A parallel inertial three-step iteration monotone hybrid algorithm for a finite family of G-nonexpansive mappings in Hilbert spaces endowed with graphs applicable to signal recovery problems

In this paper, we present a new computational approach named the parallel inertial three-step iteration monotone hybrid algorithm (abbreviated as PITMHA), devised for addressing the common fixed point problem of a finite family of G-nonexpansive mappings in Hilbert spaces endowed with graphs. We est...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Demonstratio mathematica Ročník 58; číslo 1; s. 133 - 181
Hlavní autori: Yambangwai, Damrongsak, Thianwan, Tanakit
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: De Gruyter 29.01.2025
Predmet:
ISSN:2391-4661, 2391-4661
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper, we present a new computational approach named the parallel inertial three-step iteration monotone hybrid algorithm (abbreviated as PITMHA), devised for addressing the common fixed point problem of a finite family of G-nonexpansive mappings in Hilbert spaces endowed with graphs. We establish a theorem demonstrating weak convergence for PITMHA. To emphasize our results, we offer an example of G-nonexpansive mappings on endowed with a graph. This brings to light a new method that allows the visualization of some convergence behaviours. Furthermore, we demonstrate the practical utility of PITMHA by applying it to solve signal recovery problems.
AbstractList In this paper, we present a new computational approach named the parallel inertial three-step iteration monotone hybrid algorithm (abbreviated as PITMHA), devised for addressing the common fixed point problem of a finite family of G-nonexpansive mappings in Hilbert spaces endowed with graphs. We establish a theorem demonstrating weak convergence for PITMHA. To emphasize our results, we offer an example of G-nonexpansive mappings on R 2 ${\mathbb{R}}^{2}$ endowed with a graph. This brings to light a new method that allows the visualization of some convergence behaviours. Furthermore, we demonstrate the practical utility of PITMHA by applying it to solve signal recovery problems.
In this paper, we present a new computational approach named the parallel inertial three-step iteration monotone hybrid algorithm (abbreviated as PITMHA), devised for addressing the common fixed point problem of a finite family of G-nonexpansive mappings in Hilbert spaces endowed with graphs. We establish a theorem demonstrating weak convergence for PITMHA. To emphasize our results, we offer an example of G-nonexpansive mappings on endowed with a graph. This brings to light a new method that allows the visualization of some convergence behaviours. Furthermore, we demonstrate the practical utility of PITMHA by applying it to solve signal recovery problems.
In this paper, we present a new computational approach named the parallel inertial three-step iteration monotone hybrid algorithm (abbreviated as PITMHA), devised for addressing the common fixed point problem of a finite family of G-nonexpansive mappings in Hilbert spaces endowed with graphs. We establish a theorem demonstrating weak convergence for PITMHA. To emphasize our results, we offer an example of G-nonexpansive mappings on R2 ${\mathbb{R}}^{2}$ endowed with a graph. This brings to light a new method that allows the visualization of some convergence behaviours. Furthermore, we demonstrate the practical utility of PITMHA by applying it to solve signal recovery problems.
Author Yambangwai, Damrongsak
Thianwan, Tanakit
Author_xml – sequence: 1
  givenname: Damrongsak
  surname: Yambangwai
  fullname: Yambangwai, Damrongsak
  email: damrongsak.ya@up.ac.th
  organization: Department of Mathematics, School of Science, 90440 University of Phayao , Phayao 56000, Thailand
– sequence: 2
  givenname: Tanakit
  surname: Thianwan
  fullname: Thianwan, Tanakit
  email: tanakit.th@up.ac.th
  organization: Department of Mathematics, School of Science, 90440 University of Phayao , Phayao 56000, Thailand
BookMark eNp1UcFu3CAQtapUaprm2vP8gFNjsJc9RlGbRIrUS3JGAwxeVthY4GTrn-u3FXerqpdyYTTMe29472N1McWJquoza25Yx7ovlkas26bt6oZJ8a66bPme1aLv2cU_9YfqOudjU04vRd82l9XPW5gxYQgUwE-UFo8BlkMiqvNCM_iFEi4-TjDGKS5FFA6rTt4ChiEmvxxGcDEBgvNTGQaHow8rRAf39bbjjxmn7N8IRpxnPw25yMCDD7poQZ7RUAaabDyRhVOhgyHhfMhQpoM3qAPBEiH7YSqLJTLxjdIKc4rlZcyfqvcOQ6brP_dV9fLt6_PdQ_30_f7x7vapNrxrl9pZLbRuBUcrubTaOqO1NDvUhkujmXSM0872fYOCC9125Jqe7ZyQVhL2e35VPZ55bcSjmpMfMa0qole_GzENCot3JpBiux5NoZDIjNhzLXlxm6zpSXTlP6Jw3Zy5TIo5J3J_-VijtjDVFqbawlRbmAWwPwNOGEoclob0upZCHeNrKrbk_wA7yfgvvtmuPA
Cites_doi 10.1186/s13663-015-0294-5
10.1137/130910294
10.3934/math.2022102
10.2140/pjm.1967.21.511
10.1016/j.topol.2011.10.013
10.1186/1687-1812-2014-70
10.1016/j.amc.2011.05.055
10.1007/s11071-021-06306-5
10.1007/s11075-017-0452-4
10.2298/fil1302311a
10.2478/v10309-012-0003-x
10.4064/fm-3-1-133-181
10.1186/s13663-015-0299-0
10.1016/j.na.2012.02.009
10.1186/s13663-016-0578-4
10.1016/j.jmaa.2008.03.028
10.3390/math7100936
10.1137/080716542
10.1007/s10013-015-0129-z
10.37193/cjm.2016.03.03
10.1186/s13663-015-0436-9
10.1016/j.cam.2018.03.019
10.1186/1687-1812-2013-149
10.1090/s0002-9939-07-09110-1
10.1007/s40314-021-01530-6
10.1007/s40840-018-0606-0
10.1016/j.akcej.2017.01.001
10.1016/0041-5553(64)90137-5
10.1016/j.jmaa.2005.03.002
10.1007/s13398-020-00827-1
10.1023/A:1022646327085
10.1023/A:1011253113155
10.1090/S0002-9939-07-09110-1
10.23952/asvao.1.2019.1.06
10.1515/gmj.2011.0019
10.1007/978-3-319-48311-5
10.37193/CJM.2016.03.03
10.2298/FIL1302311A
10.1007/s12190-014-0801-6
10.1137/1.9781611970838
10.24033/bsmf.1625
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1515/dema-2025-0184
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2391-4661
EndPage 181
ExternalDocumentID oai_doaj_org_article_176acb258a1c493b83006edc6e45cab4
10_1515_dema_2025_0184
10_1515_dema_2025_0184581
GroupedDBID -~X
0R~
4.4
5VS
AAFWJ
ABFKT
ACGFS
ADBBV
AFBDD
AFPKN
AHGSO
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
EBS
FRP
GROUPED_DOAJ
HZ~
M48
O9-
OK1
P2P
QD8
SLJYH
Y2W
AAYXX
CITATION
ID FETCH-LOGICAL-c352t-fdb4bb243ad838dbdfcbb8c7abc38cb18f13e7d660a434b25ef0617f48d8ea693
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001617217000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2391-4661
IngestDate Mon Dec 01 19:26:01 EST 2025
Thu Nov 20 00:28:07 EST 2025
Sat Nov 29 01:29:10 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-fdb4bb243ad838dbdfcbb8c7abc38cb18f13e7d660a434b25ef0617f48d8ea693
OpenAccessLink https://doaj.org/article/176acb258a1c493b83006edc6e45cab4
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_176acb258a1c493b83006edc6e45cab4
crossref_primary_10_1515_dema_2025_0184
walterdegruyter_journals_10_1515_dema_2025_0184581
PublicationCentury 2000
PublicationDate 2025-01-29
PublicationDateYYYYMMDD 2025-01-29
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-29
  day: 29
PublicationDecade 2020
PublicationTitle Demonstratio mathematica
PublicationYear 2025
Publisher De Gruyter
Publisher_xml – name: De Gruyter
References (j_dema-2025-0184_ref_011) 2014; 70
(j_dema-2025-0184_ref_035) 2019; 7
(j_dema-2025-0184_ref_005) 2010; 37
(j_dema-2025-0184_ref_006) 2012; 75
(j_dema-2025-0184_ref_031) 2020; 114
(j_dema-2025-0184_ref_007) 2012; 20
(j_dema-2025-0184_ref_030) 2016; 44
(j_dema-2025-0184_ref_015) 2016; 87
(j_dema-2025-0184_ref_027) 2021; 40
(j_dema-2025-0184_ref_021) 2009; 2
(j_dema-2025-0184_ref_013) 2015; 49
(j_dema-2025-0184_ref_018) 1998; 97
(j_dema-2025-0184_ref_023) 2008; 344
(j_dema-2025-0184_ref_036) 2011; 218
(j_dema-2025-0184_ref_028) 2017; 14
(j_dema-2025-0184_ref_008) 1967; 21
(j_dema-2025-0184_ref_012) 2012; 159
(j_dema-2025-0184_ref_034) 2005; 311
(j_dema-2025-0184_ref_032) 2021; 7
(j_dema-2025-0184_ref_002) 1922; 3
(j_dema-2025-0184_ref_004) 2013; 27
(j_dema-2025-0184_ref_014) 2015; 187
(j_dema-2025-0184_ref_040) 1965; 93
(j_dema-2025-0184_ref_010) 2013; 149
(j_dema-2025-0184_ref_024) 2018; 341
(j_dema-2025-0184_ref_009) 2011; 18
(j_dema-2025-0184_ref_019) 1964; 4
(j_dema-2025-0184_ref_029) 2015; 48
(j_dema-2025-0184_ref_016) 2019; 42
(j_dema-2025-0184_ref_020) 2001; 9
(j_dema-2025-0184_ref_026) 2019; 1
(j_dema-2025-0184_ref_022) 2014; 24
(j_dema-2025-0184_ref_037) 2016; 32
(j_dema-2025-0184_ref_001) 2015; 44
(j_dema-2025-0184_ref_038) 2021; 104
(j_dema-2025-0184_ref_003) 2008; 136
(j_dema-2025-0184_ref_025) 2018; 79
2025111815012038562_j_dema-2025-0184_ref_018
2025111815012038562_j_dema-2025-0184_ref_019
2025111815012038562_j_dema-2025-0184_ref_030
2025111815012038562_j_dema-2025-0184_ref_031
2025111815012038562_j_dema-2025-0184_ref_012
2025111815012038562_j_dema-2025-0184_ref_034
2025111815012038562_j_dema-2025-0184_ref_013
2025111815012038562_j_dema-2025-0184_ref_035
2025111815012038562_j_dema-2025-0184_ref_010
2025111815012038562_j_dema-2025-0184_ref_032
2025111815012038562_j_dema-2025-0184_ref_011
2025111815012038562_j_dema-2025-0184_ref_033
2025111815012038562_j_dema-2025-0184_ref_016
2025111815012038562_j_dema-2025-0184_ref_038
2025111815012038562_j_dema-2025-0184_ref_017
2025111815012038562_j_dema-2025-0184_ref_039
2025111815012038562_j_dema-2025-0184_ref_014
2025111815012038562_j_dema-2025-0184_ref_036
2025111815012038562_j_dema-2025-0184_ref_015
2025111815012038562_j_dema-2025-0184_ref_037
2025111815012038562_j_dema-2025-0184_ref_009
2025111815012038562_j_dema-2025-0184_ref_007
2025111815012038562_j_dema-2025-0184_ref_029
2025111815012038562_j_dema-2025-0184_ref_008
2025111815012038562_j_dema-2025-0184_ref_020
2025111815012038562_j_dema-2025-0184_ref_040
2025111815012038562_j_dema-2025-0184_ref_001
2025111815012038562_j_dema-2025-0184_ref_023
2025111815012038562_j_dema-2025-0184_ref_002
2025111815012038562_j_dema-2025-0184_ref_024
2025111815012038562_j_dema-2025-0184_ref_021
2025111815012038562_j_dema-2025-0184_ref_022
2025111815012038562_j_dema-2025-0184_ref_005
2025111815012038562_j_dema-2025-0184_ref_027
2025111815012038562_j_dema-2025-0184_ref_006
2025111815012038562_j_dema-2025-0184_ref_028
2025111815012038562_j_dema-2025-0184_ref_003
2025111815012038562_j_dema-2025-0184_ref_025
2025111815012038562_j_dema-2025-0184_ref_004
2025111815012038562_j_dema-2025-0184_ref_026
References_xml – volume: 44
  year: 2015
  ident: j_dema-2025-0184_ref_001
  article-title: Fixed points of monotone nonexpansive mappings on a hyperbolic metric space with a graph
  publication-title: Fixed Point Theor. Appl.
  doi: 10.1186/s13663-015-0294-5
– volume: 24
  start-page: 232
  year: 2014
  end-page: 256
  ident: j_dema-2025-0184_ref_022
  article-title: A dynamical approach to an inertial forward-backward algorithm for convex minimization
  publication-title: SIAM J. Optimiz.
  doi: 10.1137/130910294
– volume: 7
  start-page: 1775
  year: 2021
  end-page: 1790
  ident: j_dema-2025-0184_ref_032
  article-title: An inertial parallel algorithm for a finite family of G-nonexpansive mappings applied to signal recovery
  publication-title: AIMS Math.
  doi: 10.3934/math.2022102
– volume: 21
  start-page: 511
  year: 1967
  end-page: 520
  ident: j_dema-2025-0184_ref_008
  article-title: Iterates of Bernstein polynomials
  publication-title: Pacific J. Math.
  doi: 10.2140/pjm.1967.21.511
– volume: 9
  start-page: 3
  year: 2001
  end-page: 11
  ident: j_dema-2025-0184_ref_020
  article-title: An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping
  publication-title: Set-Valued Anal.
– volume: 159
  start-page: 659
  year: 2012
  end-page: 663
  ident: j_dema-2025-0184_ref_012
  article-title: Some fixed point result on a metric space with a graph
  publication-title: Topol. Appl.
  doi: 10.1016/j.topol.2011.10.013
– volume: 97
  start-page: 645
  year: 1998
  end-page: 673
  ident: j_dema-2025-0184_ref_018
  article-title: Convergence analysis and applications of the Glowinski Le Tallec splitting method for finding a zero of the sum of two maximal monotone operators
  publication-title: J. Optim. Theor. Appl.
– volume: 70
  year: 2014
  ident: j_dema-2025-0184_ref_011
  article-title: Coincidence point theorems for graph-preserving multivalued mappings
  publication-title: Fixed Point Theor. Appl.
  doi: 10.1186/1687-1812-2014-70
– volume: 218
  start-page: 88
  year: 2011
  end-page: 95
  ident: j_dema-2025-0184_ref_036
  article-title: A comparison between iterative methods by using the basins of attraction
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2011.05.055
– volume: 104
  start-page: 297
  year: 2021
  end-page: 331
  ident: j_dema-2025-0184_ref_038
  article-title: On the robust Newton’s method with the Mann iteration and the artistic patterns from its dynamics
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-021-06306-5
– volume: 79
  start-page: 597
  year: 2018
  end-page: 610
  ident: j_dema-2025-0184_ref_025
  article-title: Modified subgradient extragradient method for variational inequality problems
  publication-title: Numer. Algor.
  doi: 10.1007/s11075-017-0452-4
– volume: 27
  start-page: 311
  year: 2013
  end-page: 315
  ident: j_dema-2025-0184_ref_004
  article-title: Some fixed point results for generalized quasi-contractive multifunctions on graphs
  publication-title: Filomat
  doi: 10.2298/fil1302311a
– volume: 20
  start-page: 31
  year: 2012
  end-page: 40
  ident: j_dema-2025-0184_ref_007
  article-title: Fixed points of Kannan mappings in metric spaces endowed with a graph
  publication-title: An. St. Univ. Ovidius Constanta Ser. Mat.
  doi: 10.2478/v10309-012-0003-x
– volume: 3
  start-page: 133
  year: 1922
  end-page: 181
  ident: j_dema-2025-0184_ref_002
  article-title: Sur les oprations dans les ensembles abstraits et leur application aux quations intgrales
  publication-title: Fund. Math.
  doi: 10.4064/fm-3-1-133-181
– volume: 49
  year: 2015
  ident: j_dema-2025-0184_ref_013
  article-title: Fixed points of monotone nonexpansive mappings with a graph
  publication-title: Fixed Point Theor. Appl.
  doi: 10.1186/s13663-015-0299-0
– volume: 75
  start-page: 3895
  year: 2012
  end-page: 3901
  ident: j_dema-2025-0184_ref_006
  article-title: Fixed point theorems for Reich type contractions on metric spaces with a graph
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2012.02.009
– volume: 48
  start-page: 241
  year: 2015
  end-page: 263
  ident: j_dema-2025-0184_ref_029
  article-title: Parallel and sequential hybrid methods for a finite family of asymptotically quasi ϕ-nonexpansive mappings
  publication-title: J. Appl. Math. Comput.
– volume: 87
  year: 2016
  ident: j_dema-2025-0184_ref_015
  article-title: Common fixed points of G-nonexpansive mappings on Banach spaces with a graph
  publication-title: Fixed Point Theor. Appl.
  doi: 10.1186/s13663-016-0578-4
– volume: 344
  start-page: 876
  year: 2008
  end-page: 887
  ident: j_dema-2025-0184_ref_023
  article-title: Regularized and inertial algorithms for common fixed points of nonlinear operators
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2008.03.028
– volume: 93
  start-page: 273
  year: 1965
  end-page: 299
  ident: j_dema-2025-0184_ref_040
  article-title: Proximité et dualité dans un espace hilbertien
  publication-title: Bull. Soc. Math. Fr.
– volume: 7
  start-page: 936
  year: 2019
  ident: j_dema-2025-0184_ref_035
  article-title: Hybrid methods for a countable family of G-nonexpansive mappings in Hilbert spaces endowed with graphs
  publication-title: Mathematics
  doi: 10.3390/math7100936
– volume: 2
  start-page: 183
  year: 2009
  end-page: 202
  ident: j_dema-2025-0184_ref_021
  article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/080716542
– volume: 44
  start-page: 351
  year: 2016
  end-page: 374
  ident: j_dema-2025-0184_ref_030
  article-title: Parallel hybrid iterative methods for variational inequalities, equilibrium problems, and common fixed point problems
  publication-title: Vietnam J. Math.
  doi: 10.1007/s10013-015-0129-z
– volume: 32
  start-page: 277
  year: 2016
  end-page: 284
  ident: j_dema-2025-0184_ref_037
  article-title: A comparison of some fixed point iteration procedures by using the basins of attraction
  publication-title: Carpathian J. Math.
  doi: 10.37193/cjm.2016.03.03
– volume: 18
  start-page: 307
  year: 2011
  end-page: 327
  ident: j_dema-2025-0184_ref_009
  article-title: Fixed point theorems for single-valued and multivalued generalized contractions in metric spaces endowed with a graph
  publication-title: Georgian Math. J.
– volume: 187
  year: 2015
  ident: j_dema-2025-0184_ref_014
  article-title: On Browder’s convergence theorem and Halpern iteration process for G-nonexpansive mappings in Hilbert spaces endowed with graphs
  publication-title: Fixed Point Theor. Appl.
  doi: 10.1186/s13663-015-0436-9
– volume: 341
  start-page: 80
  year: 2018
  end-page: 98
  ident: j_dema-2025-0184_ref_024
  article-title: Inertial extragradient algorithms for strongly pseudomonotone variational inequalities
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2018.03.019
– volume: 149
  year: 2013
  ident: j_dema-2025-0184_ref_010
  article-title: Fixed point theorems for integral G-contractions
  publication-title: Fixed Point Theor. Appl.
  doi: 10.1186/1687-1812-2013-149
– volume: 1
  start-page: 63
  year: 2019
  end-page: 76
  ident: j_dema-2025-0184_ref_026
  article-title: A modified inertial projection and contraction algorithms for quasivariational inequalities
  publication-title: Appl. Set-Valued Anal. Optim.
– volume: 136
  start-page: 1359
  year: 2008
  end-page: 1373
  ident: j_dema-2025-0184_ref_003
  article-title: The contraction principle for mappings on a metric space with a graph
  publication-title: Proc. Amer. Math. Soc.
  doi: 10.1090/s0002-9939-07-09110-1
– volume: 40
  start-page: 145
  year: 2021
  ident: j_dema-2025-0184_ref_027
  article-title: A parallel monotone hybrid algorithm for a finite family of G-nonexpansive mappings in Hilbert spaces endowed with a graph applicable in signal recovery
  publication-title: Comp. Appl. Math.
  doi: 10.1007/s40314-021-01530-6
– volume: 42
  start-page: 2361
  year: 2019
  end-page: 2380
  ident: j_dema-2025-0184_ref_016
  article-title: Convergence analysis of SP-iteration for G-nonexpansive mappings with directed graphs
  publication-title: Bull. Malays. Math. Sci. Soc.
  doi: 10.1007/s40840-018-0606-0
– volume: 14
  start-page: 101
  year: 2017
  end-page: 111
  ident: j_dema-2025-0184_ref_028
  article-title: Hybrid methods for a finite family of G-nonexpansive mappings in Hilbert spaces endowed with graphs
  publication-title: AKCE Int. J. Graphs Co.
  doi: 10.1016/j.akcej.2017.01.001
– volume: 4
  start-page: 1
  year: 1964
  end-page: 17
  ident: j_dema-2025-0184_ref_019
  article-title: Some methods of speeding up the convergence of iterative methods
  publication-title: USSR Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(64)90137-5
– volume: 37
  start-page: 85
  year: 2010
  end-page: 92
  ident: j_dema-2025-0184_ref_005
  article-title: Fixed point of ϕ-contraction in metric spaces endowed with a graph
  publication-title: Ann. Univ. Craiova Math. Ser.Mat. Inform.
– volume: 311
  start-page: 506
  year: 2005
  end-page: 517
  ident: j_dema-2025-0184_ref_034
  article-title: Weak and strong convergence criteria of Noor iterations for asymptotically nonexpansive mappings
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2005.03.002
– volume: 114
  start-page: 1
  year: 2020
  end-page: 20
  ident: j_dema-2025-0184_ref_031
  article-title: Strong convergence analysis of common variational inclusion problems involving an inertial parallel monotone hybrid method for a novel application to image restoration
  publication-title: RACSAM Rev. R. Acad. A.
  doi: 10.1007/s13398-020-00827-1
– ident: 2025111815012038562_j_dema-2025-0184_ref_007
  doi: 10.2478/v10309-012-0003-x
– ident: 2025111815012038562_j_dema-2025-0184_ref_025
  doi: 10.1007/s11075-017-0452-4
– ident: 2025111815012038562_j_dema-2025-0184_ref_006
  doi: 10.1016/j.na.2012.02.009
– ident: 2025111815012038562_j_dema-2025-0184_ref_001
  doi: 10.1186/s13663-015-0294-5
– ident: 2025111815012038562_j_dema-2025-0184_ref_032
  doi: 10.3934/math.2022102
– ident: 2025111815012038562_j_dema-2025-0184_ref_024
  doi: 10.1016/j.cam.2018.03.019
– ident: 2025111815012038562_j_dema-2025-0184_ref_002
  doi: 10.4064/fm-3-1-133-181
– ident: 2025111815012038562_j_dema-2025-0184_ref_031
  doi: 10.1007/s13398-020-00827-1
– ident: 2025111815012038562_j_dema-2025-0184_ref_028
  doi: 10.1016/j.akcej.2017.01.001
– ident: 2025111815012038562_j_dema-2025-0184_ref_018
  doi: 10.1023/A:1022646327085
– ident: 2025111815012038562_j_dema-2025-0184_ref_021
  doi: 10.1137/080716542
– ident: 2025111815012038562_j_dema-2025-0184_ref_033
– ident: 2025111815012038562_j_dema-2025-0184_ref_020
  doi: 10.1023/A:1011253113155
– ident: 2025111815012038562_j_dema-2025-0184_ref_003
  doi: 10.1090/S0002-9939-07-09110-1
– ident: 2025111815012038562_j_dema-2025-0184_ref_013
  doi: 10.1186/s13663-015-0299-0
– ident: 2025111815012038562_j_dema-2025-0184_ref_015
  doi: 10.1186/s13663-016-0578-4
– ident: 2025111815012038562_j_dema-2025-0184_ref_038
  doi: 10.1007/s11071-021-06306-5
– ident: 2025111815012038562_j_dema-2025-0184_ref_005
– ident: 2025111815012038562_j_dema-2025-0184_ref_012
  doi: 10.1016/j.topol.2011.10.013
– ident: 2025111815012038562_j_dema-2025-0184_ref_008
  doi: 10.2140/pjm.1967.21.511
– ident: 2025111815012038562_j_dema-2025-0184_ref_026
  doi: 10.23952/asvao.1.2019.1.06
– ident: 2025111815012038562_j_dema-2025-0184_ref_009
  doi: 10.1515/gmj.2011.0019
– ident: 2025111815012038562_j_dema-2025-0184_ref_034
  doi: 10.1016/j.jmaa.2005.03.002
– ident: 2025111815012038562_j_dema-2025-0184_ref_011
  doi: 10.1186/1687-1812-2014-70
– ident: 2025111815012038562_j_dema-2025-0184_ref_010
  doi: 10.1186/1687-1812-2013-149
– ident: 2025111815012038562_j_dema-2025-0184_ref_039
  doi: 10.1007/978-3-319-48311-5
– ident: 2025111815012038562_j_dema-2025-0184_ref_014
  doi: 10.1186/s13663-015-0436-9
– ident: 2025111815012038562_j_dema-2025-0184_ref_016
  doi: 10.1007/s40840-018-0606-0
– ident: 2025111815012038562_j_dema-2025-0184_ref_037
  doi: 10.37193/CJM.2016.03.03
– ident: 2025111815012038562_j_dema-2025-0184_ref_004
  doi: 10.2298/FIL1302311A
– ident: 2025111815012038562_j_dema-2025-0184_ref_023
  doi: 10.1016/j.jmaa.2008.03.028
– ident: 2025111815012038562_j_dema-2025-0184_ref_019
  doi: 10.1016/0041-5553(64)90137-5
– ident: 2025111815012038562_j_dema-2025-0184_ref_036
  doi: 10.1016/j.amc.2011.05.055
– ident: 2025111815012038562_j_dema-2025-0184_ref_029
  doi: 10.1007/s12190-014-0801-6
– ident: 2025111815012038562_j_dema-2025-0184_ref_030
  doi: 10.1007/s10013-015-0129-z
– ident: 2025111815012038562_j_dema-2025-0184_ref_035
  doi: 10.3390/math7100936
– ident: 2025111815012038562_j_dema-2025-0184_ref_017
  doi: 10.1137/1.9781611970838
– ident: 2025111815012038562_j_dema-2025-0184_ref_027
  doi: 10.1007/s40314-021-01530-6
– ident: 2025111815012038562_j_dema-2025-0184_ref_022
  doi: 10.1137/130910294
– ident: 2025111815012038562_j_dema-2025-0184_ref_040
  doi: 10.24033/bsmf.1625
SSID ssj0000684620
Score 2.2973292
Snippet In this paper, we present a new computational approach named the parallel inertial three-step iteration monotone hybrid algorithm (abbreviated as PITMHA),...
SourceID doaj
crossref
walterdegruyter
SourceType Open Website
Index Database
Publisher
StartPage 133
SubjectTerms 47E10
47H09
47H10
54H25
common fixed point
G-nonexpansive mapping
parallel inertial three-step iteration
signal recovery problem
weak convergence
Title A parallel inertial three-step iteration monotone hybrid algorithm for a finite family of G-nonexpansive mappings in Hilbert spaces endowed with graphs applicable to signal recovery problems
URI https://www.degruyter.com/doi/10.1515/dema-2025-0184
https://doaj.org/article/176acb258a1c493b83006edc6e45cab4
Volume 58
WOSCitedRecordID wos001617217000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2391-4661
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000684620
  issn: 2391-4661
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LTtwwFLUQ6oJZoLa06rSA7qISK4tJ7CTOEhCPRYu6KBW7yM-ZSJkJSkLp_Fy_jXuTgACpYtNtZMWWz_F92NfHjH0NLjFK6IzrKMYEJQmB61ym3KdGqUhLnfU63b--ZZeX6vo6__HkqS-qCRvkgYeJO4yyVFsTJ0pHVuYCf4w88c6mXiZWm14JdJblT5KpwQajX41no0oj-uxD55caKRFTqZqSz7xQL9Y_Ydt3_QG18_Pmdt09HIj2fubsLdseA0Q4Ggb2jm341Xs2-f6ortrusL9HQIrdmPFXQHf3cJFW0CEoniNmNzAoJeOEA3KsJrVtWKzpZhboal43ZbdYAsaqoCGUFHLCsMsBdYBzvsLmf9BEUFk7LDXJN8xb7AYuSpLD6gBNENoW8CtX33kHtJELvex1C-NpuKk8dDVQaQgOjFJuXC9rGN-uaT-wq7PTnycXfHyHgVsMzzoenJHGxFJop4RyxgVrjLKZNlYoayIVIuEzl6YzLYVErHygwChI5ZTXaS4-sk0a_CcGAcMR_FtOYakMOaKZmMgog240WO_ElB084FLcDHIbBaUpiGBBCBaEYEEITtkxwfbYimSy-w9InmIkT_EaeaYsfgF6MS7h9h_dJir6_D96_sK2RjLyON9lm11z6_fYG_u7K9tmvyfzPdUCAWE
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+parallel+inertial+three-step+iteration+monotone+hybrid+algorithm+for+a+finite+family+of+G-nonexpansive+mappings+in+Hilbert+spaces+endowed+with+graphs+applicable+to+signal+recovery+problems&rft.jtitle=Demonstratio+mathematica&rft.au=Yambangwai%2C+Damrongsak&rft.au=Thianwan%2C+Tanakit&rft.date=2025-01-29&rft.issn=2391-4661&rft.eissn=2391-4661&rft.volume=58&rft.issue=1&rft_id=info:doi/10.1515%2Fdema-2025-0184&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_dema_2025_0184
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2391-4661&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2391-4661&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2391-4661&client=summon