_s41467_024_55383_8
crossref_primary_10_1186_s12915_023_01643_w
crossref_primary_10_3390_plants14111650
crossref_primary_10_1038_s41597_025_05204_4
crossref_primary_10_1186_s12864_022_08927_5
crossref_primary_10_3389_fvets_2022_976603
crossref_primary_10_1016_j_gene_2022_146459
crossref_primary_10_3390_metabo14110636
crossref_primary_10_1016_j_fbio_2021_101448
crossref_primary_10_1038_s41597_025_05073_x
crossref_primary_10_1186_s12864_024_11192_3
crossref_primary_10_1371_journal_pntd_0013108
crossref_primary_10_1016_j_synbio_2025_08_013
crossref_primary_10_1371_journal_ppat_1008717
crossref_primary_10_1128_spectrum_01537_24
crossref_primary_10_1073_pnas_2103579118
crossref_primary_10_3390_antibiotics10080947
crossref_primary_10_1038_s41597_025_05121_6
crossref_primary_10_1093_nargab_lqaa080
crossref_primary_10_1016_j_envpol_2020_115378
crossref_primary_10_1093_nar_gkad312
crossref_primary_10_1038_s41597_023_02218_8
crossref_primary_10_12688_openreseurope_20658_1
crossref_primary_10_12688_openreseurope_20658_2
crossref_primary_10_3389_fnins_2021_671249
crossref_primary_10_1016_j_cell_2021_02_008
crossref_primary_10_1007_s00344_021_10486_0
crossref_primary_10_1186_s12864_020_6593_1
crossref_primary_10_3390_ani14121795
ContentType Journal Article
Copyright Copyright © 2018 John Wiley & Sons, Inc.
Copyright_xml – notice: Copyright © 2018 John Wiley & Sons, Inc.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1002/cpbi.51
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
EISSN 1934-340X
ExternalDocumentID 29927072
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Intramural
GrantInformation_xml – fundername: Intramural NIH HHS
  grantid: ZIB LM622435
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/M011690/1
GroupedDBID ABJNI
AGHNM
ALMA_UNASSIGNED_HOLDINGS
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c3531-c7ed3af76bb07e795eb68c821c9a209079adc19333321170c3a3848a91cdd3c12
IEDL.DBID 7X8
ISSN 1934-340X
IngestDate Wed Oct 01 15:02:45 EDT 2025
Sat May 31 02:08:43 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Keywords RNA family
non-coding RNA
genome annotation
Infernal
Rfam
Language English
License Copyright © 2018 John Wiley & Sons, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3531-c7ed3af76bb07e795eb68c821c9a209079adc19333321170c3a3848a91cdd3c12
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 29927072
PQID 2057864144
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2057864144
pubmed_primary_29927072
PublicationCentury 2000
PublicationDate 2018-06-00
20180601
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-00
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Current protocols in bioinformatics
PublicationTitleAlternate Curr Protoc Bioinformatics
PublicationYear 2018
SSID ssib004239032
Score 2.5912635
Snippet Rfam is a database of non-coding RNA families in which each family is represented by a multiple sequence alignment, a consensus secondary structure, and a...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage e51
SubjectTerms Base Sequence
Databases, Nucleic Acid
Genome, Human
Humans
Molecular Sequence Annotation
Nucleic Acid Conformation
Riboswitch - genetics
RNA, Untranslated - chemistry
RNA, Untranslated - genetics
Sequence Alignment
Sequence Analysis, RNA
Title Non-Coding RNA Analysis Using the Rfam Database
URI https://www.ncbi.nlm.nih.gov/pubmed/29927072
https://www.proquest.com/docview/2057864144
Volume 62
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAMrDwEK_ykpFYTRPbie0JVYWKhaiqQMoWOWdX6kBSaOH3c05SwYKERAZvkey789139vk-Qm4S6dMEEsxNPERMWhOz0nrDjFcB_zpvABqyCZVlOs_NpDtwW3ZllWuf2DhqV0M4I8ckHW0rlYj_7xZvLLBGhdvVjkJjk_QEQplg1Sr_6Wsxo284yhCmSCZklLfvZkPf0QEsyvltEv8OLZsQM9777-T2yW4HLumwtYYDsuGrQzLI6oqN6hCj6DQb0nUbEtpUC1AEgHQ6s6_03q5siGlH5GX88Dx6ZB1NAgOBO4iB8k7YmUrLMlJemcSXqQbNYzCWR5j8GusABYAfDzwzIKzQUqNawDkBMT8mW1Vd-VNCw0NUAalXKnWIo1B1FhGCKIW2nttI9sn1ev0FmmG4W7CVrz-WxbcE-uSkFWKxaPtlFBjxuIoUP_vD3-dkByGJbouxLkhvhpvQX5Jt-FzNl-9XjX5xzCZPXyD4rYQ
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-Coding+RNA+Analysis+Using+the+Rfam+Database&rft.jtitle=Current+protocols+in+bioinformatics&rft.au=Kalvari%2C+Ioanna&rft.au=Nawrocki%2C+Eric+P&rft.au=Argasinska%2C+Joanna&rft.au=Quinones-Olvera%2C+Natalia&rft.date=2018-06-01&rft.issn=1934-340X&rft.eissn=1934-340X&rft.volume=62&rft.issue=1&rft.spage=e51&rft_id=info:doi/10.1002%2Fcpbi.51&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1934-340X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1934-340X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1934-340X&client=summon