Highly undersampled magnetic resonance imaging reconstruction using autoencoding priors

Purpose Although recent deep learning methodologies have shown promising results in fast MR imaging, how to explore it to learn an explicit prior and leverage it into the observation constraint is still desired. Methods A denoising autoencoder (DAE) network is leveraged as an explicit prior to addre...

Full description

Saved in:
Bibliographic Details
Published in:Magnetic resonance in medicine Vol. 83; no. 1; pp. 322 - 336
Main Authors: Liu, Qiegen, Yang, Qingxin, Cheng, Huitao, Wang, Shanshan, Zhang, Minghui, Liang, Dong
Format: Journal Article
Language:English
Published: United States Wiley Subscription Services, Inc 01.01.2020
Subjects:
ISSN:0740-3194, 1522-2594, 1522-2594
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Purpose Although recent deep learning methodologies have shown promising results in fast MR imaging, how to explore it to learn an explicit prior and leverage it into the observation constraint is still desired. Methods A denoising autoencoder (DAE) network is leveraged as an explicit prior to address the highly undersampling MR image reconstruction problem. First, inspired by the observation that the prior information learned from high‐dimension signals is more effective than that from the low‐dimension counterpart in image restoration tasks, we train the network in a multichannel scenario and apply the learned network to single‐channel image reconstruction by a variables augmentation technique. Second, because of the fact that multiple implementations of artificial noise generation in DAE favors a better underlying result, we introduce a 2‐sigma rule to complement each other for improving the final reconstruction. The whole algorithm is tackled by proximal gradient descent. Results Experimental results under varying sampling trajectories and acceleration factors consistently demonstrate the superiority of the enhanced autoencoding priors, in terms of peak signal‐to‐noise ratio, structural similarity, and high‐frequency error norm. Conclusion A simple and effective way to incorporate the DAE prior into highly undersampling MR reconstruction is proposed. Once the DAE prior is obtained, it can be applied to the reconstruction tasks with different sampling trajectories and acceleration factors, and achieves superior performance in comparison with state‐of‐the‐art methods.
AbstractList Purpose Although recent deep learning methodologies have shown promising results in fast MR imaging, how to explore it to learn an explicit prior and leverage it into the observation constraint is still desired. Methods A denoising autoencoder (DAE) network is leveraged as an explicit prior to address the highly undersampling MR image reconstruction problem. First, inspired by the observation that the prior information learned from high‐dimension signals is more effective than that from the low‐dimension counterpart in image restoration tasks, we train the network in a multichannel scenario and apply the learned network to single‐channel image reconstruction by a variables augmentation technique. Second, because of the fact that multiple implementations of artificial noise generation in DAE favors a better underlying result, we introduce a 2‐sigma rule to complement each other for improving the final reconstruction. The whole algorithm is tackled by proximal gradient descent. Results Experimental results under varying sampling trajectories and acceleration factors consistently demonstrate the superiority of the enhanced autoencoding priors, in terms of peak signal‐to‐noise ratio, structural similarity, and high‐frequency error norm. Conclusion A simple and effective way to incorporate the DAE prior into highly undersampling MR reconstruction is proposed. Once the DAE prior is obtained, it can be applied to the reconstruction tasks with different sampling trajectories and acceleration factors, and achieves superior performance in comparison with state‐of‐the‐art methods.
PurposeAlthough recent deep learning methodologies have shown promising results in fast MR imaging, how to explore it to learn an explicit prior and leverage it into the observation constraint is still desired.MethodsA denoising autoencoder (DAE) network is leveraged as an explicit prior to address the highly undersampling MR image reconstruction problem. First, inspired by the observation that the prior information learned from high‐dimension signals is more effective than that from the low‐dimension counterpart in image restoration tasks, we train the network in a multichannel scenario and apply the learned network to single‐channel image reconstruction by a variables augmentation technique. Second, because of the fact that multiple implementations of artificial noise generation in DAE favors a better underlying result, we introduce a 2‐sigma rule to complement each other for improving the final reconstruction. The whole algorithm is tackled by proximal gradient descent.ResultsExperimental results under varying sampling trajectories and acceleration factors consistently demonstrate the superiority of the enhanced autoencoding priors, in terms of peak signal‐to‐noise ratio, structural similarity, and high‐frequency error norm.ConclusionA simple and effective way to incorporate the DAE prior into highly undersampling MR reconstruction is proposed. Once the DAE prior is obtained, it can be applied to the reconstruction tasks with different sampling trajectories and acceleration factors, and achieves superior performance in comparison with state‐of‐the‐art methods.
Although recent deep learning methodologies have shown promising results in fast MR imaging, how to explore it to learn an explicit prior and leverage it into the observation constraint is still desired. A denoising autoencoder (DAE) network is leveraged as an explicit prior to address the highly undersampling MR image reconstruction problem. First, inspired by the observation that the prior information learned from high-dimension signals is more effective than that from the low-dimension counterpart in image restoration tasks, we train the network in a multichannel scenario and apply the learned network to single-channel image reconstruction by a variables augmentation technique. Second, because of the fact that multiple implementations of artificial noise generation in DAE favors a better underlying result, we introduce a 2-sigma rule to complement each other for improving the final reconstruction. The whole algorithm is tackled by proximal gradient descent. Experimental results under varying sampling trajectories and acceleration factors consistently demonstrate the superiority of the enhanced autoencoding priors, in terms of peak signal-to-noise ratio, structural similarity, and high-frequency error norm. A simple and effective way to incorporate the DAE prior into highly undersampling MR reconstruction is proposed. Once the DAE prior is obtained, it can be applied to the reconstruction tasks with different sampling trajectories and acceleration factors, and achieves superior performance in comparison with state-of-the-art methods.
Although recent deep learning methodologies have shown promising results in fast MR imaging, how to explore it to learn an explicit prior and leverage it into the observation constraint is still desired.PURPOSEAlthough recent deep learning methodologies have shown promising results in fast MR imaging, how to explore it to learn an explicit prior and leverage it into the observation constraint is still desired.A denoising autoencoder (DAE) network is leveraged as an explicit prior to address the highly undersampling MR image reconstruction problem. First, inspired by the observation that the prior information learned from high-dimension signals is more effective than that from the low-dimension counterpart in image restoration tasks, we train the network in a multichannel scenario and apply the learned network to single-channel image reconstruction by a variables augmentation technique. Second, because of the fact that multiple implementations of artificial noise generation in DAE favors a better underlying result, we introduce a 2-sigma rule to complement each other for improving the final reconstruction. The whole algorithm is tackled by proximal gradient descent.METHODSA denoising autoencoder (DAE) network is leveraged as an explicit prior to address the highly undersampling MR image reconstruction problem. First, inspired by the observation that the prior information learned from high-dimension signals is more effective than that from the low-dimension counterpart in image restoration tasks, we train the network in a multichannel scenario and apply the learned network to single-channel image reconstruction by a variables augmentation technique. Second, because of the fact that multiple implementations of artificial noise generation in DAE favors a better underlying result, we introduce a 2-sigma rule to complement each other for improving the final reconstruction. The whole algorithm is tackled by proximal gradient descent.Experimental results under varying sampling trajectories and acceleration factors consistently demonstrate the superiority of the enhanced autoencoding priors, in terms of peak signal-to-noise ratio, structural similarity, and high-frequency error norm.RESULTSExperimental results under varying sampling trajectories and acceleration factors consistently demonstrate the superiority of the enhanced autoencoding priors, in terms of peak signal-to-noise ratio, structural similarity, and high-frequency error norm.A simple and effective way to incorporate the DAE prior into highly undersampling MR reconstruction is proposed. Once the DAE prior is obtained, it can be applied to the reconstruction tasks with different sampling trajectories and acceleration factors, and achieves superior performance in comparison with state-of-the-art methods.CONCLUSIONA simple and effective way to incorporate the DAE prior into highly undersampling MR reconstruction is proposed. Once the DAE prior is obtained, it can be applied to the reconstruction tasks with different sampling trajectories and acceleration factors, and achieves superior performance in comparison with state-of-the-art methods.
Author Cheng, Huitao
Liu, Qiegen
Liang, Dong
Yang, Qingxin
Wang, Shanshan
Zhang, Minghui
Author_xml – sequence: 1
  givenname: Qiegen
  orcidid: 0000-0003-4717-2283
  surname: Liu
  fullname: Liu, Qiegen
  organization: Nanchang University
– sequence: 2
  givenname: Qingxin
  surname: Yang
  fullname: Yang, Qingxin
  organization: Nanchang University
– sequence: 3
  givenname: Huitao
  surname: Cheng
  fullname: Cheng, Huitao
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Shanshan
  orcidid: 0000-0002-0575-6523
  surname: Wang
  fullname: Wang, Shanshan
  organization: Chinese Academy of Sciences
– sequence: 5
  givenname: Minghui
  surname: Zhang
  fullname: Zhang, Minghui
  organization: Nanchang University
– sequence: 6
  givenname: Dong
  orcidid: 0000-0003-0131-2519
  surname: Liang
  fullname: Liang, Dong
  email: dong.liang@siat.ac.cn
  organization: Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31429993$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1Lw0AQhhep2A89-Ack4EUPafcrTfYoRa3QIojiMWw207ol2a27CdJ_7_ZDDwU9DfPyzDDvvH3UMdYAQpcEDwnGdFS7ekhTQckJ6pGE0pgmgndQD6ccx4wI3kV971cYYyFSfoa6jHAqhGA99D7Vy49qE7WmBOdlva6gjGq5NNBoFTnw1kijINJB02YZFGWNb1yrGm1N1PqtKNvGglG23DZrp63z5-h0ISsPF4c6QG8P96-TaTx7fnya3M1ixRJGYjkepzJTnElBIFFcplCCwBzwOC1UkpS8FJwt0gKYwGVBRCYzWohMBIfjTAAboJv93rWzny34Jq-1V1BV0oBtfU4ZJllGgu-AXh-hK9s6E67bUThJMGaBujpQbVFDmQc7tXSb_OdlAbjdA8pZ7x0sfhGC820ceYgj38UR2NERq3Qjt59rnNTVfxNfuoLN36vz-ct8P_ENaTubzA
CitedBy_id crossref_primary_10_1109_TMI_2023_3288219
crossref_primary_10_1016_j_bspc_2025_108355
crossref_primary_10_1109_TNNLS_2023_3333538
crossref_primary_10_1109_TMI_2022_3180228
crossref_primary_10_1016_j_mri_2023_07_004
crossref_primary_10_1109_TMI_2023_3313421
crossref_primary_10_1109_TIM_2024_3417538
crossref_primary_10_1016_j_dsp_2025_105012
crossref_primary_10_1109_TNNLS_2021_3090303
crossref_primary_10_1016_j_compbiomed_2024_108668
crossref_primary_10_1109_JPROC_2022_3141367
crossref_primary_10_1016_j_jvcir_2020_102927
crossref_primary_10_1109_TMI_2022_3153849
crossref_primary_10_3390_electronics11040586
crossref_primary_10_1109_TCI_2022_3145187
crossref_primary_10_1016_j_inffus_2020_09_006
crossref_primary_10_1002_ima_70013
crossref_primary_10_1002_jbio_202300281
crossref_primary_10_3390_bioengineering10091012
crossref_primary_10_1109_TMI_2023_3234968
crossref_primary_10_3390_photonics9050343
crossref_primary_10_1016_j_dsp_2020_102856
crossref_primary_10_1002_nbm_4848
crossref_primary_10_1109_TMI_2024_3462988
crossref_primary_10_1002_mrm_29624
crossref_primary_10_1016_j_cmpb_2023_107590
crossref_primary_10_1016_j_compbiomed_2023_107610
crossref_primary_10_1093_jcde_qwae006
crossref_primary_10_3390_app15147717
crossref_primary_10_1109_JAS_2023_123543
crossref_primary_10_1016_j_mri_2023_02_004
crossref_primary_10_1016_j_mri_2020_02_002
crossref_primary_10_1016_j_sigpro_2021_108320
crossref_primary_10_1002_nbm_5005
crossref_primary_10_3390_electronics12234742
crossref_primary_10_1098_rsta_2024_0323
crossref_primary_10_1016_j_bspc_2025_108291
crossref_primary_10_1016_j_media_2023_102872
crossref_primary_10_1016_j_mri_2021_12_003
crossref_primary_10_1007_s00371_022_02747_0
crossref_primary_10_1109_TMI_2021_3096232
crossref_primary_10_3934_ipi_2020051
crossref_primary_10_1002_mrm_29085
crossref_primary_10_1016_j_neucom_2020_09_086
crossref_primary_10_1109_TMI_2022_3147426
crossref_primary_10_1016_j_bspc_2021_102579
crossref_primary_10_1109_TMM_2022_3177933
crossref_primary_10_1016_j_mri_2024_01_007
crossref_primary_10_1109_TMI_2021_3081677
Cites_doi 10.1109/CVPR.2018.00196
10.1137/17M1141771
10.1002/mrm.21391
10.1002/mrm.22736
10.1002/mrm.21236
10.1016/j.media.2013.09.007
10.1109/CVPRW.2017.152
10.1109/TIP.2017.2704443
10.1109/IEMBS.2004.1403345
10.1109/TMI.2013.2256464
10.1109/TMI.2010.2089519
10.1109/TMI.2010.2090538
10.1109/CVPR.2017.374
10.1109/34.1000236
10.1002/mrm.24267
10.1016/j.jvcir.2017.07.002
10.1145/1390156.1390294
10.1109/LNLA.2009.5278405
10.1109/TMI.2016.2550204
10.1137/090746379
10.1109/TIP.2003.819861
10.1109/TIP.2014.2329449
10.1109/TIP.2017.2662206
10.1002/mrm.22595
10.1109/ICIP.2017.8296620
10.1109/TIP.2009.2012908
10.1007/978-3-319-59050-9_51
10.1002/mrm.10718
10.1109/CVPRW.2017.151
10.1561/2400000003
10.1109/TMI.2018.2887072
10.1109/TBME.2015.2503756
10.1109/CVPR.2009.5206802
10.1109/ISBI.2016.7493320
ContentType Journal Article
Copyright 2019 International Society for Magnetic Resonance in Medicine
2019 International Society for Magnetic Resonance in Medicine.
Copyright_xml – notice: 2019 International Society for Magnetic Resonance in Medicine
– notice: 2019 International Society for Magnetic Resonance in Medicine.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
DOI 10.1002/mrm.27921
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
Biochemistry Abstracts 1
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 336
ExternalDocumentID 31429993
10_1002_mrm_27921
MRM27921
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Basic Research Program of Shenzhen
  funderid: JCYJ20150831154213680
– fundername: National Natural Science Foundation of China
  funderid: 61661031; 61871206
– fundername: Natural Science Foundation of Jiangxi Province
  funderid: 20181BAB202003
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
ID FETCH-LOGICAL-c3531-a667a8c43a91e5c4a7ede904e067bc55d4d943f7be390db198a82b989259689e3
IEDL.DBID WIN
ISICitedReferencesCount 52
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000482277500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0740-3194
1522-2594
IngestDate Wed Oct 01 15:01:36 EDT 2025
Sat Nov 29 14:27:12 EST 2025
Mon Jul 21 06:08:07 EDT 2025
Sat Nov 29 02:37:48 EST 2025
Tue Nov 18 22:12:39 EST 2025
Wed Jan 22 16:38:05 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords multichannel prior
autoencoding priors
magnetic resonance imaging
image reconstruction
proximal gradient descent
Language English
License 2019 International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3531-a667a8c43a91e5c4a7ede904e067bc55d4d943f7be390db198a82b989259689e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0575-6523
0000-0003-0131-2519
0000-0003-4717-2283
PMID 31429993
PQID 2301055003
PQPubID 1016391
PageCount 15
ParticipantIDs proquest_miscellaneous_2301881997
proquest_journals_2301055003
pubmed_primary_31429993
crossref_primary_10_1002_mrm_27921
crossref_citationtrail_10_1002_mrm_27921
wiley_primary_10_1002_mrm_27921_MRM27921
PublicationCentury 2000
PublicationDate January 2020
2020-01-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: January 2020
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 11
2013; 69
2017; 48
2017; 26
2011
2016; 32
2009
2008
2011; 30
2019; 38
2004
2007; 31
2007; 57
2014; 23
2007; 58
2014; 1
2004; 51
2013; 32
2017; 33
2002; 24
2004; 13
2014; 15
2018
2016; 63
2011; 65
2017
2016
2015
2014; 18
2010; 3
2018; 11
2009; 18
e_1_2_8_28_1
Alain G (e_1_2_8_39_1) 2014; 15
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
Sun J (e_1_2_8_25_1) 2016
Mao XJ (e_1_2_8_42_1) 2016
e_1_2_8_3_1
Ma S (e_1_2_8_7_1) 2008
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_15_1
He K (e_1_2_8_17_1) 2015
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_30_1
Vincent P (e_1_2_8_36_1) 2010; 11
Qu P (e_1_2_8_4_1) 2007; 31
e_1_2_8_29_1
Glorot X (e_1_2_8_37_1) 2011
e_1_2_8_46_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_14_1
Jonas A (e_1_2_8_27_1) 2017; 33
e_1_2_8_35_1
e_1_2_8_16_1
Hammernik K (e_1_2_8_21_1) 2016
e_1_2_8_10_1
e_1_2_8_31_1
Geras KJ (e_1_2_8_38_1) 2015
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_50_1
References_xml – volume: 63
  start-page: 1850
  year: 2016
  end-page: 1861
  article-title: Fast multiclass dictionaries learning with geometrical directions in MRI reconstruction
  publication-title: IEEE Trans Biomed Eng
– volume: 30
  start-page: 1090
  year: 2011
  end-page: 1099
  article-title: Compressed sensing with wavelet domain dependencies for coronary MRI: Aaretrospective study”
  publication-title: IEEE Trans Med Imaging
– volume: 69
  start-page: 571
  year: 2013
  end-page: 582
  article-title: Coil compression for accelerated imaging with Cartesian sampling
  publication-title: Magn Reson Med
– volume: 23
  start-page: 3618
  year: 2014
  end-page: 3632
  article-title: Compressive sensing via nonlocal low‐rank regularization
  publication-title: IEEE Trans Image Process
– volume: 51
  start-page: 559
  year: 2004
  end-page: 567
  article-title: Parallel imaging reconstruction using automatic regularization
  publication-title: Magn Reson Med
– volume: 57
  start-page: 1086
  year: 2007
  end-page: 1098
  article-title: Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint
  publication-title: Magn Reson Med
– volume: 13
  start-page: 600
  year: 2004
  end-page: 612
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans Image Process
– start-page: 136
  year: 2017
  end-page: 144
– start-page: 315
  year: 2011
  end-page: 323
– volume: 3
  start-page: 253
  year: 2010
  end-page: 276
  article-title: Bregmanized nonlocal regularization for deconvolution and sparse reconstruction
  publication-title: SIAM J Imaging Sci
– volume: 26
  start-page: 5094
  year: 2017
  end-page: 5106
  article-title: Sparsity‐based color image super resolution via exploiting cross channel constraints
  publication-title: IEEE Trans Image Process
– volume: 18
  start-page: 969
  year: 2009
  end-page: 981
  article-title: Softcuts: a soft edge smoothness prior for color image super‐resolution
  publication-title: IEEE Trans Image Process
– volume: 30
  start-page: 1028
  year: 2011
  end-page: 1041
  article-title: MR image reconstruction from highly undersampled k‐space data by dictionary learning
  publication-title: IEEE Trans Med Imaging
– start-page: 2802
  year: 2016
  end-page: 2810
– start-page: 145
  year: 2017
  end-page: 153
– volume: 15
  start-page: 3743
  year: 2014
  end-page: 3773
  article-title: What regularized auto‐encoders learn from the data‐generating distribution
  publication-title: JMLR
– volume: 31
  start-page: 44
  year: 2007
  end-page: 50
  article-title: An improved iterative SENSE reconstruction method
  publication-title: Magn Reson Eng
– volume: 65
  start-page: 1384
  year: 2011
  end-page: 1392
  article-title: Sensitivity encoding reconstruction with nonlocal total variation regularization
  publication-title: Magn Reson Med
– volume: 33
  start-page: 1
  year: 2017
  end-page: 24
  article-title: Solving ill‐posed inverse problem using iterative deep neural networks
  publication-title: Inverse Prob
– volume: 11
  start-page: 3371
  year: 2010
  end-page: 3408
  article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
  publication-title: JMLR
– volume: 58
  start-page: 1182
  year: 2007
  end-page: 1195
  article-title: Sparse MRI: the application of compressed sensing for rapid MR imaging
  publication-title: Magn Reson Med
– volume: 1
  start-page: 127
  year: 2014
  end-page: 239
  article-title: Proximal algorithms
  publication-title: Found. Trends Optim
– start-page: 1828
  year: 2018
  end-page: 1837
– start-page: 1088
  year: 2016
– start-page: 1
  year: 2008
  end-page: 8
– volume: 26
  start-page: 3142
  year: 2017
  end-page: 3155
  article-title: Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising
  publication-title: IEEE Trans Image Process
– start-page: 770
  year: 2015
  end-page: 778
– start-page: 10
  year: 2016
  end-page: 18
– start-page: 1550
  year: 2009
  end-page: 1557
– year: 2008
– volume: 32
  start-page: 1290
  year: 2013
  end-page: 1301
  article-title: Highly undersampled magnetic resonance imaging reconstruction using two‐level Bregman method with dictionary updating
  publication-title: IEEE Trans Med Imaging
– volume: 11
  start-page: 991
  year: 2018
  end-page: 1048
  article-title: Deep convolutional framelets: a general deep learning framework for inverse problems
  publication-title: SIAM J Imaging Sci
– start-page: 647
  year: 2017
  end-page: 658
– volume: 48
  start-page: 268
  year: 2017
  end-page: 280
  article-title: A two‐stage convolutional sparse prior model for image restoration
  publication-title: J Vis Commun Image R
– start-page: 4467
  year: 2017
  end-page: 4477
– volume: 18
  start-page: 843
  year: 2014
  end-page: 856
  article-title: Magnetic resonance image reconstruction from undersampled measurements using a patch‐based nonlocal operator
  publication-title: Med Image Anal
– start-page: 46
  year: 2009
  end-page: 55
– start-page: 1940
  year: 2017
  end-page: 1944
– volume: 32
  start-page: 2119
  year: 2016
  end-page: 2129
  article-title: Accelerated high‐dimensional MR imaging with sparse sampling using low‐rank tensors
  publication-title: IEEE Trans Med Imaging
– year: 2017
– volume: 38
  start-page: 99
  year: 2019
  article-title: MR image reconstruction using deep density priors
  publication-title: IEEE Trans Med Imaging
– start-page: 514
  year: 2016
  end-page: 517
– year: 2015
– volume: 65
  start-page: 480
  year: 2011
  end-page: 491
  article-title: Second order total generalized variation (TGV) for MRI
  publication-title: Magn Reson Med
– volume: 24
  start-page: 603
  year: 2002
  end-page: 619
  article-title: Mean shift: a robust approach toward feature space analysis
  publication-title: IEEE Trans. Pattern Anal Mach Intell
– start-page: 1056
  year: 2004
  end-page: 1059
– ident: e_1_2_8_28_1
  doi: 10.1109/CVPR.2018.00196
– ident: e_1_2_8_24_1
  doi: 10.1137/17M1141771
– ident: e_1_2_8_2_1
  doi: 10.1002/mrm.21391
– ident: e_1_2_8_10_1
  doi: 10.1002/mrm.22736
– ident: e_1_2_8_6_1
  doi: 10.1002/mrm.21236
– start-page: 10
  volume-title: Proceedings of the Thirtieth Conference on Neural Information Processing Systems (NIPS)
  year: 2016
  ident: e_1_2_8_25_1
– ident: e_1_2_8_32_1
– ident: e_1_2_8_12_1
  doi: 10.1016/j.media.2013.09.007
– ident: e_1_2_8_18_1
  doi: 10.1109/CVPRW.2017.152
– start-page: 315
  volume-title: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, PMLR
  year: 2011
  ident: e_1_2_8_37_1
– ident: e_1_2_8_45_1
  doi: 10.1109/TIP.2017.2704443
– ident: e_1_2_8_5_1
  doi: 10.1109/IEMBS.2004.1403345
– volume: 15
  start-page: 3743
  year: 2014
  ident: e_1_2_8_39_1
  article-title: What regularized auto‐encoders learn from the data‐generating distribution
  publication-title: JMLR
– ident: e_1_2_8_13_1
  doi: 10.1109/TMI.2013.2256464
– ident: e_1_2_8_8_1
  doi: 10.1109/TMI.2010.2089519
– ident: e_1_2_8_11_1
  doi: 10.1109/TMI.2010.2090538
– ident: e_1_2_8_40_1
  doi: 10.1109/CVPR.2017.374
– ident: e_1_2_8_41_1
  doi: 10.1109/34.1000236
– start-page: 1088
  volume-title: Proceedings of the 24th Annual Meeting & Exhibition of the ISMRM
  year: 2016
  ident: e_1_2_8_21_1
– ident: e_1_2_8_43_1
  doi: 10.1002/mrm.24267
– ident: e_1_2_8_14_1
  doi: 10.1016/j.jvcir.2017.07.002
– ident: e_1_2_8_35_1
  doi: 10.1145/1390156.1390294
– ident: e_1_2_8_33_1
  doi: 10.1109/LNLA.2009.5278405
– ident: e_1_2_8_16_1
  doi: 10.1109/TMI.2016.2550204
– ident: e_1_2_8_23_1
– ident: e_1_2_8_29_1
– ident: e_1_2_8_34_1
  doi: 10.1137/090746379
– volume: 11
  start-page: 3371
  year: 2010
  ident: e_1_2_8_36_1
  article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
  publication-title: JMLR
– ident: e_1_2_8_50_1
  doi: 10.1109/TIP.2003.819861
– ident: e_1_2_8_26_1
– volume-title: Proceedings of the 3rd International Conference on Learning Representations (ICLR)
  year: 2015
  ident: e_1_2_8_38_1
– start-page: 2802
  volume-title: Proceedings of the Thirtieth Conference on Neural Information Processing Systems (NIPS)
  year: 2016
  ident: e_1_2_8_42_1
– ident: e_1_2_8_49_1
  doi: 10.1109/TIP.2014.2329449
– ident: e_1_2_8_31_1
  doi: 10.1109/TIP.2017.2662206
– ident: e_1_2_8_9_1
  doi: 10.1002/mrm.22595
– ident: e_1_2_8_15_1
  doi: 10.1109/ICIP.2017.8296620
– volume: 31
  start-page: 44
  year: 2007
  ident: e_1_2_8_4_1
  article-title: An improved iterative SENSE reconstruction method
  publication-title: Magn Reson Eng
– ident: e_1_2_8_46_1
  doi: 10.1109/TIP.2009.2012908
– ident: e_1_2_8_22_1
  doi: 10.1007/978-3-319-59050-9_51
– ident: e_1_2_8_3_1
  doi: 10.1002/mrm.10718
– ident: e_1_2_8_19_1
  doi: 10.1109/CVPRW.2017.151
– volume: 33
  start-page: 1
  year: 2017
  ident: e_1_2_8_27_1
  article-title: Solving ill‐posed inverse problem using iterative deep neural networks
  publication-title: Inverse Prob
– ident: e_1_2_8_47_1
  doi: 10.1561/2400000003
– ident: e_1_2_8_30_1
  doi: 10.1109/TMI.2018.2887072
– ident: e_1_2_8_48_1
  doi: 10.1109/TBME.2015.2503756
– ident: e_1_2_8_44_1
  doi: 10.1109/CVPR.2009.5206802
– ident: e_1_2_8_20_1
  doi: 10.1109/ISBI.2016.7493320
– start-page: 1
  volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  year: 2008
  ident: e_1_2_8_7_1
– start-page: 770
  volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  year: 2015
  ident: e_1_2_8_17_1
SSID ssj0009974
Score 2.5567253
Snippet Purpose Although recent deep learning methodologies have shown promising results in fast MR imaging, how to explore it to learn an explicit prior and leverage...
Although recent deep learning methodologies have shown promising results in fast MR imaging, how to explore it to learn an explicit prior and leverage it into...
PurposeAlthough recent deep learning methodologies have shown promising results in fast MR imaging, how to explore it to learn an explicit prior and leverage...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 322
SubjectTerms Acceleration
Algorithms
autoencoding priors
Brain - diagnostic imaging
Computer Systems
Humans
Image processing
Image Processing, Computer-Assisted - methods
Image reconstruction
Image restoration
Machine learning
Magnetic Resonance Imaging
multichannel prior
Neural Networks, Computer
Noise generation
Noise reduction
proximal gradient descent
Sampling
Signal-To-Noise Ratio
Software
Trajectories
Title Highly undersampled magnetic resonance imaging reconstruction using autoencoding priors
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.27921
https://www.ncbi.nlm.nih.gov/pubmed/31429993
https://www.proquest.com/docview/2301055003
https://www.proquest.com/docview/2301881997
Volume 83
WOSCitedRecordID wos000482277500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: WIN
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED-y7oO97KPdR9Y0aKMPefFqW7Il0afSLXSwhBEWmjcjS2oJNHawk8H---lkxyVsg8HeDD4ho9Ppd2fd_Q7gVGkbpTbOA5EoFTCR60AYaQIHLpSrGyYUb5pN8OlULBbyWw_Od7UwDT9E98MNLcOf12jgKq_P7klDV9XqI7LfYegTMW-U11-m94S7smFg5gzPGcl2rEJhfNaN3Mei3xzMfX_VA874-X996gt41vqZ5KLZGC-hZ4tDeDJpb9IP4bFP_dT1EVxjqsfdT7L1ZS4K2YINWanbAssbiYvGS-TksGS58g2NiA-hO9pZgonzt0RtNyVSYiISknW1LKv6FczHn79fXgVtu4VAU2eJgUpTroRmVMnIJpopbo2VIbMO0HKdJIYZyegNzy2VockjKZSIcymki6BSIS19DQdFWdi3QCRNqU4d8GHxCYucT5QbF8ml1IZcRkb1YbRb-Ey3XOTYEuMua1iU48wtWeaXrA8fOtF1Q8DxJ6HBTntZa4N15oIr7P7pjq0-vO9eO-vBKxFV2HLbyAiByTZ9eNNovZuFRojV0o0eeeX-ffpsMpv4h3f_LnoMT2MM3f3fnAEcOLXZE3ikf2yWdTWEB3whhvDw02w8_zr0O_sXKpj4iw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED-G3y9-f0ynRvHBl-raZG0Cvog4Jm5DRNG3kiZRBq6VzQn-9-bSrjJUEHwr9EJLLpe7X3L3O4AjqYwfmiDxeENKj_FEeVwL7VnnQiP5xLiM8mYTUbfLHx_FTQXOxrUwOT9EeeCGluH2azRwPJA-_WIN7Q_6J0h_Z7HPNAuZwP4FD1fdL8pdkXMwRwx3GsHGvEL14LQcOumNvoWYkxGrcznNpf_97DIsFqEmOc_XxgpUTLoKc53iMn0VZl32pxquwQNme7x8kJGrdJFIGKxJXz6nWOFILCDPkJbDkF7f9TQiDkWXzLMEc-efiRy9ZciKic6QvA562WC4DvfNy7uLlld0XPAUtcboyTCMJFeMSuGbhmIyMtqIOjPWpyWq0dBMC0afosRQUdeJL7jkQSK4sCAq5MLQDZhKs9RsARE0pCq0vg_rT5hvw6JEWzAXUlOPhK9lFY7HMx-rgo4cu2K8xDmRchDbKYvdlFXhsBR9zTk4fhKqjdUXF2Y4jC2-wgagdueqwkH52hoQ3orI1GSjXIZzzLepwmau9vIr1Ed3LezoY6fd3z8fd2477mH776L7MN-667Tj9lX3egcWAkTy7nCnBlNWhWYXZtT7W2842HML-xMpUvos
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED9kfuCL3x_zM4oPvlTXJm0T8EXUoeiGiKJvJU0yGbh2bE7wvzeXdhVRQfCt0AspuVx-d83d7wAOpDJ-ZILU46GUHuOp8rgW2rPgQmPZYVzGRbOJuN3mT0_idgJOxrUwBT9E9cMNLcOd12jgpq87x5-sob1B7wjp72zsM8lCEbIaTJ7fNR9uPkl3RcHCHDM8awQbMws1guNq8Fc8-uZkfvVZHeg05__3uQswVzqb5LTYHYswYbIlmGmV1-lLMO3yP9VwGR4x3-PlnYxcrYtEymBNevI5wxpHYkPyHIk5DOn2XFcj4uLoinuWYPb8M5Gj1xx5MREOSX_QzQfDFXhoXtyfXXplzwVPUWuOnoyiWHLFqBS-CRWTsdFGNJixqJaqMNRMC0Y7cWqoaOjUF1zyIBVc2DAq4sLQVahleWbWgQgaURVZ9MMKFOZbxyjVNpyLqGnEwteyDofjlU9USUiOfTFekoJKOUjskiVuyeqwX4n2CxaOn4S2xupLSkMcJjbCwhag9uyqw1712poQ3ovIzOSjQoZzzLipw1qh9moW6iNgCzv60Gn39-mT1l3LPWz8XXQXZm7Pm8nNVft6E2YDDOXd350tqFkNmm2YUm-v3eFgp9zZH549-sw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+undersampled+magnetic+resonance+imaging+reconstruction+using+autoencoding+priors&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Liu%2C+Qiegen&rft.au=Yang%2C+Qingxin&rft.au=Cheng%2C+Huitao&rft.au=Wang%2C+Shanshan&rft.date=2020-01-01&rft.eissn=1522-2594&rft.volume=83&rft.issue=1&rft.spage=322&rft_id=info:doi/10.1002%2Fmrm.27921&rft_id=info%3Apmid%2F31429993&rft.externalDocID=31429993
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon