A variable forgetting factor diffusion recursive least squares algorithm for distributed estimation

•A new variable forgetting factor diffusion RLS algorithm for distributed estimation.•Performance analysis of the diffusion RLS algorithm in time-varying systems.•Derivation of RLS solution to the distributed adaptive algorithm and study of the effect of the network topology.•Derivation of optimal f...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Signal processing Ročník 140; s. 219 - 225
Hlavní autoři: Chu, Y.J., Mak, C.M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.11.2017
Témata:
ISSN:0165-1684, 1872-7557
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •A new variable forgetting factor diffusion RLS algorithm for distributed estimation.•Performance analysis of the diffusion RLS algorithm in time-varying systems.•Derivation of RLS solution to the distributed adaptive algorithm and study of the effect of the network topology.•Derivation of optimal forgetting factor selection formulae. Distributed recursive least squares (RLS) algorithms have superior convergence properties compared to the least mean squares (LMS) counterpart. However, with a fixed forgetting factor (FF), they are not suitable for tracking time-varying (TV) parameters. This paper proposes a novel diffusion variable FF RLS (Diff-VFF-RLS) algorithm based on a local polynomial modeling (LPM) of the unknown TV system. The diffusion RLS solution is derived analytically such that the estimation deviation from the true value is investigated. Based on the analysis and the LPM of the TV system, a new optimal VFF formula that tries to minimize the estimation deviation is obtained. Simulations are conducted to verify the theoretical analysis in terms of the steady-state mean square deviation (MSD) and the VFF formula. Results also show that the convergence and tracking performance of the proposed algorithm compares favorably with conventional ones.
AbstractList •A new variable forgetting factor diffusion RLS algorithm for distributed estimation.•Performance analysis of the diffusion RLS algorithm in time-varying systems.•Derivation of RLS solution to the distributed adaptive algorithm and study of the effect of the network topology.•Derivation of optimal forgetting factor selection formulae. Distributed recursive least squares (RLS) algorithms have superior convergence properties compared to the least mean squares (LMS) counterpart. However, with a fixed forgetting factor (FF), they are not suitable for tracking time-varying (TV) parameters. This paper proposes a novel diffusion variable FF RLS (Diff-VFF-RLS) algorithm based on a local polynomial modeling (LPM) of the unknown TV system. The diffusion RLS solution is derived analytically such that the estimation deviation from the true value is investigated. Based on the analysis and the LPM of the TV system, a new optimal VFF formula that tries to minimize the estimation deviation is obtained. Simulations are conducted to verify the theoretical analysis in terms of the steady-state mean square deviation (MSD) and the VFF formula. Results also show that the convergence and tracking performance of the proposed algorithm compares favorably with conventional ones.
Author Chu, Y.J.
Mak, C.M.
Author_xml – sequence: 1
  givenname: Y.J.
  surname: Chu
  fullname: Chu, Y.J.
– sequence: 2
  givenname: C.M.
  surname: Mak
  fullname: Mak, C.M.
  email: cheuk-ming.mak@polyu.edu.hk
BookMark eNqFkL1OwzAUhS1UJNrCGzD4BRKu4zhOGZCqij-pEgvMluNcB1dpUmy3Em-PS5kYYLrL-Y7O_WZkMowDEnLNIGfAqptNHly382NeAJM5iBwYnJEpq2WRSSHkhExTTGSsqssLMgthAwCMVzAlZkkP2jvd9Ejt6DuM0Q0dtdrE0dPWWbsPbhyoR7P3wR2Q9qhDpOFjrz0Gqvtu9C6-b490yofoXbOP2FIM0W11TPAlObe6D3j1c-fk7eH-dfWUrV8en1fLdWa4KGJmW10zK1ll6qaVBStAcDBSlsYUKDjy2vBmUQNUpijrqm0QRLuQja3RAvCCz8ntqdf4MQSPVhkXvxdEr12vGKijLrVRJ13qqEuBUElXgstf8M6n_f7zP-zuhGF67ODQq2AcDgZbl5RF1Y7u74Iv_cqL3Q
CitedBy_id crossref_primary_10_1016_j_sigpro_2021_108207
crossref_primary_10_1109_LSP_2020_2999883
crossref_primary_10_3390_en18051037
crossref_primary_10_1016_j_sigpro_2020_107950
crossref_primary_10_1016_j_dsp_2024_104768
crossref_primary_10_1109_TSP_2022_3170708
crossref_primary_10_3390_en11061358
crossref_primary_10_1016_j_ijepes_2019_105725
crossref_primary_10_1016_j_sigpro_2019_05_018
crossref_primary_10_1007_s12555_018_0336_y
crossref_primary_10_1016_j_jfranklin_2018_07_043
crossref_primary_10_1007_s00034_021_01766_x
crossref_primary_10_1109_TCSII_2022_3215514
crossref_primary_10_1016_j_sigpro_2018_02_033
crossref_primary_10_1109_LSP_2022_3153207
crossref_primary_10_1109_TCSII_2017_2785306
crossref_primary_10_3390_s22124566
crossref_primary_10_1007_s11071_023_08816_w
crossref_primary_10_1016_j_est_2023_106901
crossref_primary_10_1109_TCSII_2017_2765523
crossref_primary_10_1109_TSIPN_2025_3589685
crossref_primary_10_1109_TCSII_2023_3253500
crossref_primary_10_1049_iet_spr_2019_0481
crossref_primary_10_1016_j_dsp_2020_102716
crossref_primary_10_1016_j_jfranklin_2025_107953
crossref_primary_10_1049_iet_cta_2018_0156
crossref_primary_10_1109_TSP_2020_2983905
crossref_primary_10_1016_j_robot_2023_104563
Cites_doi 10.1016/S0165-1684(03)00148-8
10.1109/TASL.2012.2236315
10.1109/TSP.2012.2204985
10.1109/TSP.2007.896034
10.1016/j.sigpro.2016.03.022
10.1016/j.aeue.2012.08.010
10.1016/S0165-1684(03)00037-9
10.1016/j.sigpro.2014.06.003
10.1016/j.sigpro.2016.04.013
10.1109/JPROC.2014.2306253
10.1109/TSP.2009.2033729
10.1109/TASLP.2015.2464692
10.1109/TSP.2007.913164
10.1109/TSP.2008.917383
10.1016/j.sysconle.2004.02.022
10.1109/TSP.2015.2412918
10.1109/TSP.2015.2401533
10.1109/LSP.2008.2001559
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.sigpro.2017.05.010
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-7557
EndPage 225
ExternalDocumentID 10_1016_j_sigpro_2017_05_010
S0165168417301810
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c352t-fda81f716c8bd72120530c774cc2e53e38c3b98006c2486dbe05d97bf8ef00323
ISICitedReferencesCount 32
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000404198000023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0165-1684
IngestDate Sat Nov 29 03:22:51 EST 2025
Tue Nov 18 22:27:08 EST 2025
Fri Feb 23 02:33:58 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Adaptive networks
MSD analysis
Diffusion RLS
VFF
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c352t-fda81f716c8bd72120530c774cc2e53e38c3b98006c2486dbe05d97bf8ef00323
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0165168417301810
PageCount 7
ParticipantIDs crossref_citationtrail_10_1016_j_sigpro_2017_05_010
crossref_primary_10_1016_j_sigpro_2017_05_010
elsevier_sciencedirect_doi_10_1016_j_sigpro_2017_05_010
PublicationCentury 2000
PublicationDate November 2017
2017-11-00
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: November 2017
PublicationDecade 2010
PublicationTitle Signal processing
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Lee, Kim, Lee, Song (bib0013) 2015; 63
Lopes, Sayed (bib0002) 2007; 55
Chan, Richard, Sayed (bib0010) 2015; 63
Khalili, Rastegarnia, Chambers, Bazzi (bib0012) 2013; 67
Liu, Tang (bib0003) 2010; 90
Xiao, Boyd (bib0004) 2004; 53
So (bib0014) 2003; 83
So, Ng, Leung (bib0017) 2003; 83
Zhang, Cai, Li, de Lamare, Zhao (bib0021) 2016
Zhao, Sayed (bib0023) 2012; 60
Cattivelli, Sayed (bib0007) 2010; 58
Chu, Chan (bib0020) 2015; 23
Sayed, Hoboken (bib0015) 2008
Chu, Mak (bib0016) 2016; 128
Chan, Chu, Zhang, Tsui (bib0022) 2013; 21
Qin, Cai, Champagne, de Lamare, Zhao (bib0019) 2014; 105
Ni, Chen, Chen (bib0009) 2016; 128
Saeed, Zerguine (bib0011) 2011
Bertrand, Moonen (bib0008) 2013; 92
Cattivelli, Lopes, Sayed (bib0005) 2008; 56
Sayed (bib0001) 2014; 102
Lopes, Sayed (bib0006) 2008; 56
Paleologu, Benesty, Ciochina (bib0018) 2008; 15
Paleologu (10.1016/j.sigpro.2017.05.010_bib0018) 2008; 15
Cattivelli (10.1016/j.sigpro.2017.05.010_bib0007) 2010; 58
Ni (10.1016/j.sigpro.2017.05.010_bib0009) 2016; 128
Chu (10.1016/j.sigpro.2017.05.010_bib0016) 2016; 128
Lee (10.1016/j.sigpro.2017.05.010_bib0013) 2015; 63
Khalili (10.1016/j.sigpro.2017.05.010_bib0012) 2013; 67
Zhang (10.1016/j.sigpro.2017.05.010_bib0021) 2016
Lopes (10.1016/j.sigpro.2017.05.010_bib0006) 2008; 56
Lopes (10.1016/j.sigpro.2017.05.010_bib0002) 2007; 55
Xiao (10.1016/j.sigpro.2017.05.010_bib0004) 2004; 53
Chu (10.1016/j.sigpro.2017.05.010_bib0020) 2015; 23
So (10.1016/j.sigpro.2017.05.010_bib0017) 2003; 83
Cattivelli (10.1016/j.sigpro.2017.05.010_bib0005) 2008; 56
Bertrand (10.1016/j.sigpro.2017.05.010_bib0008) 2013; 92
Qin (10.1016/j.sigpro.2017.05.010_bib0019) 2014; 105
Liu (10.1016/j.sigpro.2017.05.010_bib0003) 2010; 90
Sayed (10.1016/j.sigpro.2017.05.010_bib0001) 2014; 102
Chan (10.1016/j.sigpro.2017.05.010_bib0010) 2015; 63
Sayed (10.1016/j.sigpro.2017.05.010_bib0015) 2008
Chan (10.1016/j.sigpro.2017.05.010_bib0022) 2013; 21
So (10.1016/j.sigpro.2017.05.010_bib0014) 2003; 83
Zhao (10.1016/j.sigpro.2017.05.010_bib0023) 2012; 60
Saeed (10.1016/j.sigpro.2017.05.010_bib0011) 2011
References_xml – volume: 67
  start-page: 263
  year: 2013
  end-page: 268
  ident: bib0012
  article-title: An optimum step-size assignment for incremental LMS adaptive networks based on average convergence rate constraint
  publication-title: AEU—Int. Electron. Commun.
– start-page: 1
  year: 2016
  end-page: 5
  ident: bib0021
  article-title: Low-complexity correlated time-averaged variable forgetting factor mechanism for diffusion RLS algorithm in sensor networks
  publication-title: Proceeding of . IEEE SAM 2016, Rio de Janeiro, Brazil, 10-13 Jul.
– start-page: 312
  year: 2011
  end-page: 315
  ident: bib0011
  article-title: A new variable step-size strategy for adaptive networks
  publication-title: Proceeding of the Asilamar Conference on Signals, Systems, and Computers, Pacific Grove, CA, Nov.
– volume: 83
  start-page: 1163
  year: 2003
  end-page: 1175
  ident: bib0017
  article-title: Gradient based variable forgetting factor RLS algorithm
  publication-title: Signal Process.
– volume: 56
  start-page: 1865
  year: 2008
  end-page: 1877
  ident: bib0005
  article-title: Diffusion recursive least-squares for distributed estimation over adaptive networks
  publication-title: IEEE Trans. Signal Process.
– volume: 23
  start-page: 2059
  year: 2015
  end-page: 2069
  ident: bib0020
  article-title: A new local polynomial modeling-based variable forgetting factor RLS algorithm and its acoustic applications
  publication-title: IEEE Trans. Audio Speech Lang. Process.
– volume: 63
  start-page: 1808
  year: 2015
  end-page: 1820
  ident: bib0013
  article-title: A variable step-size diffusion LMS algorithm for distributed estimation
  publication-title: IEEE Trans. Signal Process.
– volume: 102
  start-page: 460
  year: 2014
  end-page: 497
  ident: bib0001
  article-title: Adaptive networks
  publication-title: Proc. IEEE
– year: 2008
  ident: bib0015
  article-title: Adaptive Filters
– volume: 55
  start-page: 4064
  year: 2007
  end-page: 4077
  ident: bib0002
  article-title: Incremental adaptive strategies over distributed networks
  publication-title: IEEE Trans. Signal Process.
– volume: 90
  start-page: 2621
  year: 2010
  end-page: 2627
  ident: bib0003
  article-title: Enhanced incremental LMS with norm constraints for distributed in-network estimation
  publication-title: Signal Process.
– volume: 58
  start-page: 1035
  year: 2010
  end-page: 1048
  ident: bib0007
  article-title: Diffusion LMS strategies for distributed estimation
  publication-title: IEEE Trans. Signal Process.
– volume: 105
  start-page: 277
  year: 2014
  end-page: 282
  ident: bib0019
  article-title: A low-complexity variable forgetting factor constant modulus RLS algorithm for blind adaptive beamforming
  publication-title: Signal Process.
– volume: 60
  start-page: 5107
  year: 2012
  end-page: 5113
  ident: bib0023
  article-title: Performance limits for distributed estimation over LMS adaptive networks
  publication-title: IEEE Trans. Signal Process.
– volume: 128
  start-page: 303
  year: 2016
  end-page: 308
  ident: bib0016
  article-title: A new QR decomposition-based RLS algorithm using the Split Bregman method for L1-regularized problems
  publication-title: Signal Process.
– volume: 15
  start-page: 597
  year: 2008
  end-page: 600
  ident: bib0018
  article-title: A robust variable forgetting factor recursive least-squares algorithm for system identification
  publication-title: IEEE Signal Process. Lett.
– volume: 21
  start-page: 907
  year: 2013
  end-page: 922
  ident: bib0022
  article-title: A new variable regularized QR decomposition-based recursive least M-estimate algorithm—performance analysis and acoustic applications
  publication-title: IEEE Trans. Audio Speech Lang. Process.
– volume: 56
  start-page: 3122
  year: 2008
  end-page: 3136
  ident: bib0006
  article-title: Diffusion least-mean squares over adaptive networks: formulation and performance analysis
  publication-title: IEEE Trans. Signal Process.
– volume: 128
  start-page: 142
  year: 2016
  end-page: 149
  ident: bib0009
  article-title: Diffusion sign-error LMS algorithm: formulation and stochastic behavior analysis
  publication-title: Signal Process.
– volume: 83
  start-page: 2059
  year: 2003
  end-page: 2062
  ident: bib0014
  article-title: A comparative study of three recursive least-squares algorithms for single-tone frequency tracking
  publication-title: Signal Process.
– volume: 92
  start-page: 1679
  year: 2013
  end-page: 1690
  ident: bib0008
  article-title: Distributed signal estimation in sensor networks where nodes have different interests
  publication-title: Signal Process.
– volume: 63
  start-page: 2733
  year: 2015
  end-page: 2748
  ident: bib0010
  article-title: Diffusion LMS over multitask networks
  publication-title: IEEE Trans. Signal Process.
– volume: 53
  start-page: 65
  year: 2004
  end-page: 78
  ident: bib0004
  article-title: Fast linear iterations for distributed averaging
  publication-title: Syst. Control Lett.
– volume: 83
  start-page: 2059
  issue: 9(Sep.)
  year: 2003
  ident: 10.1016/j.sigpro.2017.05.010_bib0014
  article-title: A comparative study of three recursive least-squares algorithms for single-tone frequency tracking
  publication-title: Signal Process.
  doi: 10.1016/S0165-1684(03)00148-8
– volume: 21
  start-page: 907
  issue: 5(May)
  year: 2013
  ident: 10.1016/j.sigpro.2017.05.010_bib0022
  article-title: A new variable regularized QR decomposition-based recursive least M-estimate algorithm—performance analysis and acoustic applications
  publication-title: IEEE Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASL.2012.2236315
– volume: 60
  start-page: 5107
  issue: 10(Oct.)
  year: 2012
  ident: 10.1016/j.sigpro.2017.05.010_bib0023
  article-title: Performance limits for distributed estimation over LMS adaptive networks
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2012.2204985
– volume: 55
  start-page: 4064
  issue: 8(Aug.)
  year: 2007
  ident: 10.1016/j.sigpro.2017.05.010_bib0002
  article-title: Incremental adaptive strategies over distributed networks
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2007.896034
– volume: 128
  start-page: 142
  issue: Nov.
  year: 2016
  ident: 10.1016/j.sigpro.2017.05.010_bib0009
  article-title: Diffusion sign-error LMS algorithm: formulation and stochastic behavior analysis
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2016.03.022
– volume: 67
  start-page: 263
  issue: 3(Mar.)
  year: 2013
  ident: 10.1016/j.sigpro.2017.05.010_bib0012
  article-title: An optimum step-size assignment for incremental LMS adaptive networks based on average convergence rate constraint
  publication-title: AEU—Int. Electron. Commun.
  doi: 10.1016/j.aeue.2012.08.010
– volume: 83
  start-page: 1163
  issue: 6(Jun.)
  year: 2003
  ident: 10.1016/j.sigpro.2017.05.010_bib0017
  article-title: Gradient based variable forgetting factor RLS algorithm
  publication-title: Signal Process.
  doi: 10.1016/S0165-1684(03)00037-9
– volume: 105
  start-page: 277
  year: 2014
  ident: 10.1016/j.sigpro.2017.05.010_bib0019
  article-title: A low-complexity variable forgetting factor constant modulus RLS algorithm for blind adaptive beamforming
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2014.06.003
– volume: 92
  start-page: 1679
  issue: 7(Jul.)
  year: 2013
  ident: 10.1016/j.sigpro.2017.05.010_bib0008
  article-title: Distributed signal estimation in sensor networks where nodes have different interests
  publication-title: Signal Process.
– start-page: 1
  year: 2016
  ident: 10.1016/j.sigpro.2017.05.010_bib0021
  article-title: Low-complexity correlated time-averaged variable forgetting factor mechanism for diffusion RLS algorithm in sensor networks
– volume: 128
  start-page: 303
  issue: Nov.
  year: 2016
  ident: 10.1016/j.sigpro.2017.05.010_bib0016
  article-title: A new QR decomposition-based RLS algorithm using the Split Bregman method for L1-regularized problems
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2016.04.013
– volume: 90
  start-page: 2621
  issue: 8(Aug.)
  year: 2010
  ident: 10.1016/j.sigpro.2017.05.010_bib0003
  article-title: Enhanced incremental LMS with norm constraints for distributed in-network estimation
  publication-title: Signal Process.
– volume: 102
  start-page: 460
  issue: 4(Apr.)
  year: 2014
  ident: 10.1016/j.sigpro.2017.05.010_bib0001
  article-title: Adaptive networks
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2014.2306253
– volume: 58
  start-page: 1035
  issue: 3(Mar.)
  year: 2010
  ident: 10.1016/j.sigpro.2017.05.010_bib0007
  article-title: Diffusion LMS strategies for distributed estimation
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2009.2033729
– volume: 23
  start-page: 2059
  issue: 11( Nov.)
  year: 2015
  ident: 10.1016/j.sigpro.2017.05.010_bib0020
  article-title: A new local polynomial modeling-based variable forgetting factor RLS algorithm and its acoustic applications
  publication-title: IEEE Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2015.2464692
– volume: 56
  start-page: 1865
  issue: 5(May)
  year: 2008
  ident: 10.1016/j.sigpro.2017.05.010_bib0005
  article-title: Diffusion recursive least-squares for distributed estimation over adaptive networks
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2007.913164
– volume: 56
  start-page: 3122
  issue: 7(Jul.)
  year: 2008
  ident: 10.1016/j.sigpro.2017.05.010_bib0006
  article-title: Diffusion least-mean squares over adaptive networks: formulation and performance analysis
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2008.917383
– start-page: 312
  year: 2011
  ident: 10.1016/j.sigpro.2017.05.010_bib0011
  article-title: A new variable step-size strategy for adaptive networks
– volume: 53
  start-page: 65
  issue: 1(Sep.)
  year: 2004
  ident: 10.1016/j.sigpro.2017.05.010_bib0004
  article-title: Fast linear iterations for distributed averaging
  publication-title: Syst. Control Lett.
  doi: 10.1016/j.sysconle.2004.02.022
– volume: 63
  start-page: 2733
  issue: 11(Jun.)
  year: 2015
  ident: 10.1016/j.sigpro.2017.05.010_bib0010
  article-title: Diffusion LMS over multitask networks
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2015.2412918
– volume: 63
  start-page: 1808
  issue: 7(Apr.)
  year: 2015
  ident: 10.1016/j.sigpro.2017.05.010_bib0013
  article-title: A variable step-size diffusion LMS algorithm for distributed estimation
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2015.2401533
– volume: 15
  start-page: 597
  year: 2008
  ident: 10.1016/j.sigpro.2017.05.010_bib0018
  article-title: A robust variable forgetting factor recursive least-squares algorithm for system identification
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2008.2001559
– year: 2008
  ident: 10.1016/j.sigpro.2017.05.010_bib0015
SSID ssj0001360
Score 2.3824003
Snippet •A new variable forgetting factor diffusion RLS algorithm for distributed estimation.•Performance analysis of the diffusion RLS algorithm in time-varying...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 219
SubjectTerms Adaptive networks
Diffusion RLS
MSD analysis
VFF
Title A variable forgetting factor diffusion recursive least squares algorithm for distributed estimation
URI https://dx.doi.org/10.1016/j.sigpro.2017.05.010
Volume 140
WOSCitedRecordID wos000404198000023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1872-7557
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001360
  issn: 0165-1684
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwELZQ4cAeEE8t-0A-cKscJXGTOMcKgRYkEBIg9RbZjlOKSuj2gfj5jB9xKkA8DlyiKqrdtF86881kZj6EDhlPITaJOVEQfpCe7EWE55UkVaIY5-DQlQyN2ER2ccEGg_zSDVSYGTmBrK7Z01M--Vao4RyArVtnvwC33xROwGsAHY4AOxw_BXy_-wjxr-mIqky-2xQ2W10do4ey0Amy7lQn2k3t-ljL93Rn_xe6FanLx8OH6Wh-e28KEEs9V1dLYgEv1fM47lsgHaO9Gg01oZ3YhoPGEVqdKWPfg7OgTXsb23sUnAfL2QbwYJHPNrgEZJqQKLWybt6C2olLL2ygdaex7Wt-Zalt0uAumI2GcIW6xs6NUA1bz9Q8jX_hsHwZYVOhdlfYXQq9SxEmhWm6W42zJGcdtNo_PR6cefccUdM67r9I009piv5eX83bfGWJg1xvog0XPOC-BX0Lrah6G_1YGim5g2QfN_DjFn5s4ccefuzhxwZ-7ODHHn69Gi_Bj1v4d9HNyfH10T_ihDSIBH49J1XJWVRBZCyZKCHkj8HyhhKIv5SxSqiiTFKRQ-iQyrjH0lKoMCnzTFRMVWD1Y7qHOvVDrX4iTPX4olJQoL2il4uIyQSi-EpxEXJBFd9HtPm5CummzGuxk3HxHlj7iPhVEztl5YP3Zw0ShWOKlgEWcHu9u_LXFz_pN1pv_wZ_UGc-Xai_aE0-zkez6YG7t54BuiCPoQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+variable+forgetting+factor+diffusion+recursive+least+squares+algorithm+for+distributed+estimation&rft.jtitle=Signal+processing&rft.au=Chu%2C+Y.J.&rft.au=Mak%2C+C.M.&rft.date=2017-11-01&rft.issn=0165-1684&rft.volume=140&rft.spage=219&rft.epage=225&rft_id=info:doi/10.1016%2Fj.sigpro.2017.05.010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_sigpro_2017_05_010
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon