The biology of normal bone remodelling

During life, bone undergoes modelling and remodelling in order to grow or change shape. Bone modelling is the process by which bones change shape or size in response to physiologic influences or mechanical forces that are encountered by the skeleton, while bone remodelling takes place so that bone m...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:European journal of cancer care Ročník 26; číslo 6; s. e12740 - n/a
Hlavní autor: Katsimbri, P.
Médium: Journal Article
Jazyk:angličtina
Vydáno: England John Wiley & Sons, Inc 01.11.2017
Témata:
ISSN:0961-5423, 1365-2354, 1365-2354
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract During life, bone undergoes modelling and remodelling in order to grow or change shape. Bone modelling is the process by which bones change shape or size in response to physiologic influences or mechanical forces that are encountered by the skeleton, while bone remodelling takes place so that bone may maintain its strength and mineral homeostasis. During early childhood, both bone modelling (the formation and shaping of bone) and bone remodelling (the replacement or renewal of old bone) occur. The predominant process in childhood is bone modelling, while in adulthood bone remodelling predominates. The exception to this is after a fracture when we see massive increases in bone formation. During childhood and adolescence growth occurs in the bones longitudinally and radially, while in the growth plates it occurs longitudinally, thus promoting growth in size. Cartilage first proliferates in the epiphyseal and metaphyseal areas of long bones before undergoing mineralisation to form new bone.
AbstractList During life, bone undergoes modelling and remodelling in order to grow or change shape. Bone modelling is the process by which bones change shape or size in response to physiologic influences or mechanical forces that are encountered by the skeleton, while bone remodelling takes place so that bone may maintain its strength and mineral homeostasis. During early childhood, both bone modelling (the formation and shaping of bone) and bone remodelling (the replacement or renewal of old bone) occur. The predominant process in childhood is bone modelling, while in adulthood bone remodelling predominates. The exception to this is after a fracture when we see massive increases in bone formation. During childhood and adolescence growth occurs in the bones longitudinally and radially, while in the growth plates it occurs longitudinally, thus promoting growth in size. Cartilage first proliferates in the epiphyseal and metaphyseal areas of long bones before undergoing mineralisation to form new bone.
During life, bone undergoes modelling and remodelling in order to grow or change shape. Bone modelling is the process by which bones change shape or size in response to physiologic influences or mechanical forces that are encountered by the skeleton, while bone remodelling takes place so that bone may maintain its strength and mineral homeostasis. During early childhood, both bone modelling (the formation and shaping of bone) and bone remodelling (the replacement or renewal of old bone) occur. The predominant process in childhood is bone modelling, while in adulthood bone remodelling predominates. The exception to this is after a fracture when we see massive increases in bone formation. During childhood and adolescence growth occurs in the bones longitudinally and radially, while in the growth plates it occurs longitudinally, thus promoting growth in size. Cartilage first proliferates in the epiphyseal and metaphyseal areas of long bones before undergoing mineralisation to form new bone.During life, bone undergoes modelling and remodelling in order to grow or change shape. Bone modelling is the process by which bones change shape or size in response to physiologic influences or mechanical forces that are encountered by the skeleton, while bone remodelling takes place so that bone may maintain its strength and mineral homeostasis. During early childhood, both bone modelling (the formation and shaping of bone) and bone remodelling (the replacement or renewal of old bone) occur. The predominant process in childhood is bone modelling, while in adulthood bone remodelling predominates. The exception to this is after a fracture when we see massive increases in bone formation. During childhood and adolescence growth occurs in the bones longitudinally and radially, while in the growth plates it occurs longitudinally, thus promoting growth in size. Cartilage first proliferates in the epiphyseal and metaphyseal areas of long bones before undergoing mineralisation to form new bone.
Author Katsimbri, P.
Author_xml – sequence: 1
  givenname: P.
  surname: Katsimbri
  fullname: Katsimbri, P.
  email: pelkats@hol.gr
  organization: “Attikon” University Hospital
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28786518$$D View this record in MEDLINE/PubMed
BookMark eNp90E1LwzAYB_AgE_eiB7-AFATRQ7e8tz1KmS8w8DLPIU2TmdE2M-mQfXujmx4Gmstz-T1P_vzHYNC5TgNwieAUxTfTSk0Rzig8ASNEOEsxYXQARrDgKGUUkyEYh7CGEBFU0DMwxHmWc4byEbhZvumksq5xq13iTNI538omqeIHidetq3XT2G51Dk6NbIK-OMwJeH2YL8undPHy-FzeL1JFGIFpliusakwKYgw1FSskx5oapmllkKwwN8RITmuV1dHlJOaRmkmVEVwVCFMyAbf7uxvv3rc69KK1QcUMstNuGwQqcEZgjlAe6fURXbut72K6qDgkmBUZj-rqoLZVq2ux8baVfid-Gojgbg-UdyF4bX4JguKrXRHbFd_tRjs7ssr2sreu6720zX8bH7bRu79Pi3lZ7jc-AR9Hh-M
CitedBy_id crossref_primary_10_1016_j_actbio_2023_03_030
crossref_primary_10_3390_biology12111395
crossref_primary_10_1038_s41598_019_52513_x
crossref_primary_10_3389_fmats_2022_929618
crossref_primary_10_3389_fcell_2022_790410
crossref_primary_10_1111_joa_14021
crossref_primary_10_3389_fcell_2022_1000575
crossref_primary_10_3390_ph14121281
crossref_primary_10_3390_cells13161352
crossref_primary_10_1016_j_biopha_2020_110067
crossref_primary_10_1016_j_aanat_2024_152273
crossref_primary_10_1016_j_diff_2025_100872
crossref_primary_10_1016_j_jchromb_2023_123864
crossref_primary_10_1016_j_ecoenv_2021_112275
crossref_primary_10_3390_cells10040932
crossref_primary_10_32604_biocell_2023_026911
crossref_primary_10_3390_ma14154172
crossref_primary_10_1007_s00590_025_04272_x
crossref_primary_10_1016_j_joca_2024_11_010
crossref_primary_10_1007_s11033_022_08190_7
crossref_primary_10_1002_adem_202201063
crossref_primary_10_3892_mmr_2021_12320
crossref_primary_10_1016_j_ijbiomac_2022_06_079
crossref_primary_10_17721_1728_2748_2020_82_29_35
crossref_primary_10_3390_ijms24043058
crossref_primary_10_1016_j_jbo_2025_100668
crossref_primary_10_3389_fphar_2024_1396354
crossref_primary_10_7759_cureus_76774
crossref_primary_10_3389_fphar_2023_1287827
crossref_primary_10_1016_j_bcp_2023_115584
crossref_primary_10_1111_acer_14501
crossref_primary_10_3390_bioengineering9110631
crossref_primary_10_1097_SCS_0000000000006133
crossref_primary_10_1159_000503444
crossref_primary_10_1016_j_bone_2024_117376
crossref_primary_10_1080_08820139_2025_2527246
crossref_primary_10_3389_fcell_2021_611921
crossref_primary_10_1080_21691401_2019_1649270
crossref_primary_10_2217_imt_2021_0282
crossref_primary_10_1002_jcp_27195
crossref_primary_10_1007_s11914_021_00707_6
crossref_primary_10_1002_jcp_29891
crossref_primary_10_1111_jcmm_13718
crossref_primary_10_5435_JAAOS_D_23_00164
crossref_primary_10_1093_jbmr_zjae072
crossref_primary_10_3390_ijms24054599
crossref_primary_10_1007_s11684_024_1061_y
crossref_primary_10_21307_aoj_2020_020
crossref_primary_10_3390_cells10113020
crossref_primary_10_1088_1748_605X_ac2492
crossref_primary_10_3389_fped_2023_1247455
crossref_primary_10_3390_nu13030809
crossref_primary_10_1016_j_ijbiomac_2022_11_176
crossref_primary_10_1038_s41598_024_54824_0
crossref_primary_10_4103_2221_1691_345518
crossref_primary_10_1007_s00223_022_01027_2
crossref_primary_10_3390_molecules27020451
crossref_primary_10_1007_s11307_025_02003_6
crossref_primary_10_1016_j_jasrep_2024_104728
crossref_primary_10_3390_ijms21176368
crossref_primary_10_3390_ijms21082789
crossref_primary_10_1089_ten_tea_2023_0125
crossref_primary_10_1016_j_chemosphere_2022_136453
crossref_primary_10_1002_jcb_26827
crossref_primary_10_3389_fcell_2021_720477
crossref_primary_10_1007_s12079_018_0449_3
crossref_primary_10_1093_rb_rbae070
crossref_primary_10_1155_2019_8928934
crossref_primary_10_3390_biom15071043
crossref_primary_10_3390_biomedicines11020325
crossref_primary_10_3389_fonc_2023_1100585
crossref_primary_10_3390_pharmaceutics13030316
crossref_primary_10_1016_j_diff_2022_02_002
crossref_primary_10_1111_petr_70021
crossref_primary_10_3390_nu14194187
crossref_primary_10_3389_fimmu_2020_00058
crossref_primary_10_3390_cells13171418
crossref_primary_10_3390_biology13070505
crossref_primary_10_1016_j_ejcb_2024_151440
crossref_primary_10_1002_adfm_202203029
crossref_primary_10_3389_fendo_2022_891313
crossref_primary_10_3389_fbioe_2022_998254
crossref_primary_10_1016_j_jas_2017_09_009
crossref_primary_10_1007_s10103_021_03322_0
crossref_primary_10_3390_ijms24010171
crossref_primary_10_1016_j_cpet_2020_06_011
crossref_primary_10_2147_JIR_S413578
crossref_primary_10_1038_s41526_022_00194_8
crossref_primary_10_3390_ijms25052846
crossref_primary_10_3390_jcm13041010
crossref_primary_10_1080_21655979_2022_2037898
crossref_primary_10_3390_biom10101398
crossref_primary_10_1016_j_envres_2022_113784
crossref_primary_10_22201_ceiich_24485691e_2025_34_69829
crossref_primary_10_7554_eLife_59079
crossref_primary_10_2196_56611
crossref_primary_10_1016_j_intimp_2024_112042
crossref_primary_10_1016_j_pbiomolbio_2022_09_008
crossref_primary_10_1016_j_jsb_2024_108096
crossref_primary_10_3389_fcell_2020_607764
crossref_primary_10_4103_jisp_jisp_269_23
crossref_primary_10_1016_j_sjbs_2020_06_036
crossref_primary_10_3390_ijms25116240
crossref_primary_10_1016_j_biochi_2021_11_001
crossref_primary_10_1111_ecc_12791
crossref_primary_10_1177_11772719251336274
crossref_primary_10_1111_joa_12830
crossref_primary_10_1002_mnfr_202300445
crossref_primary_10_1080_10408398_2019_1635078
crossref_primary_10_2215_CJN_16931020
crossref_primary_10_1007_s42235_025_00739_z
crossref_primary_10_1007_s40520_021_01817_y
crossref_primary_10_1016_j_jmbbm_2023_106256
crossref_primary_10_1289_EHP11646
crossref_primary_10_3390_ma11112234
crossref_primary_10_3390_ijms23094693
crossref_primary_10_1186_s13018_023_03500_6
crossref_primary_10_3390_biom12050722
crossref_primary_10_3390_nu14194082
crossref_primary_10_1007_s00467_019_04271_1
crossref_primary_10_1016_j_ijbiomac_2024_134220
crossref_primary_10_1016_j_ijpharm_2021_121262
crossref_primary_10_3390_biology12070976
crossref_primary_10_1002_mnfr_70139
crossref_primary_10_3390_biom11060851
crossref_primary_10_1002_jcp_28303
crossref_primary_10_1016_j_exger_2021_111399
crossref_primary_10_1038_s41416_021_01329_6
crossref_primary_10_3390_md22030137
crossref_primary_10_3389_fphar_2021_726361
crossref_primary_10_1186_s12860_023_00471_8
crossref_primary_10_2147_DDDT_S287280
crossref_primary_10_1155_ijcp_3594381
crossref_primary_10_3390_ijms24076423
crossref_primary_10_1111_cpr_12955
crossref_primary_10_1111_1750_3841_14433
crossref_primary_10_1016_j_ijbiomac_2021_05_215
crossref_primary_10_1093_rb_rbac004
crossref_primary_10_7717_peerj_19334
crossref_primary_10_3389_fpubh_2023_1183308
crossref_primary_10_3390_molecules26061757
crossref_primary_10_3389_fphys_2023_1177829
crossref_primary_10_3390_cells10061377
crossref_primary_10_35366_121227
crossref_primary_10_1093_jb_mvaa033
crossref_primary_10_1016_j_archoralbio_2024_105912
crossref_primary_10_1080_09553002_2020_1798542
crossref_primary_10_1002_biot_202100570
crossref_primary_10_1016_j_jbiomech_2025_112616
crossref_primary_10_1371_journal_pone_0310421
crossref_primary_10_1016_j_jsps_2024_102209
crossref_primary_10_1016_j_jff_2019_04_061
crossref_primary_10_3390_biom9110711
crossref_primary_10_1016_j_fbio_2025_106718
crossref_primary_10_1007_s00467_023_06109_3
crossref_primary_10_1016_j_cellsig_2022_110438
crossref_primary_10_1111_joa_13547
crossref_primary_10_3390_app10238469
crossref_primary_10_3390_jpm14090957
crossref_primary_10_2174_0929867327666200330142432
crossref_primary_10_14814_phy2_14111
crossref_primary_10_1089_ten_teb_2024_0170
crossref_primary_10_2174_1381612825666191127114054
crossref_primary_10_1038_s41598_019_56151_1
crossref_primary_10_1016_j_bone_2018_01_015
crossref_primary_10_1016_j_prostaglandins_2022_106630
crossref_primary_10_3390_ijms26052069
crossref_primary_10_1007_s12325_019_01179_y
crossref_primary_10_1016_j_pmatsci_2025_101499
crossref_primary_10_1016_j_dental_2022_08_007
crossref_primary_10_1016_j_mtcomm_2024_109776
crossref_primary_10_1002_adhm_202202766
crossref_primary_10_3390_ma14174896
crossref_primary_10_1111_odi_13763
crossref_primary_10_1007_s40266_025_01205_5
crossref_primary_10_3390_ijms23169465
crossref_primary_10_1186_s12906_018_2196_7
Cites_doi 10.1038/ncb1647
10.1002/jcb.240590102
10.1007/s00198-010-1194-5
10.1016/S0021-9290(03)00126-X
10.1016/j.gene.2005.06.017
10.1016/j.devcel.2005.02.017
10.1006/cbir.1998.0338
10.1016/j.tem.2010.01.010
10.1016/j.molmed.2004.12.004
10.1196/annals.1402.068
10.1016/S8756-3282(98)00138-0
10.1359/jbmr.2000.15.1.2
10.1196/annals.1402.018
10.1002/jemt.10371
10.1038/nrg1122
10.1016/S8756-3282(02)00947-X
10.1038/sj.emboj.7601984
10.1371/journal.pone.0000179
10.1615/CritRevEukarGeneExpr.v19.i2.20
10.1210/me.2009-0066
10.1002/jcb.240550303
10.1126/science.1658941
10.1126/science.276.5310.266
10.1101/gad.1702708
10.1359/jbmr.2002.17.5.907
10.1016/j.bone.2007.12.224
10.1146/annurev.cellbio.042308.113308
10.2353/ajpath.2007.060834
10.1242/jcs.113.3.377
10.1111/j.1699-0463.1995.tb01089.x
10.1016/j.devcel.2005.03.016
10.1016/j.cmet.2009.12.007
10.1038/345442a0
10.1007/s11926-003-0071-z
10.1016/j.semcdb.2008.08.004
10.2353/ajpath.2009.080627
10.1016/S0092-8674(00)80257-3
10.1038/nature03398
10.1016/j.coph.2006.03.005
ContentType Journal Article
Copyright 2017 John Wiley & Sons Ltd
2017 John Wiley & Sons Ltd.
Copyright_xml – notice: 2017 John Wiley & Sons Ltd
– notice: 2017 John Wiley & Sons Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
ASE
FPQ
FR3
K6X
K9.
M7Z
NAPCQ
P64
7X8
DOI 10.1111/ecc.12740
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
British Nursing Index
British Nursing Index (BNI) (1985 to Present)
Engineering Research Database
British Nursing Index
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Technology Research Database
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
British Nursing Index
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Nursing & Allied Health Premium
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1365-2354
EndPage n/a
ExternalDocumentID 28786518
10_1111_ecc_12740
ECC12740
Genre reviewArticle
Journal Article
Review
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
24P
29G
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5VS
66C
6PF
702
7PT
7RV
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAJEY
AAKAS
AANHP
AAONW
AASGY
AAWTL
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIVO
ABLJU
ABPVW
ABUWG
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACCZN
ACFBH
ACGFS
ACHQT
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZCM
ADZMN
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFEBI
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHEFC
AHMBA
AIACR
AIURR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
CCPQU
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBS
EJD
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FYUFA
FZ0
G-S
G.N
GJSGG
GODZA
H.X
HF~
HMCUK
HVGLF
HZI
HZ~
IAO
IHE
IHR
INH
ITC
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NAPCQ
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
R.K
RHX
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UDS
UKHRP
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQ9
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
YFH
ZZTAW
~IA
~WT
AAFWJ
AAMMB
AAYXX
ABJCF
AEFGJ
AFFHD
AGQPQ
AGXDD
AIDQK
AIDYY
AIQQE
AN0
BBNVY
BGLVJ
BHPHI
CITATION
EIHBH
HCIFZ
M7P
M7S
O8X
PHGZM
PHGZT
PPXIY
PQGLB
PTHSS
CGR
CUY
CVF
ECM
EIF
NPM
8FD
ASE
FPQ
FR3
K6X
K9.
M7Z
P64
7X8
ID FETCH-LOGICAL-c3530-78c2cd2393ff4fb59a62e4f5e4bf1ab26f3fa64dc7d2cd83131ae5ac732b91243
IEDL.DBID DRFUL
ISICitedReferencesCount 217
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000414613000072&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0961-5423
1365-2354
IngestDate Sat Sep 27 20:01:01 EDT 2025
Mon Oct 06 16:59:57 EDT 2025
Wed Feb 19 02:43:09 EST 2025
Tue Nov 18 22:28:59 EST 2025
Sat Nov 29 03:47:01 EST 2025
Wed Jan 22 17:07:07 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords bone remodelling
osteoblast
osteocytes
osteoclasts
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3530-78c2cd2393ff4fb59a62e4f5e4bf1ab26f3fa64dc7d2cd83131ae5ac732b91243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
PMID 28786518
PQID 1960325976
PQPubID 5532
PageCount 5
ParticipantIDs proquest_miscellaneous_1927308118
proquest_journals_1960325976
pubmed_primary_28786518
crossref_primary_10_1111_ecc_12740
crossref_citationtrail_10_1111_ecc_12740
wiley_primary_10_1111_ecc_12740_ECC12740
PublicationCentury 2000
PublicationDate November 2017
2017-11-00
2017-Nov
20171101
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: November 2017
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle European journal of cancer care
PublicationTitleAlternate Eur J Cancer Care (Engl)
PublicationYear 2017
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2009; 23
2010; 11
2002; 17
2009; 25
1990; 2S
1990; 345
1991; 254
2000; 113
1995; 59
2005; 357
2008; 19
2005; 434
1997; 276
1997; 89
2003; 36
1999; 23
2006; 6
2009; 174
1998; 23
2003; 32
2010; 21
2000; 15
2007; 170
2007; 1116
2005; 8
2008; 27
1994; 55
2007; 9
2003; 4
2003; 5
1995; 103
2008; 22
2007; 2
2008; 42
2003; 61
2009; 19
2005; 11
Guo (10.1111/ecc.12740-BIB0015|ecc12740-cit-0015) 2010; 11
Cao (10.1111/ecc.12740-BIB0007|ecc12740-cit-0007) 2005; 357
Hofbauer (10.1111/ecc.12740-BIB0016|ecc12740-cit-0016) 2000; 15
Elefteriou (10.1111/ecc.12740-BIB0013|ecc12740-cit-0013) 2005; 434
Karsenty (10.1111/ecc.12740-BIB0018|ecc12740-cit-0018) 2009; 25
Rochefort (10.1111/ecc.12740-BIB0029|ecc12740-cit-0029) 2010; 21
Lind (10.1111/ecc.12740-BIB0021|ecc12740-cit-0021) 1995; 103
Kobayashi (10.1111/ecc.12740-BIB0019|ecc12740-cit-0019) 2003; 32
Chamoux (10.1111/ecc.12740-BIB0008|ecc12740-cit-0008) 2009; 23
Bonewald (10.1111/ecc.12740-BIB0004|ecc12740-cit-0004) 2008; 42
Nesbitt (10.1111/ecc.12740-BIB0027|ecc12740-cit-0027) 1997; 276
Yoshida (10.1111/ecc.12740-BIB0040|ecc12740-cit-0040) 1990; 345
Coxon (10.1111/ecc.12740-BIB0010|ecc12740-cit-0010) 2006; 6
Glass (10.1111/ecc.12740-BIB0014|ecc12740-cit-0014) 2005; 8
Krum (10.1111/ecc.12740-BIB0020|ecc12740-cit-0020) 2008; 27
Luxenburg (10.1111/ecc.12740-BIB0023|ecc12740-cit-0023) 2007; 2
Manolagas (10.1111/ecc.12740-BIB0024|ecc12740-cit-0024) 2010; 21
Vaananen (10.1111/ecc.12740-BIB0035|ecc12740-cit-0035) 2000; 113
Weitzmann (10.1111/ecc.12740-BIB0038|ecc12740-cit-0038) 2007; 1116
Rosen (10.1111/ecc.12740-BIB0030|ecc12740-cit-0030) 2009; 19
Ducy (10.1111/ecc.12740-BIB0012|ecc12740-cit-0012) 1997; 89
Teitelbaum (10.1111/ecc.12740-BIB0032|ecc12740-cit-0032) 2007; 170
Mulari (10.1111/ecc.12740-BIB0026|ecc12740-cit-0026) 2003; 61
Coxon (10.1111/ecc.12740-BIB0009|ecc12740-cit-0009) 2008; 19
Wan (10.1111/ecc.12740-BIB0037|ecc12740-cit-0037) 2008; 22
Bonewald (10.1111/ecc.12740-BIB0005|ecc12740-cit-0005) 1990; 2S
Parfitt (10.1111/ecc.12740-BIB0028|ecc12740-cit-0028) 1994; 55
Andersen (10.1111/ecc.12740-BIB0001|ecc12740-cit-0001) 2009; 174
Burger (10.1111/ecc.12740-BIB0006|ecc12740-cit-0006) 2003; 36
Teitelbaum (10.1111/ecc.12740-BIB0033|ecc12740-cit-0033) 1995; 59
Martin (10.1111/ecc.12740-BIB0025|ecc12740-cit-0025) 2005; 11
Day (10.1111/ecc.12740-BIB0011|ecc12740-cit-0011) 2005; 8
Yamaza (10.1111/ecc.12740-BIB0039|ecc12740-cit-0039) 1998; 23
Teitelbaum (10.1111/ecc.12740-BIB0034|ecc12740-cit-0034) 2003; 4
Bonewald (10.1111/ecc.12740-BIB0003|ecc12740-cit-0003) 2007; 1116
Anderson (10.1111/ecc.12740-BIB0002|ecc12740-cit-0002) 2003; 5
Locklin (10.1111/ecc.12740-BIB0022|ecc12740-cit-0022) 1999; 23
Juppner (10.1111/ecc.12740-BIB0017|ecc12740-cit-0017) 1991; 254
Verborgt (10.1111/ecc.12740-BIB0036|ecc12740-cit-0036) 2002; 17
Takada (10.1111/ecc.12740-BIB0031|ecc12740-cit-0031) 2007; 9
References_xml – volume: 174
  start-page: 239
  year: 2009
  end-page: 247
  article-title: A physical mechanism for coupling bone resorption and formation in adult human bone
  publication-title: The American Journal of Pathology
– volume: 434
  start-page: 514
  year: 2005
  end-page: 520
  article-title: Leptin regulation of bone resorption by the sympathetic nervous system and CART
  publication-title: Nature
– volume: 61
  start-page: 496
  year: 2003
  end-page: 503
  article-title: Intracellular membrane trafficking in bone resorbing osteoclasts
  publication-title: Microscopy Research and Technique
– volume: 32
  start-page: 163
  year: 2003
  end-page: 169
  article-title: Trabecular mini modeling in human iliac bone
  publication-title: Bone
– volume: 89
  start-page: 747
  year: 1997
  end-page: 754
  article-title: Osf2/Cbfa1: A transcriptional activator of osteoblast differentiation
  publication-title: Cell
– volume: 17
  start-page: 907
  year: 2002
  end-page: 914
  article-title: Spatial distribution of Bax and Bcl‐2 in osteocytes after bone fatigue: complementary roles in bone remodeling regulation?
  publication-title: Journal of Bone and Mineral Research
– volume: 345
  start-page: 442
  year: 1990
  end-page: 444
  article-title: The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene
  publication-title: Nature
– volume: 19
  start-page: 109
  year: 2009
  end-page: 124
  article-title: Marrow fat and the bone microenvironment: Developmental, functional, and pathological implications
  publication-title: Critical Reviews in Eukaryotic Gene Expression
– volume: 8
  start-page: 739
  year: 2005
  end-page: 750
  article-title: Wnt/beta‐catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis
  publication-title: Developmental Cell
– volume: 276
  start-page: 266
  year: 1997
  end-page: 273
  article-title: Trafficking of matrix collagens through bone resorbing osteoclasts
  publication-title: Science
– volume: 27
  start-page: 535
  year: 2008
  end-page: 545
  article-title: Estrogen protects bone by inducing Fas ligand in osteoblasts to regulate osteoclast survival
  publication-title: The EMBO Journal
– volume: 1116
  start-page: 281
  year: 2007
  end-page: 290
  article-title: Osteocytes as dynamic multifunctional cells
  publication-title: Annals of the New York Academy of Sciences
– volume: 23
  start-page: 185
  year: 1999
  end-page: 194
  article-title: Effects of TGFbeta and bFGF on the differentiation of human bone marrow stromal fibroblasts
  publication-title: Cell Biology International
– volume: 21
  start-page: 369
  year: 2010
  end-page: 374
  article-title: What old means to bone
  publication-title: Trends in Endocrinology & Metabolism
– volume: 42
  start-page: 606
  year: 2008
  end-page: 615
  article-title: Osteocytes, mechanosensing and Wnt signaling
  publication-title: Bone
– volume: 59
  start-page: 1
  year: 1995
  end-page: 10
  article-title: Molecular mechanisms of bone resorption
  publication-title: Journal of Cellular Biochemistry
– volume: 113
  start-page: 377
  year: 2000
  end-page: 381
  article-title: The cell biology of osteoclast function
  publication-title: Journal of Cell Science
– volume: 5
  start-page: 222
  year: 2003
  end-page: 226
  article-title: Matrix vesicles and calcification
  publication-title: Current Rheumatology Reports
– volume: 2
  start-page: e179
  year: 2007
  article-title: The architecture of the adhesive apparatus of cultured osteoclasts: From podosome formation to sealing zone assembly
  publication-title: PLoS ONE
– volume: 1116
  start-page: 360
  year: 2007
  end-page: 375
  article-title: T cells: Unexpected players in the bone loss induced by estrogen deficiency and in basal bone homeostasis
  publication-title: Annals of the New York Academy of Sciences
– volume: 11
  start-page: 76
  year: 2005
  end-page: 81
  article-title: Osteoclast‐derived activity in the coupling of bone formation to resorption
  publication-title: Trends in Molecular Medicine
– volume: 357
  start-page: 1
  year: 2005
  end-page: 8
  article-title: The BMP signalling and in vivo bone formation
  publication-title: Gene
– volume: 21
  start-page: 1457
  year: 2010
  end-page: 1469
  article-title: Osteocyte: The unrecognised side of bone tissue
  publication-title: Osteoporosis International
– volume: 254
  start-page: 1024
  year: 1991
  end-page: 1026
  article-title: A G protein‐linked receptor for parathyroid hormone and parathyroid hormone‐related peptide
  publication-title: Science
– volume: 36
  start-page: 1452
  year: 2003
  end-page: 1459
  article-title: Strain‐derived canalicular fluid flow regulates osteoclast activity in a remodeling osteon: A proposal
  publication-title: Journal of Biomechanics
– volume: 11
  start-page: 161
  year: 2010
  end-page: 171
  article-title: Suppression of Wnt signaling by Dkk1 attenuates PTH‐mediated stromal cell response and new bone formation
  publication-title: Cell Metabolism
– volume: 103
  start-page: 140
  year: 1995
  end-page: 146
  article-title: Chemotaxis of human osteoblasts. Effects of osteotropic growth factors
  publication-title: APMIS
– volume: 22
  start-page: 2968
  year: 2008
  end-page: 2979
  article-title: Parathyroid hormone signaling through low‐density lipoprotein related protein 6
  publication-title: Genes & Development
– volume: 25
  start-page: 629
  year: 2009
  end-page: 648
  article-title: Genetic control of bone formation
  publication-title: Annual Review of Cell and Developmental
– volume: 19
  start-page: 424
  year: 2008
  end-page: 433
  article-title: Vesicular trafficking in osteoclasts
  publication-title: Seminars in Cell & Developmental Biology
– volume: 9
  start-page: 1273
  year: 2007
  end-page: 1285
  article-title: A histone lysine methyltransferase activated by non‐canonical Wnt signalling suppresses PPAR‐gamma transactivation
  publication-title: Nature Cell Biology
– volume: 15
  start-page: 2
  year: 2000
  end-page: 12
  article-title: The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption
  publication-title: Journal of Bone and Mineral Research
– volume: 55
  start-page: 273
  year: 1994
  end-page: 276
  article-title: Osteonal and hemiosteonal remodeling: The spatial and temporal framework for signal traffic in adult bone
  publication-title: Journal of Cellular Biochemistry
– volume: 23
  start-page: 1668
  year: 2009
  end-page: 1680
  article-title: The p62 P392L mutation linked to Paget's disease induces activation of human osteoclasts
  publication-title: Molecular Endocrinology
– volume: 4
  start-page: 638
  year: 2003
  end-page: 649
  article-title: Genetic regulation of osteoclast development and function
  publication-title: Nature Reviews Genetics
– volume: 8
  start-page: 751
  year: 2005
  end-page: 764
  article-title: Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation
  publication-title: Developmental Cell
– volume: 6
  start-page: 307
  year: 2006
  end-page: 312
  article-title: Recent advances in understanding the mechanism of action of bisphosphonates
  publication-title: Current Opinion in Pharmacology
– volume: 2S
  start-page: 35
  year: 1990
  end-page: 40
  article-title: Role of transforming growth factor beta in bone remodeling
  publication-title: Clinical Orthopaedics and Related Research
– volume: 170
  start-page: 427
  year: 2007
  end-page: 435
  article-title: Osteoclasts: what do they do and how do they do it?
  publication-title: The American Journal of Pathology
– volume: 23
  start-page: 499
  year: 1998
  end-page: 509
  article-title: Study of immunoelectron microscopic localization of cathepsin K in osteoclasts and other bone cells in the mouse femur
  publication-title: Bone
– volume: 9
  start-page: 1273
  year: 2007
  ident: 10.1111/ecc.12740-BIB0031|ecc12740-cit-0031
  article-title: A histone lysine methyltransferase activated by non-canonical Wnt signalling suppresses PPAR-gamma transactivation
  publication-title: Nature Cell Biology
  doi: 10.1038/ncb1647
– volume: 59
  start-page: 1
  year: 1995
  ident: 10.1111/ecc.12740-BIB0033|ecc12740-cit-0033
  article-title: Molecular mechanisms of bone resorption
  publication-title: Journal of Cellular Biochemistry
  doi: 10.1002/jcb.240590102
– volume: 21
  start-page: 1457
  year: 2010
  ident: 10.1111/ecc.12740-BIB0029|ecc12740-cit-0029
  article-title: Osteocyte: The unrecognised side of bone tissue
  publication-title: Osteoporosis International
  doi: 10.1007/s00198-010-1194-5
– volume: 36
  start-page: 1452
  year: 2003
  ident: 10.1111/ecc.12740-BIB0006|ecc12740-cit-0006
  article-title: Strain-derived canalicular fluid flow regulates osteoclast activity in a remodeling osteon: A proposal
  publication-title: Journal of Biomechanics
  doi: 10.1016/S0021-9290(03)00126-X
– volume: 357
  start-page: 1
  year: 2005
  ident: 10.1111/ecc.12740-BIB0007|ecc12740-cit-0007
  article-title: The BMP signalling and in vivo bone formation
  publication-title: Gene
  doi: 10.1016/j.gene.2005.06.017
– volume: 8
  start-page: 751
  year: 2005
  ident: 10.1111/ecc.12740-BIB0014|ecc12740-cit-0014
  article-title: Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation
  publication-title: Developmental Cell
  doi: 10.1016/j.devcel.2005.02.017
– volume: 23
  start-page: 185
  year: 1999
  ident: 10.1111/ecc.12740-BIB0022|ecc12740-cit-0022
  article-title: Effects of TGFbeta and bFGF on the differentiation of human bone marrow stromal fibroblasts
  publication-title: Cell Biology International
  doi: 10.1006/cbir.1998.0338
– volume: 21
  start-page: 369
  year: 2010
  ident: 10.1111/ecc.12740-BIB0024|ecc12740-cit-0024
  article-title: What old means to bone
  publication-title: Trends in Endocrinology & Metabolism
  doi: 10.1016/j.tem.2010.01.010
– volume: 11
  start-page: 76
  year: 2005
  ident: 10.1111/ecc.12740-BIB0025|ecc12740-cit-0025
  article-title: Osteoclast-derived activity in the coupling of bone formation to resorption
  publication-title: Trends in Molecular Medicine
  doi: 10.1016/j.molmed.2004.12.004
– volume: 1116
  start-page: 360
  year: 2007
  ident: 10.1111/ecc.12740-BIB0038|ecc12740-cit-0038
  article-title: T cells: Unexpected players in the bone loss induced by estrogen deficiency and in basal bone homeostasis
  publication-title: Annals of the New York Academy of Sciences
  doi: 10.1196/annals.1402.068
– volume: 23
  start-page: 499
  year: 1998
  ident: 10.1111/ecc.12740-BIB0039|ecc12740-cit-0039
  article-title: Study of immunoelectron microscopic localization of cathepsin K in osteoclasts and other bone cells in the mouse femur
  publication-title: Bone
  doi: 10.1016/S8756-3282(98)00138-0
– volume: 15
  start-page: 2
  year: 2000
  ident: 10.1111/ecc.12740-BIB0016|ecc12740-cit-0016
  article-title: The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption
  publication-title: Journal of Bone and Mineral Research
  doi: 10.1359/jbmr.2000.15.1.2
– volume: 2S
  start-page: 35
  year: 1990
  ident: 10.1111/ecc.12740-BIB0005|ecc12740-cit-0005
  article-title: Role of transforming growth factor beta in bone remodeling
  publication-title: Clinical Orthopaedics and Related Research
– volume: 1116
  start-page: 281
  year: 2007
  ident: 10.1111/ecc.12740-BIB0003|ecc12740-cit-0003
  article-title: Osteocytes as dynamic multifunctional cells
  publication-title: Annals of the New York Academy of Sciences
  doi: 10.1196/annals.1402.018
– volume: 61
  start-page: 496
  year: 2003
  ident: 10.1111/ecc.12740-BIB0026|ecc12740-cit-0026
  article-title: Intracellular membrane trafficking in bone resorbing osteoclasts
  publication-title: Microscopy Research and Technique
  doi: 10.1002/jemt.10371
– volume: 4
  start-page: 638
  year: 2003
  ident: 10.1111/ecc.12740-BIB0034|ecc12740-cit-0034
  article-title: Genetic regulation of osteoclast development and function
  publication-title: Nature Reviews Genetics
  doi: 10.1038/nrg1122
– volume: 32
  start-page: 163
  year: 2003
  ident: 10.1111/ecc.12740-BIB0019|ecc12740-cit-0019
  article-title: Trabecular mini modeling in human iliac bone
  publication-title: Bone
  doi: 10.1016/S8756-3282(02)00947-X
– volume: 27
  start-page: 535
  year: 2008
  ident: 10.1111/ecc.12740-BIB0020|ecc12740-cit-0020
  article-title: Estrogen protects bone by inducing Fas ligand in osteoblasts to regulate osteoclast survival
  publication-title: The EMBO Journal
  doi: 10.1038/sj.emboj.7601984
– volume: 2
  start-page: e179
  year: 2007
  ident: 10.1111/ecc.12740-BIB0023|ecc12740-cit-0023
  article-title: The architecture of the adhesive apparatus of cultured osteoclasts: From podosome formation to sealing zone assembly
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0000179
– volume: 19
  start-page: 109
  year: 2009
  ident: 10.1111/ecc.12740-BIB0030|ecc12740-cit-0030
  article-title: Marrow fat and the bone microenvironment: Developmental, functional, and pathological implications
  publication-title: Critical Reviews in Eukaryotic Gene Expression
  doi: 10.1615/CritRevEukarGeneExpr.v19.i2.20
– volume: 23
  start-page: 1668
  year: 2009
  ident: 10.1111/ecc.12740-BIB0008|ecc12740-cit-0008
  article-title: The p62 P392L mutation linked to Paget's disease induces activation of human osteoclasts
  publication-title: Molecular Endocrinology
  doi: 10.1210/me.2009-0066
– volume: 55
  start-page: 273
  year: 1994
  ident: 10.1111/ecc.12740-BIB0028|ecc12740-cit-0028
  article-title: Osteonal and hemiosteonal remodeling: The spatial and temporal framework for signal traffic in adult bone
  publication-title: Journal of Cellular Biochemistry
  doi: 10.1002/jcb.240550303
– volume: 254
  start-page: 1024
  year: 1991
  ident: 10.1111/ecc.12740-BIB0017|ecc12740-cit-0017
  article-title: A G protein-linked receptor for parathyroid hormone and parathyroid hormone-related peptide
  publication-title: Science
  doi: 10.1126/science.1658941
– volume: 276
  start-page: 266
  year: 1997
  ident: 10.1111/ecc.12740-BIB0027|ecc12740-cit-0027
  article-title: Trafficking of matrix collagens through bone resorbing osteoclasts
  publication-title: Science
  doi: 10.1126/science.276.5310.266
– volume: 22
  start-page: 2968
  year: 2008
  ident: 10.1111/ecc.12740-BIB0037|ecc12740-cit-0037
  article-title: Parathyroid hormone signaling through low-density lipoprotein related protein 6
  publication-title: Genes & Development
  doi: 10.1101/gad.1702708
– volume: 17
  start-page: 907
  year: 2002
  ident: 10.1111/ecc.12740-BIB0036|ecc12740-cit-0036
  article-title: Spatial distribution of Bax and Bcl-2 in osteocytes after bone fatigue: complementary roles in bone remodeling regulation?
  publication-title: Journal of Bone and Mineral Research
  doi: 10.1359/jbmr.2002.17.5.907
– volume: 42
  start-page: 606
  year: 2008
  ident: 10.1111/ecc.12740-BIB0004|ecc12740-cit-0004
  article-title: Osteocytes, mechanosensing and Wnt signaling
  publication-title: Bone
  doi: 10.1016/j.bone.2007.12.224
– volume: 25
  start-page: 629
  year: 2009
  ident: 10.1111/ecc.12740-BIB0018|ecc12740-cit-0018
  article-title: Genetic control of bone formation
  publication-title: Annual Review of Cell and Developmental
  doi: 10.1146/annurev.cellbio.042308.113308
– volume: 170
  start-page: 427
  year: 2007
  ident: 10.1111/ecc.12740-BIB0032|ecc12740-cit-0032
  article-title: Osteoclasts: what do they do and how do they do it?
  publication-title: The American Journal of Pathology
  doi: 10.2353/ajpath.2007.060834
– volume: 113
  start-page: 377
  year: 2000
  ident: 10.1111/ecc.12740-BIB0035|ecc12740-cit-0035
  article-title: The cell biology of osteoclast function
  publication-title: Journal of Cell Science
  doi: 10.1242/jcs.113.3.377
– volume: 103
  start-page: 140
  year: 1995
  ident: 10.1111/ecc.12740-BIB0021|ecc12740-cit-0021
  article-title: Chemotaxis of human osteoblasts. Effects of osteotropic growth factors
  publication-title: APMIS
  doi: 10.1111/j.1699-0463.1995.tb01089.x
– volume: 8
  start-page: 739
  year: 2005
  ident: 10.1111/ecc.12740-BIB0011|ecc12740-cit-0011
  article-title: Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis
  publication-title: Developmental Cell
  doi: 10.1016/j.devcel.2005.03.016
– volume: 11
  start-page: 161
  year: 2010
  ident: 10.1111/ecc.12740-BIB0015|ecc12740-cit-0015
  article-title: Suppression of Wnt signaling by Dkk1 attenuates PTH-mediated stromal cell response and new bone formation
  publication-title: Cell Metabolism
  doi: 10.1016/j.cmet.2009.12.007
– volume: 345
  start-page: 442
  year: 1990
  ident: 10.1111/ecc.12740-BIB0040|ecc12740-cit-0040
  article-title: The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene
  publication-title: Nature
  doi: 10.1038/345442a0
– volume: 5
  start-page: 222
  year: 2003
  ident: 10.1111/ecc.12740-BIB0002|ecc12740-cit-0002
  article-title: Matrix vesicles and calcification
  publication-title: Current Rheumatology Reports
  doi: 10.1007/s11926-003-0071-z
– volume: 19
  start-page: 424
  year: 2008
  ident: 10.1111/ecc.12740-BIB0009|ecc12740-cit-0009
  article-title: Vesicular trafficking in osteoclasts
  publication-title: Seminars in Cell & Developmental Biology
  doi: 10.1016/j.semcdb.2008.08.004
– volume: 174
  start-page: 239
  year: 2009
  ident: 10.1111/ecc.12740-BIB0001|ecc12740-cit-0001
  article-title: A physical mechanism for coupling bone resorption and formation in adult human bone
  publication-title: The American Journal of Pathology
  doi: 10.2353/ajpath.2009.080627
– volume: 89
  start-page: 747
  year: 1997
  ident: 10.1111/ecc.12740-BIB0012|ecc12740-cit-0012
  article-title: Osf2/Cbfa1: A transcriptional activator of osteoblast differentiation
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80257-3
– volume: 434
  start-page: 514
  year: 2005
  ident: 10.1111/ecc.12740-BIB0013|ecc12740-cit-0013
  article-title: Leptin regulation of bone resorption by the sympathetic nervous system and CART
  publication-title: Nature
  doi: 10.1038/nature03398
– volume: 6
  start-page: 307
  year: 2006
  ident: 10.1111/ecc.12740-BIB0010|ecc12740-cit-0010
  article-title: Recent advances in understanding the mechanism of action of bisphosphonates
  publication-title: Current Opinion in Pharmacology
  doi: 10.1016/j.coph.2006.03.005
SSID ssj0013194
Score 2.5760453
SecondaryResourceType review_article
Snippet During life, bone undergoes modelling and remodelling in order to grow or change shape. Bone modelling is the process by which bones change shape or size in...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e12740
SubjectTerms Adolescents
Body composition
Bone Development - physiology
Bone growth
Bone remodeling
Bone Remodeling - physiology
bone remodelling
Bone Resorption
Bones
Calcification, Physiologic - physiology
Cartilage
Cartilage - growth & development
Child development
Children
Homeostasis
Human growth
Humans
Mineralization
Modelling
osteoblast
Osteoblasts - physiology
osteoclasts
Osteoclasts - physiology
osteocytes
Osteocytes - physiology
Osteogenesis
Osteogenesis - physiology
Skeleton
Stress, Mechanical
Teenagers
Title The biology of normal bone remodelling
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fecc.12740
https://www.ncbi.nlm.nih.gov/pubmed/28786518
https://www.proquest.com/docview/1960325976
https://www.proquest.com/docview/1927308118
Volume 26
WOSCitedRecordID wos000414613000072&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1365-2354
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013194
  issn: 0961-5423
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_mJuKL3x_VOaqI7KWypmnT4pPMDR_mEHGyt5KkCQijk33493vJuupQQfCtkCvXJHe53zXJ7wAuMSgyrn3iJTQhmKAI4nHBmCfDJMsobzFiTxO-9Fi_Hw-HyWMFbpZ3YRb8EOUPN-MZdr02Ds7F9IuTo-5rH3MqzNdrBO02rELt7qk76H1uIvi2DqIpauKFCBsKYiFzkKd8eTUcfcOYq5DVxpzu9r--dge2Cqjp3i5sYxcqKt-DjYdiM30frtBE3IKEyR1rNzfwdeSKca7cibIlcsxd9QMYdDvP7XuvKJvgySAMzPlASWRmqM20plqECY-IojpUVGifCxLpQPOIZpJlKBcHOE5chVyygIgEw31wCNUcVR2Da5h3RBxkmCYTqhMqpJKK6YhwEgutqAPN5eilsuAUN6UtRukyt8B-p7bfDlyUom8LIo2fhOrLKUgLX5qmuEa0AszSWOTAedmMXmC2NniuxnMjgzAM0Y0fO3C0mLpSC-aEcRSalqadod_Vp5122z6c_F30FDaJifT2emIdqrPJXJ3BunyfvU4nDVhjw7hRGOYHr7vhLg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED9kE_XF74_p1CoivlRsmjYt-CLTodgNkU18K0magCCdTOff7yX90KGC4FshV65N7nK_y8fvAI4wKDKuPeLGNCaYoAjicsGYK4M4yyg_Y8SeJnxIWL8fPT7GdzNwXt2FKfgh6gU34xl2vjYObhakv3g5Kj_1MKnChL1J0YzQvpuX991h8rmL4NlCiKaqiRsgbiiZhcxJnvrl6Xj0DWROY1YbdLpL__vcZVgswaZzUVjHCsyofBXmeuV2-hoco5E4JQ2TM9JObgDssyNGuXLGyhbJMbfV12HYvRp0rt2ycIIr_cA3JwQlkZkhN9OaahHEPCSK6kBRoT0uSKh9zUOaSZahXORjR3EVcMl8ImIM-P4GNHJUtQWO4d4RkZ9hokyojqmQSiqmQ8JJJLSiLTipui-VJau4KW7xnFbZBf53av-7BYe16EtBpfGTULsag7T0ptcUZ4kzH_M0FrbgoG5GPzCbGzxXo4mRQSCG-MaLWrBZjF2tBbPCKAxMy4kdot_Vp1edjn3Y_rvoPsxfD3pJmtz0b3dggZi4by8rtqHxNp6oXZiV729Pr-O90j4_AOqo5DY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3rS8MwED_GlOEX34_5rCLil8qapk0LfpHpUJxDxInfSpImIIxu7OHf7yV96FBB8FshV655XO5-veR3AKfoFBnXHnFjGhMEKIK4XDDmyiBOU8pbjNjThC9d1utFr6_xYw0uy7swOT9E9cPNWIbdr42Bq1Gqv1g5Kr_wEFQhYF-gpohMHRaunzr97mcWwbOFEE1VEzfAuKFgFjIneaqX5_3RtyBzPma1Tqez8r_PXYXlIth0rvLVsQY1la1D46FIp2_AGS4Sp6BhcobayUwAO3DEMFPOWNkiOea2-ib0OzfP7Vu3KJzgSj_wzQlBSWRqyM20ploEMQ-JojpQVGiPCxJqX_OQppKlKBf5OFBcBVwyn4gYHb6_BfUMVe2AY7h3ROSnCJQJ1TEVUknFdEg4iYRWtAnn5fAlsmAVN8UtBkmJLrDfie13E04q0VFOpfGT0H45B0lhTZMEd4mWjziNhU04rprRDkxyg2dqODMyGIhhfONFTdjO567SgqgwCgPTcm6n6Hf1yU27bR92_y56BI3H607Svevd78ESMW7f3lXch_p0PFMHsCjfp2-T8WGxPD8AnVDjsQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+biology+of+normal+bone+remodelling&rft.jtitle=European+journal+of+cancer+care&rft.au=Katsimbri%2C+P.&rft.date=2017-11-01&rft.issn=0961-5423&rft.eissn=1365-2354&rft.volume=26&rft.issue=6&rft.epage=n%2Fa&rft_id=info:doi/10.1111%2Fecc.12740&rft.externalDBID=10.1111%252Fecc.12740&rft.externalDocID=ECC12740
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0961-5423&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0961-5423&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0961-5423&client=summon