A variable forgetting factor diffusion recursive least squares algorithm for distributed estimation
•A new variable forgetting factor diffusion RLS algorithm for distributed estimation.•Performance analysis of the diffusion RLS algorithm in time-varying systems.•Derivation of RLS solution to the distributed adaptive algorithm and study of the effect of the network topology.•Derivation of optimal f...
Uloženo v:
| Vydáno v: | Signal processing Ročník 140; s. 219 - 225 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.11.2017
|
| Témata: | |
| ISSN: | 0165-1684, 1872-7557 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •A new variable forgetting factor diffusion RLS algorithm for distributed estimation.•Performance analysis of the diffusion RLS algorithm in time-varying systems.•Derivation of RLS solution to the distributed adaptive algorithm and study of the effect of the network topology.•Derivation of optimal forgetting factor selection formulae.
Distributed recursive least squares (RLS) algorithms have superior convergence properties compared to the least mean squares (LMS) counterpart. However, with a fixed forgetting factor (FF), they are not suitable for tracking time-varying (TV) parameters. This paper proposes a novel diffusion variable FF RLS (Diff-VFF-RLS) algorithm based on a local polynomial modeling (LPM) of the unknown TV system. The diffusion RLS solution is derived analytically such that the estimation deviation from the true value is investigated. Based on the analysis and the LPM of the TV system, a new optimal VFF formula that tries to minimize the estimation deviation is obtained. Simulations are conducted to verify the theoretical analysis in terms of the steady-state mean square deviation (MSD) and the VFF formula. Results also show that the convergence and tracking performance of the proposed algorithm compares favorably with conventional ones. |
|---|---|
| AbstractList | •A new variable forgetting factor diffusion RLS algorithm for distributed estimation.•Performance analysis of the diffusion RLS algorithm in time-varying systems.•Derivation of RLS solution to the distributed adaptive algorithm and study of the effect of the network topology.•Derivation of optimal forgetting factor selection formulae.
Distributed recursive least squares (RLS) algorithms have superior convergence properties compared to the least mean squares (LMS) counterpart. However, with a fixed forgetting factor (FF), they are not suitable for tracking time-varying (TV) parameters. This paper proposes a novel diffusion variable FF RLS (Diff-VFF-RLS) algorithm based on a local polynomial modeling (LPM) of the unknown TV system. The diffusion RLS solution is derived analytically such that the estimation deviation from the true value is investigated. Based on the analysis and the LPM of the TV system, a new optimal VFF formula that tries to minimize the estimation deviation is obtained. Simulations are conducted to verify the theoretical analysis in terms of the steady-state mean square deviation (MSD) and the VFF formula. Results also show that the convergence and tracking performance of the proposed algorithm compares favorably with conventional ones. |
| Author | Chu, Y.J. Mak, C.M. |
| Author_xml | – sequence: 1 givenname: Y.J. surname: Chu fullname: Chu, Y.J. – sequence: 2 givenname: C.M. surname: Mak fullname: Mak, C.M. email: cheuk-ming.mak@polyu.edu.hk |
| BookMark | eNqFkL1OwzAUhS1UJNrCGzD4BRKu4zhOGZCqij-pEgvMluNcB1dpUmy3Em-PS5kYYLrL-Y7O_WZkMowDEnLNIGfAqptNHly382NeAJM5iBwYnJEpq2WRSSHkhExTTGSsqssLMgthAwCMVzAlZkkP2jvd9Ejt6DuM0Q0dtdrE0dPWWbsPbhyoR7P3wR2Q9qhDpOFjrz0Gqvtu9C6-b490yofoXbOP2FIM0W11TPAlObe6D3j1c-fk7eH-dfWUrV8en1fLdWa4KGJmW10zK1ll6qaVBStAcDBSlsYUKDjy2vBmUQNUpijrqm0QRLuQja3RAvCCz8ntqdf4MQSPVhkXvxdEr12vGKijLrVRJ13qqEuBUElXgstf8M6n_f7zP-zuhGF67ODQq2AcDgZbl5RF1Y7u74Iv_cqL3Q |
| CitedBy_id | crossref_primary_10_1016_j_sigpro_2021_108207 crossref_primary_10_1109_LSP_2020_2999883 crossref_primary_10_3390_en18051037 crossref_primary_10_1016_j_sigpro_2020_107950 crossref_primary_10_1016_j_dsp_2024_104768 crossref_primary_10_1109_TSP_2022_3170708 crossref_primary_10_3390_en11061358 crossref_primary_10_1016_j_ijepes_2019_105725 crossref_primary_10_1016_j_sigpro_2019_05_018 crossref_primary_10_1007_s12555_018_0336_y crossref_primary_10_1016_j_jfranklin_2018_07_043 crossref_primary_10_1007_s00034_021_01766_x crossref_primary_10_1109_TCSII_2022_3215514 crossref_primary_10_1016_j_sigpro_2018_02_033 crossref_primary_10_1109_LSP_2022_3153207 crossref_primary_10_1109_TCSII_2017_2785306 crossref_primary_10_3390_s22124566 crossref_primary_10_1007_s11071_023_08816_w crossref_primary_10_1016_j_est_2023_106901 crossref_primary_10_1109_TCSII_2017_2765523 crossref_primary_10_1109_TSIPN_2025_3589685 crossref_primary_10_1109_TCSII_2023_3253500 crossref_primary_10_1049_iet_spr_2019_0481 crossref_primary_10_1016_j_dsp_2020_102716 crossref_primary_10_1016_j_jfranklin_2025_107953 crossref_primary_10_1049_iet_cta_2018_0156 crossref_primary_10_1109_TSP_2020_2983905 crossref_primary_10_1016_j_robot_2023_104563 |
| Cites_doi | 10.1016/S0165-1684(03)00148-8 10.1109/TASL.2012.2236315 10.1109/TSP.2012.2204985 10.1109/TSP.2007.896034 10.1016/j.sigpro.2016.03.022 10.1016/j.aeue.2012.08.010 10.1016/S0165-1684(03)00037-9 10.1016/j.sigpro.2014.06.003 10.1016/j.sigpro.2016.04.013 10.1109/JPROC.2014.2306253 10.1109/TSP.2009.2033729 10.1109/TASLP.2015.2464692 10.1109/TSP.2007.913164 10.1109/TSP.2008.917383 10.1016/j.sysconle.2004.02.022 10.1109/TSP.2015.2412918 10.1109/TSP.2015.2401533 10.1109/LSP.2008.2001559 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier B.V. |
| Copyright_xml | – notice: 2017 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.sigpro.2017.05.010 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1872-7557 |
| EndPage | 225 |
| ExternalDocumentID | 10_1016_j_sigpro_2017_05_010 S0165168417301810 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K TAE TN5 WUQ XPP ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c352t-fda81f716c8bd72120530c774cc2e53e38c3b98006c2486dbe05d97bf8ef00323 |
| ISICitedReferencesCount | 32 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000404198000023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0165-1684 |
| IngestDate | Sat Nov 29 03:22:51 EST 2025 Tue Nov 18 22:27:08 EST 2025 Fri Feb 23 02:33:58 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Adaptive networks MSD analysis Diffusion RLS VFF |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c352t-fda81f716c8bd72120530c774cc2e53e38c3b98006c2486dbe05d97bf8ef00323 |
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0165168417301810 |
| PageCount | 7 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_sigpro_2017_05_010 crossref_primary_10_1016_j_sigpro_2017_05_010 elsevier_sciencedirect_doi_10_1016_j_sigpro_2017_05_010 |
| PublicationCentury | 2000 |
| PublicationDate | November 2017 2017-11-00 |
| PublicationDateYYYYMMDD | 2017-11-01 |
| PublicationDate_xml | – month: 11 year: 2017 text: November 2017 |
| PublicationDecade | 2010 |
| PublicationTitle | Signal processing |
| PublicationYear | 2017 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Lee, Kim, Lee, Song (bib0013) 2015; 63 Lopes, Sayed (bib0002) 2007; 55 Chan, Richard, Sayed (bib0010) 2015; 63 Khalili, Rastegarnia, Chambers, Bazzi (bib0012) 2013; 67 Liu, Tang (bib0003) 2010; 90 Xiao, Boyd (bib0004) 2004; 53 So (bib0014) 2003; 83 So, Ng, Leung (bib0017) 2003; 83 Zhang, Cai, Li, de Lamare, Zhao (bib0021) 2016 Zhao, Sayed (bib0023) 2012; 60 Cattivelli, Sayed (bib0007) 2010; 58 Chu, Chan (bib0020) 2015; 23 Sayed, Hoboken (bib0015) 2008 Chu, Mak (bib0016) 2016; 128 Chan, Chu, Zhang, Tsui (bib0022) 2013; 21 Qin, Cai, Champagne, de Lamare, Zhao (bib0019) 2014; 105 Ni, Chen, Chen (bib0009) 2016; 128 Saeed, Zerguine (bib0011) 2011 Bertrand, Moonen (bib0008) 2013; 92 Cattivelli, Lopes, Sayed (bib0005) 2008; 56 Sayed (bib0001) 2014; 102 Lopes, Sayed (bib0006) 2008; 56 Paleologu, Benesty, Ciochina (bib0018) 2008; 15 Paleologu (10.1016/j.sigpro.2017.05.010_bib0018) 2008; 15 Cattivelli (10.1016/j.sigpro.2017.05.010_bib0007) 2010; 58 Ni (10.1016/j.sigpro.2017.05.010_bib0009) 2016; 128 Chu (10.1016/j.sigpro.2017.05.010_bib0016) 2016; 128 Lee (10.1016/j.sigpro.2017.05.010_bib0013) 2015; 63 Khalili (10.1016/j.sigpro.2017.05.010_bib0012) 2013; 67 Zhang (10.1016/j.sigpro.2017.05.010_bib0021) 2016 Lopes (10.1016/j.sigpro.2017.05.010_bib0006) 2008; 56 Lopes (10.1016/j.sigpro.2017.05.010_bib0002) 2007; 55 Xiao (10.1016/j.sigpro.2017.05.010_bib0004) 2004; 53 Chu (10.1016/j.sigpro.2017.05.010_bib0020) 2015; 23 So (10.1016/j.sigpro.2017.05.010_bib0017) 2003; 83 Cattivelli (10.1016/j.sigpro.2017.05.010_bib0005) 2008; 56 Bertrand (10.1016/j.sigpro.2017.05.010_bib0008) 2013; 92 Qin (10.1016/j.sigpro.2017.05.010_bib0019) 2014; 105 Liu (10.1016/j.sigpro.2017.05.010_bib0003) 2010; 90 Sayed (10.1016/j.sigpro.2017.05.010_bib0001) 2014; 102 Chan (10.1016/j.sigpro.2017.05.010_bib0010) 2015; 63 Sayed (10.1016/j.sigpro.2017.05.010_bib0015) 2008 Chan (10.1016/j.sigpro.2017.05.010_bib0022) 2013; 21 So (10.1016/j.sigpro.2017.05.010_bib0014) 2003; 83 Zhao (10.1016/j.sigpro.2017.05.010_bib0023) 2012; 60 Saeed (10.1016/j.sigpro.2017.05.010_bib0011) 2011 |
| References_xml | – volume: 67 start-page: 263 year: 2013 end-page: 268 ident: bib0012 article-title: An optimum step-size assignment for incremental LMS adaptive networks based on average convergence rate constraint publication-title: AEU—Int. Electron. Commun. – start-page: 1 year: 2016 end-page: 5 ident: bib0021 article-title: Low-complexity correlated time-averaged variable forgetting factor mechanism for diffusion RLS algorithm in sensor networks publication-title: Proceeding of . IEEE SAM 2016, Rio de Janeiro, Brazil, 10-13 Jul. – start-page: 312 year: 2011 end-page: 315 ident: bib0011 article-title: A new variable step-size strategy for adaptive networks publication-title: Proceeding of the Asilamar Conference on Signals, Systems, and Computers, Pacific Grove, CA, Nov. – volume: 83 start-page: 1163 year: 2003 end-page: 1175 ident: bib0017 article-title: Gradient based variable forgetting factor RLS algorithm publication-title: Signal Process. – volume: 56 start-page: 1865 year: 2008 end-page: 1877 ident: bib0005 article-title: Diffusion recursive least-squares for distributed estimation over adaptive networks publication-title: IEEE Trans. Signal Process. – volume: 23 start-page: 2059 year: 2015 end-page: 2069 ident: bib0020 article-title: A new local polynomial modeling-based variable forgetting factor RLS algorithm and its acoustic applications publication-title: IEEE Trans. Audio Speech Lang. Process. – volume: 63 start-page: 1808 year: 2015 end-page: 1820 ident: bib0013 article-title: A variable step-size diffusion LMS algorithm for distributed estimation publication-title: IEEE Trans. Signal Process. – volume: 102 start-page: 460 year: 2014 end-page: 497 ident: bib0001 article-title: Adaptive networks publication-title: Proc. IEEE – year: 2008 ident: bib0015 article-title: Adaptive Filters – volume: 55 start-page: 4064 year: 2007 end-page: 4077 ident: bib0002 article-title: Incremental adaptive strategies over distributed networks publication-title: IEEE Trans. Signal Process. – volume: 90 start-page: 2621 year: 2010 end-page: 2627 ident: bib0003 article-title: Enhanced incremental LMS with norm constraints for distributed in-network estimation publication-title: Signal Process. – volume: 58 start-page: 1035 year: 2010 end-page: 1048 ident: bib0007 article-title: Diffusion LMS strategies for distributed estimation publication-title: IEEE Trans. Signal Process. – volume: 105 start-page: 277 year: 2014 end-page: 282 ident: bib0019 article-title: A low-complexity variable forgetting factor constant modulus RLS algorithm for blind adaptive beamforming publication-title: Signal Process. – volume: 60 start-page: 5107 year: 2012 end-page: 5113 ident: bib0023 article-title: Performance limits for distributed estimation over LMS adaptive networks publication-title: IEEE Trans. Signal Process. – volume: 128 start-page: 303 year: 2016 end-page: 308 ident: bib0016 article-title: A new QR decomposition-based RLS algorithm using the Split Bregman method for L1-regularized problems publication-title: Signal Process. – volume: 15 start-page: 597 year: 2008 end-page: 600 ident: bib0018 article-title: A robust variable forgetting factor recursive least-squares algorithm for system identification publication-title: IEEE Signal Process. Lett. – volume: 21 start-page: 907 year: 2013 end-page: 922 ident: bib0022 article-title: A new variable regularized QR decomposition-based recursive least M-estimate algorithm—performance analysis and acoustic applications publication-title: IEEE Trans. Audio Speech Lang. Process. – volume: 56 start-page: 3122 year: 2008 end-page: 3136 ident: bib0006 article-title: Diffusion least-mean squares over adaptive networks: formulation and performance analysis publication-title: IEEE Trans. Signal Process. – volume: 128 start-page: 142 year: 2016 end-page: 149 ident: bib0009 article-title: Diffusion sign-error LMS algorithm: formulation and stochastic behavior analysis publication-title: Signal Process. – volume: 83 start-page: 2059 year: 2003 end-page: 2062 ident: bib0014 article-title: A comparative study of three recursive least-squares algorithms for single-tone frequency tracking publication-title: Signal Process. – volume: 92 start-page: 1679 year: 2013 end-page: 1690 ident: bib0008 article-title: Distributed signal estimation in sensor networks where nodes have different interests publication-title: Signal Process. – volume: 63 start-page: 2733 year: 2015 end-page: 2748 ident: bib0010 article-title: Diffusion LMS over multitask networks publication-title: IEEE Trans. Signal Process. – volume: 53 start-page: 65 year: 2004 end-page: 78 ident: bib0004 article-title: Fast linear iterations for distributed averaging publication-title: Syst. Control Lett. – volume: 83 start-page: 2059 issue: 9(Sep.) year: 2003 ident: 10.1016/j.sigpro.2017.05.010_bib0014 article-title: A comparative study of three recursive least-squares algorithms for single-tone frequency tracking publication-title: Signal Process. doi: 10.1016/S0165-1684(03)00148-8 – volume: 21 start-page: 907 issue: 5(May) year: 2013 ident: 10.1016/j.sigpro.2017.05.010_bib0022 article-title: A new variable regularized QR decomposition-based recursive least M-estimate algorithm—performance analysis and acoustic applications publication-title: IEEE Trans. Audio Speech Lang. Process. doi: 10.1109/TASL.2012.2236315 – volume: 60 start-page: 5107 issue: 10(Oct.) year: 2012 ident: 10.1016/j.sigpro.2017.05.010_bib0023 article-title: Performance limits for distributed estimation over LMS adaptive networks publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2012.2204985 – volume: 55 start-page: 4064 issue: 8(Aug.) year: 2007 ident: 10.1016/j.sigpro.2017.05.010_bib0002 article-title: Incremental adaptive strategies over distributed networks publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2007.896034 – volume: 128 start-page: 142 issue: Nov. year: 2016 ident: 10.1016/j.sigpro.2017.05.010_bib0009 article-title: Diffusion sign-error LMS algorithm: formulation and stochastic behavior analysis publication-title: Signal Process. doi: 10.1016/j.sigpro.2016.03.022 – volume: 67 start-page: 263 issue: 3(Mar.) year: 2013 ident: 10.1016/j.sigpro.2017.05.010_bib0012 article-title: An optimum step-size assignment for incremental LMS adaptive networks based on average convergence rate constraint publication-title: AEU—Int. Electron. Commun. doi: 10.1016/j.aeue.2012.08.010 – volume: 83 start-page: 1163 issue: 6(Jun.) year: 2003 ident: 10.1016/j.sigpro.2017.05.010_bib0017 article-title: Gradient based variable forgetting factor RLS algorithm publication-title: Signal Process. doi: 10.1016/S0165-1684(03)00037-9 – volume: 105 start-page: 277 year: 2014 ident: 10.1016/j.sigpro.2017.05.010_bib0019 article-title: A low-complexity variable forgetting factor constant modulus RLS algorithm for blind adaptive beamforming publication-title: Signal Process. doi: 10.1016/j.sigpro.2014.06.003 – volume: 92 start-page: 1679 issue: 7(Jul.) year: 2013 ident: 10.1016/j.sigpro.2017.05.010_bib0008 article-title: Distributed signal estimation in sensor networks where nodes have different interests publication-title: Signal Process. – start-page: 1 year: 2016 ident: 10.1016/j.sigpro.2017.05.010_bib0021 article-title: Low-complexity correlated time-averaged variable forgetting factor mechanism for diffusion RLS algorithm in sensor networks – volume: 128 start-page: 303 issue: Nov. year: 2016 ident: 10.1016/j.sigpro.2017.05.010_bib0016 article-title: A new QR decomposition-based RLS algorithm using the Split Bregman method for L1-regularized problems publication-title: Signal Process. doi: 10.1016/j.sigpro.2016.04.013 – volume: 90 start-page: 2621 issue: 8(Aug.) year: 2010 ident: 10.1016/j.sigpro.2017.05.010_bib0003 article-title: Enhanced incremental LMS with norm constraints for distributed in-network estimation publication-title: Signal Process. – volume: 102 start-page: 460 issue: 4(Apr.) year: 2014 ident: 10.1016/j.sigpro.2017.05.010_bib0001 article-title: Adaptive networks publication-title: Proc. IEEE doi: 10.1109/JPROC.2014.2306253 – volume: 58 start-page: 1035 issue: 3(Mar.) year: 2010 ident: 10.1016/j.sigpro.2017.05.010_bib0007 article-title: Diffusion LMS strategies for distributed estimation publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2009.2033729 – volume: 23 start-page: 2059 issue: 11( Nov.) year: 2015 ident: 10.1016/j.sigpro.2017.05.010_bib0020 article-title: A new local polynomial modeling-based variable forgetting factor RLS algorithm and its acoustic applications publication-title: IEEE Trans. Audio Speech Lang. Process. doi: 10.1109/TASLP.2015.2464692 – volume: 56 start-page: 1865 issue: 5(May) year: 2008 ident: 10.1016/j.sigpro.2017.05.010_bib0005 article-title: Diffusion recursive least-squares for distributed estimation over adaptive networks publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2007.913164 – volume: 56 start-page: 3122 issue: 7(Jul.) year: 2008 ident: 10.1016/j.sigpro.2017.05.010_bib0006 article-title: Diffusion least-mean squares over adaptive networks: formulation and performance analysis publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2008.917383 – start-page: 312 year: 2011 ident: 10.1016/j.sigpro.2017.05.010_bib0011 article-title: A new variable step-size strategy for adaptive networks – volume: 53 start-page: 65 issue: 1(Sep.) year: 2004 ident: 10.1016/j.sigpro.2017.05.010_bib0004 article-title: Fast linear iterations for distributed averaging publication-title: Syst. Control Lett. doi: 10.1016/j.sysconle.2004.02.022 – volume: 63 start-page: 2733 issue: 11(Jun.) year: 2015 ident: 10.1016/j.sigpro.2017.05.010_bib0010 article-title: Diffusion LMS over multitask networks publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2015.2412918 – volume: 63 start-page: 1808 issue: 7(Apr.) year: 2015 ident: 10.1016/j.sigpro.2017.05.010_bib0013 article-title: A variable step-size diffusion LMS algorithm for distributed estimation publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2015.2401533 – volume: 15 start-page: 597 year: 2008 ident: 10.1016/j.sigpro.2017.05.010_bib0018 article-title: A robust variable forgetting factor recursive least-squares algorithm for system identification publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2008.2001559 – year: 2008 ident: 10.1016/j.sigpro.2017.05.010_bib0015 |
| SSID | ssj0001360 |
| Score | 2.3824003 |
| Snippet | •A new variable forgetting factor diffusion RLS algorithm for distributed estimation.•Performance analysis of the diffusion RLS algorithm in time-varying... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 219 |
| SubjectTerms | Adaptive networks Diffusion RLS MSD analysis VFF |
| Title | A variable forgetting factor diffusion recursive least squares algorithm for distributed estimation |
| URI | https://dx.doi.org/10.1016/j.sigpro.2017.05.010 |
| Volume | 140 |
| WOSCitedRecordID | wos000404198000023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1872-7557 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001360 issn: 0165-1684 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwELZQ4cAeEE8t-0A-cKscJXGTOMcKgRYkEBIg9RbZjlOKSuj2gfj5jB9xKkA8DlyiKqrdtF86881kZj6EDhlPITaJOVEQfpCe7EWE55UkVaIY5-DQlQyN2ER2ccEGg_zSDVSYGTmBrK7Z01M--Vao4RyArVtnvwC33xROwGsAHY4AOxw_BXy_-wjxr-mIqky-2xQ2W10do4ey0Amy7lQn2k3t-ljL93Rn_xe6FanLx8OH6Wh-e28KEEs9V1dLYgEv1fM47lsgHaO9Gg01oZ3YhoPGEVqdKWPfg7OgTXsb23sUnAfL2QbwYJHPNrgEZJqQKLWybt6C2olLL2ygdaex7Wt-Zalt0uAumI2GcIW6xs6NUA1bz9Q8jX_hsHwZYVOhdlfYXQq9SxEmhWm6W42zJGcdtNo_PR6cefccUdM67r9I009piv5eX83bfGWJg1xvog0XPOC-BX0Lrah6G_1YGim5g2QfN_DjFn5s4ccefuzhxwZ-7ODHHn69Gi_Bj1v4d9HNyfH10T_ihDSIBH49J1XJWVRBZCyZKCHkj8HyhhKIv5SxSqiiTFKRQ-iQyrjH0lKoMCnzTFRMVWD1Y7qHOvVDrX4iTPX4olJQoL2il4uIyQSi-EpxEXJBFd9HtPm5CummzGuxk3HxHlj7iPhVEztl5YP3Zw0ShWOKlgEWcHu9u_LXFz_pN1pv_wZ_UGc-Xai_aE0-zkez6YG7t54BuiCPoQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+variable+forgetting+factor+diffusion+recursive+least+squares+algorithm+for+distributed+estimation&rft.jtitle=Signal+processing&rft.au=Chu%2C+Y.J.&rft.au=Mak%2C+C.M.&rft.date=2017-11-01&rft.issn=0165-1684&rft.volume=140&rft.spage=219&rft.epage=225&rft_id=info:doi/10.1016%2Fj.sigpro.2017.05.010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_sigpro_2017_05_010 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon |