Scheduling-based power capping in high performance computing systems
•A HPC job dispatcher capable of bounding the power consumption is proposed.•The novel approach combines machine learning techniques and a constraint programming model.•Key idea: predict the power consumption of HPC application and use this knowledge to schedule them effectively.•A thorough comparis...
Saved in:
| Published in: | Sustainable computing informatics and systems Vol. 19; pp. 1 - 13 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Inc
01.09.2018
|
| Subjects: | |
| ISSN: | 2210-5379 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •A HPC job dispatcher capable of bounding the power consumption is proposed.•The novel approach combines machine learning techniques and a constraint programming model.•Key idea: predict the power consumption of HPC application and use this knowledge to schedule them effectively.•A thorough comparison with other methods from the state-of-the-art is performed.
Supercomputer installed capacity worldwide increased for many years and further growth is expected in the future. The next goal for high performance computing (HPC) systems is reaching Exascale. The increase in computational power threatens to lead to unacceptable power demands, if future machines will be built using current technology. Therefore reducing supercomputer power consumption has been the subject of intense research. A common approach to curtail the excessive power demands of supercomputers is to hard-bound their consumption, power capping. Power capping can be enforced by reactively throttling system performance when the power bound is hit, or by scheduling workload in a proactive fashion to avoid hitting the bound. In this paper we explore the second approach: our scheduler meets power capping constraints and minimizes quality-of-service (QoS) disruption through smart planning of the job execution order. The approach is based on constraint programming in conjunction with a machine learning module predicting the power consumptions of HPC applications. We evaluate our method on the Eurora supercomputer, using both synthetic workloads and historical traces. Our approach outperforms the state-of-the-art power capping techniques in terms of waiting time and QoS, while keeping schedule computation time under control. |
|---|---|
| AbstractList | •A HPC job dispatcher capable of bounding the power consumption is proposed.•The novel approach combines machine learning techniques and a constraint programming model.•Key idea: predict the power consumption of HPC application and use this knowledge to schedule them effectively.•A thorough comparison with other methods from the state-of-the-art is performed.
Supercomputer installed capacity worldwide increased for many years and further growth is expected in the future. The next goal for high performance computing (HPC) systems is reaching Exascale. The increase in computational power threatens to lead to unacceptable power demands, if future machines will be built using current technology. Therefore reducing supercomputer power consumption has been the subject of intense research. A common approach to curtail the excessive power demands of supercomputers is to hard-bound their consumption, power capping. Power capping can be enforced by reactively throttling system performance when the power bound is hit, or by scheduling workload in a proactive fashion to avoid hitting the bound. In this paper we explore the second approach: our scheduler meets power capping constraints and minimizes quality-of-service (QoS) disruption through smart planning of the job execution order. The approach is based on constraint programming in conjunction with a machine learning module predicting the power consumptions of HPC applications. We evaluate our method on the Eurora supercomputer, using both synthetic workloads and historical traces. Our approach outperforms the state-of-the-art power capping techniques in terms of waiting time and QoS, while keeping schedule computation time under control. |
| Author | Milano, Michela Borghesi, Andrea Lombardi, Michele Bartolini, Andrea Benini, Luca |
| Author_xml | – sequence: 1 givenname: Andrea surname: Borghesi fullname: Borghesi, Andrea email: andrea.borghesi3@unibo.it organization: DISI, University of Bologna, Viale Risorgimento 2, 40123 Bologna, Italy – sequence: 2 givenname: Andrea surname: Bartolini fullname: Bartolini, Andrea email: barandre@iis.ee.ethz.ch organization: DEI, University of Bologna, Viale Risorgimento 2, 40123 Bologna, Italy – sequence: 3 givenname: Michele surname: Lombardi fullname: Lombardi, Michele email: michele.lombardi2@unibo.it organization: DISI, University of Bologna, Viale Risorgimento 2, 40123 Bologna, Italy – sequence: 4 givenname: Michela surname: Milano fullname: Milano, Michela email: michela.milano@unibo.it organization: DISI, University of Bologna, Viale Risorgimento 2, 40123 Bologna, Italy – sequence: 5 givenname: Luca surname: Benini fullname: Benini, Luca email: luca.benini@iis.ee.ethz.ch organization: DEI, University of Bologna, Viale Risorgimento 2, 40123 Bologna, Italy |
| BookMark | eNqFkMtOwzAQRb0oEqX0D1jkBxL8iPNggYTKU6rEAlhbjj1uXTVxZDug_j2uyooFzGakGZ07mnOBZoMbAKErgguCSXW9K8IUlOsLiklTYF5gXM_QnFKCc87q9hwtQ9jhVLwiLSvn6P5NbUFPezts8k4G0NnovsBnSo5jmmV2yLZ2s81G8Mb5Xg4KsnRgnOJxGw4hQh8u0ZmR-wDLn75AH48P76vnfP369LK6W-eKcRpz05WKc8k1rjqQFCqCG2g4pSXhTNFOlrqpGmA1M01Xa25a0lZalZgZihkBtkDlKVd5F4IHI0Zve-kPgmBxFCB24iRAHAUIzEUSkLCbX5iyUUbrhuil3f8H355gSI99WvAiKAtJg7YeVBTa2b8DvgFBRX6B |
| CitedBy_id | crossref_primary_10_1109_TPDS_2020_3000418 crossref_primary_10_1177_1094342018814593 crossref_primary_10_1016_j_ymssp_2020_107108 crossref_primary_10_1002_cpe_7897 crossref_primary_10_1007_s10586_025_05521_8 crossref_primary_10_1109_JIOT_2021_3125885 |
| Cites_doi | 10.1109/TSUSC.2016.2623775 10.7873/DATE2014.290 10.1109/TPDS.2016.2516997 10.1109/HPCSim.2015.7237023 10.1007/BF00116251 10.1023/A:1010933404324 10.1016/j.parco.2012.08.001 10.1016/j.jpdc.2012.01.006 10.1002/cpe.3191 10.1007/s10586-007-0045-4 10.1016/j.future.2013.12.011 10.1016/j.future.2017.01.015 10.1016/j.future.2015.05.012 10.1016/S1574-6526(06)80026-X 10.1007/s11432-016-5588-7 10.1109/SC.2014.71 10.1007/BF01721162 10.1109/71.932708 10.1109/TPDS.2007.1026 10.1016/j.future.2013.07.012 10.1007/s00450-011-0189-6 10.1007/s00450-010-0129-x |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Inc. |
| Copyright_xml | – notice: 2018 Elsevier Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.suscom.2018.05.007 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EndPage | 13 |
| ExternalDocumentID | 10_1016_j_suscom_2018_05_007 S2210537917302317 |
| GroupedDBID | --K --M .~1 0R~ 1~. 4.4 457 4G. 7-5 8P~ AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AARJD AAXUO AAYFN ABBOA ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD AEBSH AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BELTK BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FNPLU FYGXN GBLVA GBOLZ HZ~ J1W JARJE KOM M41 MO0 N9A O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SES SPC SPCBC SSR SSV SSZ T5K ~G- AAQFI AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ADNMO AEIPS AFJKZ AIIUN ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c352t-fb4c55a5d06bea2e6108e85224153c2ba4d868e373f8b7d5f9196dc403f2031e3 |
| ISICitedReferencesCount | 18 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000446122000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2210-5379 |
| IngestDate | Tue Nov 18 22:32:41 EST 2025 Sat Nov 29 02:53:00 EST 2025 Fri Feb 23 02:26:31 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Keywords | Power consumption Constraint programming Machine learning HPC Scheduling Power modeling Optimization |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c352t-fb4c55a5d06bea2e6108e85224153c2ba4d868e373f8b7d5f9196dc403f2031e3 |
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2210537917302317 |
| PageCount | 13 |
| ParticipantIDs | crossref_primary_10_1016_j_suscom_2018_05_007 crossref_citationtrail_10_1016_j_suscom_2018_05_007 elsevier_sciencedirect_doi_10_1016_j_suscom_2018_05_007 |
| PublicationCentury | 2000 |
| PublicationDate | September 2018 2018-09-00 |
| PublicationDateYYYYMMDD | 2018-09-01 |
| PublicationDate_xml | – month: 09 year: 2018 text: September 2018 |
| PublicationDecade | 2010 |
| PublicationTitle | Sustainable computing informatics and systems |
| PublicationYear | 2018 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Varsamopoulos, Gupta (bib0065) 2010 Fraternali, Bartolini, Cavazzoni, Benini (bib0315) 2017 Shoukourian, Wilde, Auweter, Bode, Tafani (bib0225) 2014; 1 Cineca Inter-University Consortium Web Site. Kogge, Resnick (bib0005) 2013 Prace. Partnership for Advanced Computing in Europe. Jarus, Oleksiak, Piontek, Weglarz (bib0220) 2014; 36 Wallace, Yang, Vishwanath (bib0300) 2016 Dongarra, Meuer, Strohmaier (bib0010) 1994 Shoukourian, Wilde, Auweter, Bode (bib0080) 2015 Storlie, Sexton, Pakin (bib0195) 2014 Borghesi, Collina, Lombardi (bib0270) 2015 Pakin, Storlie, Lang (bib0190) 2016; 28 Li (bib0185) 2016; 1 Bergman, Borkar, Campbell (bib0020) 2008 Mämmelä, Majanen, Basmadjian (bib0100) 2012; 27 Borghesi, Conficoni, Lombardi (bib0265) 2015 Kaushik, Vidyarthi (bib0180) 2016; 9 Breiman (bib0285) 2001; 45 Etinski, Corbalan, Labarta, Valero (bib0040) 2012; 72 Eurora Page on the Cineca Web Site. Gaussier, Glesser, Reis, Trystram (bib0330) 2015 Wu (bib0050) 2016; 56 Tesfatsion, Wadbro, Tordsson (bib0055) 2014; 4 Stillwell, Vivien, Casanova (bib0325) 2010 (accessed 14.04.14). . Mu’alem, Feitelson (bib0115) 2001; 12 Bartolini, Cacciari, Cavazzoni (bib0250) 2014 De Vogeleer, Memmi, Jouvelot (bib0060) 2017; 15 Lefurgy, Wang, Ware (bib0025) 2008; 11 Etinski, Corbalan, Labarta (bib0140) 2010; 25 Bridi, Bartolini, Lombardi (bib0030) 2016; 27 Baptiste, Laborie, Le Pape, Nuijten (bib0295) 2006; 2 Marathe (bib0305) 2014 Bodas, Song, Rajappa, Hoffman (bib0155) 2014 Bartolini, Borghesi, Bridi (bib0035) 2014 Chetsa, Lefevre, Pierson (bib0210) 2014; 36 Lee, Lin, Chang (bib0045) 2014; 34 Etinski, Corbalan, Labarta, Valero (bib0145) 2012; 38 Huang, Fan, Quan (bib0200) 2013; 3 Haupt (bib0290) 1998; 11 Patki, Lowenthal, Sasidharan (bib0110) 2015 Bartolini, Cacciari, Tilli, Benini, Gries (bib0310) 2010 Inadomi, Patki, Inoue (bib0120) 2015 Patki, Lowenthal, Rountree (bib0070) 2013 Choi, Govindan, Urgaonkar (bib0205) 2008 Meng, McCauley, Kaplan, Leung, Coskun (bib0085) 2015; 6 Sarood, Langer, Gupta, Kale (bib0095) 2014 Baptiste, Pape, Nuijten (bib0260) 2001 De Assunç ao, Buyya (bib0320) 2008 Bailey, Lowenthal, Ravi (bib0105) 2014 Contreras, Martonosi (bib0215) 2005 David, Gorbatov, Hanebutte (bib0090) 2010 Auweter, Bode, Brehm (bib0230) 2014 Bhattacharya, Culler, Kansal, Govindan, Sankar (bib0165) 2013; 3 Kumar, Vidyarthi (bib0150) 2017 Hikita, Hirano, Nakashima (bib0075) 2008 Ellsworth, Malony, Rountree, Schulz (bib0160) 2015 Rossi, Van Beek, Walsh (bib0255) 2006 Fu, Liao, Yang (bib0015) 2016; 59 Borghesi, Bartolini, Lombardi (bib0275) 2016 Khemka, Friese, Pasricha, Maciejewski, Siegel, Koenig, Powers, Hilton, Rambharos, Poole (bib0170) 2015; 5 Etinski, Corbalan, Labarta, Valero (bib0135) 2010 Quinlan (bib0280) 1986; 1 Hsu, Feng (bib0130) 2005 Freeh, Lowenthal, Pan (bib0125) 2007; 18 Leal (bib0175) 2016; 9 Bridi (10.1016/j.suscom.2018.05.007_bib0030) 2016; 27 Tesfatsion (10.1016/j.suscom.2018.05.007_bib0055) 2014; 4 Fraternali (10.1016/j.suscom.2018.05.007_bib0315) 2017 Breiman (10.1016/j.suscom.2018.05.007_bib0285) 2001; 45 Bartolini (10.1016/j.suscom.2018.05.007_bib0310) 2010 David (10.1016/j.suscom.2018.05.007_bib0090) 2010 Etinski (10.1016/j.suscom.2018.05.007_bib0135) 2010 Huang (10.1016/j.suscom.2018.05.007_bib0200) 2013; 3 Pakin (10.1016/j.suscom.2018.05.007_bib0190) 2016; 28 Gaussier (10.1016/j.suscom.2018.05.007_bib0330) 2015 Bartolini (10.1016/j.suscom.2018.05.007_bib0035) 2014 Rossi (10.1016/j.suscom.2018.05.007_bib0255) 2006 Borghesi (10.1016/j.suscom.2018.05.007_bib0270) 2015 Chetsa (10.1016/j.suscom.2018.05.007_bib0210) 2014; 36 Etinski (10.1016/j.suscom.2018.05.007_bib0145) 2012; 38 Fu (10.1016/j.suscom.2018.05.007_bib0015) 2016; 59 Patki (10.1016/j.suscom.2018.05.007_bib0110) 2015 Bailey (10.1016/j.suscom.2018.05.007_bib0105) 2014 Kogge (10.1016/j.suscom.2018.05.007_bib0005) 2013 Meng (10.1016/j.suscom.2018.05.007_bib0085) 2015; 6 Inadomi (10.1016/j.suscom.2018.05.007_bib0120) 2015 Jarus (10.1016/j.suscom.2018.05.007_bib0220) 2014; 36 Hsu (10.1016/j.suscom.2018.05.007_bib0130) 2005 De Assunç ao (10.1016/j.suscom.2018.05.007_bib0320) 2008 Sarood (10.1016/j.suscom.2018.05.007_bib0095) 2014 Lee (10.1016/j.suscom.2018.05.007_bib0045) 2014; 34 Hikita (10.1016/j.suscom.2018.05.007_bib0075) 2008 Kumar (10.1016/j.suscom.2018.05.007_bib0150) 2017 Haupt (10.1016/j.suscom.2018.05.007_bib0290) 1998; 11 Storlie (10.1016/j.suscom.2018.05.007_bib0195) 2014 Bartolini (10.1016/j.suscom.2018.05.007_bib0250) 2014 Patki (10.1016/j.suscom.2018.05.007_bib0070) 2013 Shoukourian (10.1016/j.suscom.2018.05.007_bib0080) 2015 Contreras (10.1016/j.suscom.2018.05.007_bib0215) 2005 Wallace (10.1016/j.suscom.2018.05.007_bib0300) 2016 Etinski (10.1016/j.suscom.2018.05.007_bib0140) 2010; 25 Borghesi (10.1016/j.suscom.2018.05.007_bib0265) 2015 10.1016/j.suscom.2018.05.007_bib0240 Borghesi (10.1016/j.suscom.2018.05.007_bib0275) 2016 Lefurgy (10.1016/j.suscom.2018.05.007_bib0025) 2008; 11 Quinlan (10.1016/j.suscom.2018.05.007_bib0280) 1986; 1 10.1016/j.suscom.2018.05.007_bib0245 Wu (10.1016/j.suscom.2018.05.007_bib0050) 2016; 56 De Vogeleer (10.1016/j.suscom.2018.05.007_bib0060) 2017; 15 Choi (10.1016/j.suscom.2018.05.007_bib0205) 2008 Mämmelä (10.1016/j.suscom.2018.05.007_bib0100) 2012; 27 Auweter (10.1016/j.suscom.2018.05.007_bib0230) 2014 Marathe (10.1016/j.suscom.2018.05.007_bib0305) 2014 Leal (10.1016/j.suscom.2018.05.007_bib0175) 2016; 9 Li (10.1016/j.suscom.2018.05.007_bib0185) 2016; 1 Bhattacharya (10.1016/j.suscom.2018.05.007_bib0165) 2013; 3 Varsamopoulos (10.1016/j.suscom.2018.05.007_bib0065) 2010 Kaushik (10.1016/j.suscom.2018.05.007_bib0180) 2016; 9 Shoukourian (10.1016/j.suscom.2018.05.007_bib0225) 2014; 1 Freeh (10.1016/j.suscom.2018.05.007_bib0125) 2007; 18 Stillwell (10.1016/j.suscom.2018.05.007_bib0325) 2010 Etinski (10.1016/j.suscom.2018.05.007_bib0040) 2012; 72 Bergman (10.1016/j.suscom.2018.05.007_bib0020) 2008 Mu’alem (10.1016/j.suscom.2018.05.007_bib0115) 2001; 12 Bodas (10.1016/j.suscom.2018.05.007_bib0155) 2014 Baptiste (10.1016/j.suscom.2018.05.007_bib0295) 2006; 2 Baptiste (10.1016/j.suscom.2018.05.007_bib0260) 2001 Ellsworth (10.1016/j.suscom.2018.05.007_bib0160) 2015 Khemka (10.1016/j.suscom.2018.05.007_bib0170) 2015; 5 Dongarra (10.1016/j.suscom.2018.05.007_bib0010) 1994 10.1016/j.suscom.2018.05.007_bib0235 |
| References_xml | – year: 2015 ident: bib0265 article-title: MS3: a mediterranean-stile job scheduler for supercomputers – do less when it’s too hot! publication-title: 2015 International Conference on High Performance Computing & Simulation, HPCS 2015 – start-page: 64 year: 2015 ident: bib0330 article-title: Improving backfilling by using machine learning to predict running times publication-title: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis – start-page: 121 year: 2015 end-page: 132 ident: bib0110 article-title: Practical resource management in power-constrained, high performance computing publication-title: Proceedings of the 24th International Symposium on High-Performance Parallel and Distributed Computing, HPDC’15 – year: 2013 ident: bib0070 article-title: Exploring hardware overprovisioning in power-constrained, high performance computing publication-title: Proceedings of the 27th International ACM Conference on International Conference on Supercomputing, ICS’13 – volume: 59 year: 2016 ident: bib0015 article-title: The sunway taihulight supercomputer: system and applications publication-title: Sci. China Inform. Sci. – volume: 3 start-page: 274 year: 2013 end-page: 285 ident: bib0200 article-title: Thermal aware overall energy minimization scheduling for hard real-time systems publication-title: Sustain. Comput. Inform. Syst. – volume: 11 year: 2008 ident: bib0025 article-title: Power capping: a prelude to power shifting publication-title: Cluster Comput. – year: 2014 ident: bib0095 article-title: Maximizing throughput of overprovisioned HPC data centers under a strict power budget publication-title: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC’14 – reference: Eurora Page on the Cineca Web Site. – volume: 1 start-page: 7 year: 2016 end-page: 19 ident: bib0185 article-title: Energy-efficient task scheduling on multiple heterogeneous computers: algorithms, analysis, and performance evaluation publication-title: IEEE Trans. Sustain. Comput. – volume: 27 start-page: 2781 year: 2016 end-page: 2794 ident: bib0030 article-title: A constraint programming scheduler for heterogeneous high-performance computing machines publication-title: IEEE Trans. Parallel Distrib. Syst. – volume: 9 start-page: 42 year: 2016 end-page: 56 ident: bib0180 article-title: A green energy model for resource allocation in computational grid using dynamic threshold and GA publication-title: Sustain. Comput. Inform. Syst. – volume: 34 start-page: 66 year: 2014 end-page: 75 ident: bib0045 article-title: Power-aware code scheduling assisted with power gating and DVS publication-title: Future Gen. Comput. Syst. – year: 2014 ident: bib0105 article-title: Adaptive configuration selection for power-constrained heterogeneous systems publication-title: Proceedings of the 2014 Brazilian Conference on Intelligent Systems, BRACIS’14 – start-page: 311 year: 2010 end-page: 316 ident: bib0310 article-title: A virtual platform environment for exploring power, thermal and reliability management control strategies in high-performance multicores publication-title: Proceedings of the 20th Symposium on Great Lakes Symposium on VLSI – year: 2010 ident: bib0090 article-title: Rapl: memory power estimation and capping publication-title: Proceedings of the 16th ACM/IEEE International Symposium on Low Power Electronics and Design, ISLPED’10 – year: 2015 ident: bib0120 article-title: Analyzing and mitigating the impact of manufacturing variability in power-constrained supercomputing publication-title: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC’15 – volume: 36 start-page: 299 year: 2014 end-page: 310 ident: bib0220 article-title: Runtime power usage estimation of HPC servers for various classes of real-life applications publication-title: Future Gen. Comput. Syst. – volume: 27 start-page: 265 year: 2012 end-page: 275 ident: bib0100 article-title: Energy-aware job scheduler for high-performance computing publication-title: Comput. Sci. Res. Dev. – year: 2014 ident: bib0305 article-title: Evaluation and Optimization of Turnaround Time and Cost of HPC Applications on the Cloud – year: 2008 ident: bib0020 article-title: Exascale Computing Study: Technology Challenges in Achieving Exascale Systems – year: 1994 ident: bib0010 article-title: 29th top500 Supercomputer Sites, Tech. Rep. – year: 2014 ident: bib0195 article-title: Modeling and Predicting Power Consumption of High Performance Computing Jobs – volume: 1 start-page: 81 year: 1986 end-page: 106 ident: bib0280 article-title: Induction of decision trees publication-title: Mach. Learn. – year: 2017 ident: bib0150 article-title: An energy aware cost effective scheduling framework for heterogeneous cluster system publication-title: Future Gen. Comput. Syst. – year: 2010 ident: bib0135 article-title: Optimizing job performance under a given power constraint in HPC centers publication-title: Green Computing Conference, 2010 International – year: 2016 ident: bib0300 article-title: A data driven scheduling approach for power management on HPC systems publication-title: Proceedings of SC16: International Conference for High Performance Computing, Networking, Storage and Analysis, SC, vol. 16 – volume: 6 start-page: 48 year: 2015 end-page: 57 ident: bib0085 article-title: Simulation and optimization of HPC job allocation for jointly reducing communication and cooling costs publication-title: Sustain. Comput. Inform. Syst. – volume: 38 year: 2012 ident: bib0145 article-title: Parallel job scheduling for power constrained {HPC} systems publication-title: Parallel Comput. – year: 2014 ident: bib0250 article-title: Unveiling Eurora – thermal and power characterization of the most energy-efficient supercomputer in the world publication-title: Design, Automation Test in Europe Conference Exhibition (DATE), 2014 – reference: (accessed 14.04.14). – year: 2006 ident: bib0255 article-title: Handbook of Constraint Programming – year: 2017 ident: bib0315 article-title: Quantifying the impact of variability and heterogeneity on the energy efficiency for a next-generation ultra-green supercomputer publication-title: IEEE Trans. Parallel Distrib. Syst. – volume: 18 year: 2007 ident: bib0125 article-title: Analyzing the energy-time trade-off in high-performance computing applications publication-title: IEEE Trans. Parallel Distrib. Syst. – volume: 5 start-page: 14 year: 2015 end-page: 30 ident: bib0170 article-title: Utility maximizing dynamic resource management in an oversubscribed energy-constrained heterogeneous computing system publication-title: Sustain. Comput. Inform. Syst. – volume: 1 start-page: 20 year: 2014 end-page: 41 ident: bib0225 article-title: Predicting the energy and power consumption of strong and weak scaling HPC applications publication-title: Supercomput. Front. Innov. – volume: 36 year: 2014 ident: bib0210 article-title: Exploiting performance counters to predict and improve energy performance of HPC systems publication-title: Future Gen. Comput. Syst. – start-page: 1 year: 2008 end-page: 8 ident: bib0075 article-title: Saving 200kw and $200 k/year by power-aware job/machine scheduling publication-title: IEEE International Symposium on Parallel and Distributed Processing, 2008, IPDPS 2008 – year: 2014 ident: bib0035 article-title: Proactive workload dispatching on the EURORA supercomputer publication-title: Principles and Practice of Constraint Programming – 20th International Conference, CP 2014 – year: 2014 ident: bib0230 article-title: A case study of energy aware scheduling on supermuc publication-title: Supercomputing, Vol. 8488 of Lecture Notes in Computer Science – volume: 3 start-page: 183 year: 2013 end-page: 193 ident: bib0165 article-title: The need for speed and stability in data center power capping publication-title: Sustain. Comput. Inform. Syst. – volume: 56 start-page: 179 year: 2016 end-page: 191 ident: bib0050 article-title: Energy-efficient scheduling of real-time tasks with shared resources publication-title: Future Gen. Comput. Syst. – year: 2015 ident: bib0270 article-title: Power capping in high performance computing systems publication-title: Principles and Practice of Constraint Programming – 21st International Conference, CP 2015 – volume: 12 start-page: 529 year: 2001 end-page: 543 ident: bib0115 article-title: Utilization, predictability, workloads, and user runtime estimates in scheduling the IBM sp2 with backfilling publication-title: IEEE Trans. Parallel Distrib. Syst. – volume: 2 start-page: 761 year: 2006 end-page: 799 ident: bib0295 article-title: Constraint-based scheduling and planning publication-title: Found. Artif. Intell. – volume: 4 start-page: 205 year: 2014 end-page: 214 ident: bib0055 article-title: A combined frequency scaling and application elasticity approach for energy-efficient cloud computing publication-title: Sustain. Comput. Inform. Syst. – reference: Cineca Inter-University Consortium Web Site. – year: 2005 ident: bib0130 article-title: A power-aware run-time system for high-performance computing publication-title: Proceedings of the 2005 ACM/IEEE Conference on SUPERCOMPUTING – volume: 9 start-page: 33 year: 2016 end-page: 41 ident: bib0175 article-title: Energy efficient scheduling strategies in federated grids publication-title: Sustain. Comput. Inform. Syst. – start-page: 221 year: 2005 end-page: 226 ident: bib0215 article-title: Power prediction for intel xscale publication-title: Proceedings of the 2005 International Symposium on Low Power Electronics and Design, ISLPED’05 – volume: 45 year: 2001 ident: bib0285 article-title: Random forests publication-title: Mach. Learn. – volume: 28 start-page: 274 year: 2016 end-page: 290 ident: bib0190 article-title: Power usage of production supercomputers and production workloads publication-title: Concurr. Comput. Pract. Exper. – start-page: 181 year: 2016 end-page: 199 ident: bib0275 article-title: Predictive Modeling for Job Power Consumption in HPC Systems – reference: Prace. Partnership for Advanced Computing in Europe. – start-page: 21 year: 2014 end-page: 30 ident: bib0155 article-title: Simple power-aware scheduler to limit power consumption by HPC system within a budget publication-title: Proceedings of the 2Nd International Workshop on Energy Efficient Supercomputing, E2SC’14 – volume: 72 year: 2012 ident: bib0040 article-title: Understanding the future of energy-performance trade-off via {DVFS} in {HPC} environments publication-title: J. Parallel Distrib. Comput. – reference: . – year: 2015 ident: bib0160 article-title: Dynamic power sharing for higher job throughput publication-title: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC’15 – volume: 15 start-page: 16 year: 2017 end-page: 27 ident: bib0060 article-title: Parameter sensitivity analysis of the energy/frequency convexity rule for application processors publication-title: Sustain. Comput. Inform. Syst. – volume: 11 year: 1998 ident: bib0290 article-title: A survey of priority rule-based scheduling publication-title: Operations-Research-Spektrum – start-page: 1 year: 2010 end-page: 12 ident: bib0325 article-title: Dynamic fractional resource scheduling for HPC workloads publication-title: 2010 IEEE International Symposium on Parallel & Distributed Processing (IPDPS) – year: 2013 ident: bib0005 article-title: Yearly Update? Exascale Projections for 2013 – year: 2010 ident: bib0065 article-title: Energy proportionality and the future: Metrics and directions publication-title: 2010 39th International Conference on Parallel Processing Workshops (ICPPW) – volume: 25 start-page: 207 year: 2010 end-page: 216 ident: bib0140 article-title: Utilization driven power-aware parallel job scheduling publication-title: Comput. Sci. Res. Dev. – year: 2008 ident: bib0205 article-title: Profiling, prediction, and capping of power consumption in consolidated environments publication-title: IEEE International Symposium on Modeling, Analysis and Simulation of Computers and Telecommunication Systems, 2008, MASCOTS 2008 – year: 2015 ident: bib0080 article-title: Power variation aware configuration adviser for scalable HPC schedulers publication-title: 2015 International Conference on High Performance Computing Simulation (HPCS) – year: 2001 ident: bib0260 article-title: Constraint-based Scheduling – year: 2008 ident: bib0320 article-title: Performance analysis of multiple site resource provisioning: effects of the precision of availability information publication-title: Proceedings of the 15th International Conference on High Performance Computing, HiPC’08 – start-page: 311 year: 2010 ident: 10.1016/j.suscom.2018.05.007_bib0310 article-title: A virtual platform environment for exploring power, thermal and reliability management control strategies in high-performance multicores – volume: 1 start-page: 7 issue: 1 year: 2016 ident: 10.1016/j.suscom.2018.05.007_bib0185 article-title: Energy-efficient task scheduling on multiple heterogeneous computers: algorithms, analysis, and performance evaluation publication-title: IEEE Trans. Sustain. Comput. doi: 10.1109/TSUSC.2016.2623775 – year: 2014 ident: 10.1016/j.suscom.2018.05.007_bib0250 article-title: Unveiling Eurora – thermal and power characterization of the most energy-efficient supercomputer in the world publication-title: Design, Automation Test in Europe Conference Exhibition (DATE), 2014 doi: 10.7873/DATE2014.290 – year: 2017 ident: 10.1016/j.suscom.2018.05.007_bib0315 article-title: Quantifying the impact of variability and heterogeneity on the energy efficiency for a next-generation ultra-green supercomputer publication-title: IEEE Trans. Parallel Distrib. Syst. – volume: 9 start-page: 42 year: 2016 ident: 10.1016/j.suscom.2018.05.007_bib0180 article-title: A green energy model for resource allocation in computational grid using dynamic threshold and GA publication-title: Sustain. Comput. Inform. Syst. – year: 2001 ident: 10.1016/j.suscom.2018.05.007_bib0260 – volume: 1 start-page: 20 issue: 2 year: 2014 ident: 10.1016/j.suscom.2018.05.007_bib0225 article-title: Predicting the energy and power consumption of strong and weak scaling HPC applications publication-title: Supercomput. Front. Innov. – ident: 10.1016/j.suscom.2018.05.007_bib0245 – volume: 36 year: 2014 ident: 10.1016/j.suscom.2018.05.007_bib0210 article-title: Exploiting performance counters to predict and improve energy performance of HPC systems publication-title: Future Gen. Comput. Syst. – volume: 27 start-page: 2781 issue: 10 year: 2016 ident: 10.1016/j.suscom.2018.05.007_bib0030 article-title: A constraint programming scheduler for heterogeneous high-performance computing machines publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2016.2516997 – volume: 6 start-page: 48 year: 2015 ident: 10.1016/j.suscom.2018.05.007_bib0085 article-title: Simulation and optimization of HPC job allocation for jointly reducing communication and cooling costs publication-title: Sustain. Comput. Inform. Syst. – start-page: 1 year: 2008 ident: 10.1016/j.suscom.2018.05.007_bib0075 article-title: Saving 200kw and $200 k/year by power-aware job/machine scheduling publication-title: IEEE International Symposium on Parallel and Distributed Processing, 2008, IPDPS 2008 – year: 2008 ident: 10.1016/j.suscom.2018.05.007_bib0205 article-title: Profiling, prediction, and capping of power consumption in consolidated environments – year: 2015 ident: 10.1016/j.suscom.2018.05.007_bib0080 article-title: Power variation aware configuration adviser for scalable HPC schedulers publication-title: 2015 International Conference on High Performance Computing Simulation (HPCS) doi: 10.1109/HPCSim.2015.7237023 – volume: 5 start-page: 14 year: 2015 ident: 10.1016/j.suscom.2018.05.007_bib0170 article-title: Utility maximizing dynamic resource management in an oversubscribed energy-constrained heterogeneous computing system publication-title: Sustain. Comput. Inform. Syst. – year: 2014 ident: 10.1016/j.suscom.2018.05.007_bib0105 article-title: Adaptive configuration selection for power-constrained heterogeneous systems – ident: 10.1016/j.suscom.2018.05.007_bib0235 – volume: 1 start-page: 81 issue: 1 year: 1986 ident: 10.1016/j.suscom.2018.05.007_bib0280 article-title: Induction of decision trees publication-title: Mach. Learn. doi: 10.1007/BF00116251 – year: 2015 ident: 10.1016/j.suscom.2018.05.007_bib0270 article-title: Power capping in high performance computing systems – volume: 45 issue: 1 year: 2001 ident: 10.1016/j.suscom.2018.05.007_bib0285 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – year: 2005 ident: 10.1016/j.suscom.2018.05.007_bib0130 article-title: A power-aware run-time system for high-performance computing – volume: 38 issue: 12 year: 2012 ident: 10.1016/j.suscom.2018.05.007_bib0145 article-title: Parallel job scheduling for power constrained {HPC} systems publication-title: Parallel Comput. doi: 10.1016/j.parco.2012.08.001 – year: 2013 ident: 10.1016/j.suscom.2018.05.007_bib0005 – start-page: 1 year: 2010 ident: 10.1016/j.suscom.2018.05.007_bib0325 article-title: Dynamic fractional resource scheduling for HPC workloads – volume: 4 start-page: 205 issue: 4 year: 2014 ident: 10.1016/j.suscom.2018.05.007_bib0055 article-title: A combined frequency scaling and application elasticity approach for energy-efficient cloud computing publication-title: Sustain. Comput. Inform. Syst. – year: 2014 ident: 10.1016/j.suscom.2018.05.007_bib0305 – start-page: 221 year: 2005 ident: 10.1016/j.suscom.2018.05.007_bib0215 article-title: Power prediction for intel xscale® processors using performance monitoring unit events – year: 2010 ident: 10.1016/j.suscom.2018.05.007_bib0065 article-title: Energy proportionality and the future: Metrics and directions – year: 2008 ident: 10.1016/j.suscom.2018.05.007_bib0320 article-title: Performance analysis of multiple site resource provisioning: effects of the precision of availability information – volume: 72 issue: 4 year: 2012 ident: 10.1016/j.suscom.2018.05.007_bib0040 article-title: Understanding the future of energy-performance trade-off via {DVFS} in {HPC} environments publication-title: J. Parallel Distrib. Comput. doi: 10.1016/j.jpdc.2012.01.006 – volume: 15 start-page: 16 year: 2017 ident: 10.1016/j.suscom.2018.05.007_bib0060 article-title: Parameter sensitivity analysis of the energy/frequency convexity rule for application processors publication-title: Sustain. Comput. Inform. Syst. – start-page: 121 year: 2015 ident: 10.1016/j.suscom.2018.05.007_bib0110 article-title: Practical resource management in power-constrained, high performance computing – year: 2010 ident: 10.1016/j.suscom.2018.05.007_bib0135 article-title: Optimizing job performance under a given power constraint in HPC centers publication-title: Green Computing Conference, 2010 International – volume: 28 start-page: 274 issue: 2 year: 2016 ident: 10.1016/j.suscom.2018.05.007_bib0190 article-title: Power usage of production supercomputers and production workloads publication-title: Concurr. Comput. Pract. Exper. doi: 10.1002/cpe.3191 – start-page: 64 year: 2015 ident: 10.1016/j.suscom.2018.05.007_bib0330 article-title: Improving backfilling by using machine learning to predict running times – volume: 11 issue: 2 year: 2008 ident: 10.1016/j.suscom.2018.05.007_bib0025 article-title: Power capping: a prelude to power shifting publication-title: Cluster Comput. doi: 10.1007/s10586-007-0045-4 – year: 2015 ident: 10.1016/j.suscom.2018.05.007_bib0120 article-title: Analyzing and mitigating the impact of manufacturing variability in power-constrained supercomputing – start-page: 181 year: 2016 ident: 10.1016/j.suscom.2018.05.007_bib0275 – year: 2014 ident: 10.1016/j.suscom.2018.05.007_bib0035 article-title: Proactive workload dispatching on the EURORA supercomputer – year: 2016 ident: 10.1016/j.suscom.2018.05.007_bib0300 article-title: A data driven scheduling approach for power management on HPC systems publication-title: Proceedings of SC16: International Conference for High Performance Computing, Networking, Storage and Analysis, SC, vol. 16 – year: 2006 ident: 10.1016/j.suscom.2018.05.007_bib0255 – volume: 9 start-page: 33 year: 2016 ident: 10.1016/j.suscom.2018.05.007_bib0175 article-title: Energy efficient scheduling strategies in federated grids publication-title: Sustain. Comput. Inform. Syst. – volume: 34 start-page: 66 year: 2014 ident: 10.1016/j.suscom.2018.05.007_bib0045 article-title: Power-aware code scheduling assisted with power gating and DVS publication-title: Future Gen. Comput. Syst. doi: 10.1016/j.future.2013.12.011 – year: 2008 ident: 10.1016/j.suscom.2018.05.007_bib0020 – start-page: 21 year: 2014 ident: 10.1016/j.suscom.2018.05.007_bib0155 article-title: Simple power-aware scheduler to limit power consumption by HPC system within a budget – ident: 10.1016/j.suscom.2018.05.007_bib0240 – year: 2017 ident: 10.1016/j.suscom.2018.05.007_bib0150 article-title: An energy aware cost effective scheduling framework for heterogeneous cluster system publication-title: Future Gen. Comput. Syst. doi: 10.1016/j.future.2017.01.015 – year: 2015 ident: 10.1016/j.suscom.2018.05.007_bib0160 article-title: Dynamic power sharing for higher job throughput – year: 2014 ident: 10.1016/j.suscom.2018.05.007_bib0230 article-title: A case study of energy aware scheduling on supermuc – year: 1994 ident: 10.1016/j.suscom.2018.05.007_bib0010 – year: 2010 ident: 10.1016/j.suscom.2018.05.007_bib0090 article-title: Rapl: memory power estimation and capping – volume: 3 start-page: 183 issue: 3 year: 2013 ident: 10.1016/j.suscom.2018.05.007_bib0165 article-title: The need for speed and stability in data center power capping publication-title: Sustain. Comput. Inform. Syst. – volume: 56 start-page: 179 year: 2016 ident: 10.1016/j.suscom.2018.05.007_bib0050 article-title: Energy-efficient scheduling of real-time tasks with shared resources publication-title: Future Gen. Comput. Syst. doi: 10.1016/j.future.2015.05.012 – year: 2014 ident: 10.1016/j.suscom.2018.05.007_bib0195 – volume: 2 start-page: 761 year: 2006 ident: 10.1016/j.suscom.2018.05.007_bib0295 article-title: Constraint-based scheduling and planning publication-title: Found. Artif. Intell. doi: 10.1016/S1574-6526(06)80026-X – volume: 59 issue: 7 year: 2016 ident: 10.1016/j.suscom.2018.05.007_bib0015 article-title: The sunway taihulight supercomputer: system and applications publication-title: Sci. China Inform. Sci. doi: 10.1007/s11432-016-5588-7 – year: 2015 ident: 10.1016/j.suscom.2018.05.007_bib0265 article-title: MS3: a mediterranean-stile job scheduler for supercomputers – do less when it’s too hot! – year: 2014 ident: 10.1016/j.suscom.2018.05.007_bib0095 article-title: Maximizing throughput of overprovisioned HPC data centers under a strict power budget publication-title: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC’14 doi: 10.1109/SC.2014.71 – volume: 11 issue: 1 year: 1998 ident: 10.1016/j.suscom.2018.05.007_bib0290 article-title: A survey of priority rule-based scheduling publication-title: Operations-Research-Spektrum doi: 10.1007/BF01721162 – volume: 12 start-page: 529 issue: 6 year: 2001 ident: 10.1016/j.suscom.2018.05.007_bib0115 article-title: Utilization, predictability, workloads, and user runtime estimates in scheduling the IBM sp2 with backfilling publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/71.932708 – volume: 18 issue: 6 year: 2007 ident: 10.1016/j.suscom.2018.05.007_bib0125 article-title: Analyzing the energy-time trade-off in high-performance computing applications publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2007.1026 – volume: 3 start-page: 274 issue: 4 year: 2013 ident: 10.1016/j.suscom.2018.05.007_bib0200 article-title: Thermal aware overall energy minimization scheduling for hard real-time systems publication-title: Sustain. Comput. Inform. Syst. – volume: 36 start-page: 299 year: 2014 ident: 10.1016/j.suscom.2018.05.007_bib0220 article-title: Runtime power usage estimation of HPC servers for various classes of real-life applications publication-title: Future Gen. Comput. Syst. doi: 10.1016/j.future.2013.07.012 – volume: 27 start-page: 265 issue: 4 year: 2012 ident: 10.1016/j.suscom.2018.05.007_bib0100 article-title: Energy-aware job scheduler for high-performance computing publication-title: Comput. Sci. Res. Dev. doi: 10.1007/s00450-011-0189-6 – year: 2013 ident: 10.1016/j.suscom.2018.05.007_bib0070 article-title: Exploring hardware overprovisioning in power-constrained, high performance computing – volume: 25 start-page: 207 issue: 3 year: 2010 ident: 10.1016/j.suscom.2018.05.007_bib0140 article-title: Utilization driven power-aware parallel job scheduling publication-title: Comput. Sci. Res. Dev. doi: 10.1007/s00450-010-0129-x |
| SSID | ssj0000561934 |
| Score | 2.234321 |
| Snippet | •A HPC job dispatcher capable of bounding the power consumption is proposed.•The novel approach combines machine learning techniques and a constraint... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Constraint programming HPC Machine learning Optimization Power consumption Power modeling Scheduling |
| Title | Scheduling-based power capping in high performance computing systems |
| URI | https://dx.doi.org/10.1016/j.suscom.2018.05.007 |
| Volume | 19 |
| WOSCitedRecordID | wos000446122000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 2210-5379 databaseCode: AIEXJ dateStart: 20110301 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0000561934 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZWWw5ceCPKSz5wqyxtHHtjHysoAoQqJIq0t8jPsqsljXaXqn-C_8zYcZzQVoUeuERREjuP-TIzHn0zg9AbZmwhtDKE6SpEq1xJJGdzAsaZO8q48oWNzSaq42OxWMgvk8mvPhfmfF01jbi4kO1_FTUcA2GH1NlbiDtPCgdgH4QOWxA7bP9J8F9BDDbwy09JMFH2oA2N0A6MatuUvxJKFId6xTljwMTWDjGyMCpgvupzRYYUq-HCVHA1F3keD4zsw83pd7ddZs7ksO6HRw6Ngq459fnshw6A7en8bj0Qc5drFZuEpxNqHK0oRKZjJaVGYYlJeNk1kMkaWI5UaDGyxV2a6hUt3wUcVmBetoHyE-4Ty692_XP_LKp9ydhlCmLPblvV3Sx1mKWe8TrWJtijFZdiivYOPx4tPuWgXVhuychUyO_Rp2NGzuDVB7re3Rm5MCcP0L209sCHHWYeoolrHqH7fV8PnNT8Y_TuMoRwhBBOEMLLBgcI4RGEcEYGTkh4gr69Pzp5-4GkbhvEgBO-I14zw7nidjbXTlEHfrVwgkcXrzRUK2bFHP7lqvRCV5Z7CcrbGjYrPQXL4MqnaNqcNe4ZwpR7ap2eKasZY8orz8BRt1JIT50q3D4q-49Sm1SKPnREWdc3SWUfkTyq7Uqx_OX6qv_edXInOzexBhzdOPL5Le_0At0dsP4STXebn-4VumPOd8vt5nUC0W80VZ3B |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scheduling-based+power+capping+in+high+performance+computing+systems&rft.jtitle=Sustainable+computing+informatics+and+systems&rft.au=Borghesi%2C+Andrea&rft.au=Bartolini%2C+Andrea&rft.au=Lombardi%2C+Michele&rft.au=Milano%2C+Michela&rft.date=2018-09-01&rft.issn=2210-5379&rft.volume=19&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1016%2Fj.suscom.2018.05.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_suscom_2018_05_007 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-5379&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-5379&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-5379&client=summon |