Multitask-Guided Deep Clustering With Boundary Adaptation
Multitask learning uses external knowledge to improve internal clustering and single-task learning. Existing multitask learning algorithms mostly use shallow-level correlation to aid judgment, and the boundary factors on high-dimensional datasets often lead algorithms to poor performance. The initia...
Uloženo v:
| Vydáno v: | IEEE transaction on neural networks and learning systems Ročník 35; číslo 5; s. 6089 - 6102 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.05.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2162-237X, 2162-2388, 2162-2388 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Multitask learning uses external knowledge to improve internal clustering and single-task learning. Existing multitask learning algorithms mostly use shallow-level correlation to aid judgment, and the boundary factors on high-dimensional datasets often lead algorithms to poor performance. The initial parameters of these algorithms cause the border samples to fall into a local optimal solution. In this study, a multitask-guided deep clustering (DC) with boundary adaptation (MTDC-BA) based on a convolutional neural network autoencoder (CNN-AE) is proposed. In the first stage, dubbed multitask pretraining (M-train), we construct an autoencoder (AE) named CNN-AE using the DenseNet-like structure, which performs deep feature extraction and stores captured multitask knowledge into model parameters. In the second phase, the parameters of the M-train are shared for CNN-AE, and clustering results are obtained by deep features, which is termed as single-task fitting (S-fit). To eliminate the boundary effect, we use data augmentation and improved self-paced learning to construct the boundary adaptation. We integrate boundary adaptors into the M-train and S-fit stages appropriately. The interpretability of MTDC-BA is accomplished by data transformation. The model relies on the principle that features become important as the reconfiguration loss decreases. Experiments on a series of typical datasets confirm the performance of the proposed MTDC-BA. Compared with other traditional clustering methods, including single-task DC algorithms and the latest multitask clustering algorithms, our MTDC-BA achieves better clustering performance with higher computational efficiency. Deep features clustering results demonstrate the stability of MTDC-BA by visualization and convergence verification. Through the visualization experiment, we explain and analyze the whole model data input and the middle characteristic layer. Further understanding of the principle of MTDC-BA. Through additional experiments, we know that the proposed MTDC-BA is efficient in the use of multitask knowledge. Finally, we carry out sensitivity experiments on the hyper-parameters to verify their optimal performance. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 2162-237X 2162-2388 2162-2388 |
| DOI: | 10.1109/TNNLS.2023.3307126 |