Scheduling-based power capping in high performance computing systems

•A HPC job dispatcher capable of bounding the power consumption is proposed.•The novel approach combines machine learning techniques and a constraint programming model.•Key idea: predict the power consumption of HPC application and use this knowledge to schedule them effectively.•A thorough comparis...

Full description

Saved in:
Bibliographic Details
Published in:Sustainable computing informatics and systems Vol. 19; pp. 1 - 13
Main Authors: Borghesi, Andrea, Bartolini, Andrea, Lombardi, Michele, Milano, Michela, Benini, Luca
Format: Journal Article
Language:English
Published: Elsevier Inc 01.09.2018
Subjects:
ISSN:2210-5379
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A HPC job dispatcher capable of bounding the power consumption is proposed.•The novel approach combines machine learning techniques and a constraint programming model.•Key idea: predict the power consumption of HPC application and use this knowledge to schedule them effectively.•A thorough comparison with other methods from the state-of-the-art is performed. Supercomputer installed capacity worldwide increased for many years and further growth is expected in the future. The next goal for high performance computing (HPC) systems is reaching Exascale. The increase in computational power threatens to lead to unacceptable power demands, if future machines will be built using current technology. Therefore reducing supercomputer power consumption has been the subject of intense research. A common approach to curtail the excessive power demands of supercomputers is to hard-bound their consumption, power capping. Power capping can be enforced by reactively throttling system performance when the power bound is hit, or by scheduling workload in a proactive fashion to avoid hitting the bound. In this paper we explore the second approach: our scheduler meets power capping constraints and minimizes quality-of-service (QoS) disruption through smart planning of the job execution order. The approach is based on constraint programming in conjunction with a machine learning module predicting the power consumptions of HPC applications. We evaluate our method on the Eurora supercomputer, using both synthetic workloads and historical traces. Our approach outperforms the state-of-the-art power capping techniques in terms of waiting time and QoS, while keeping schedule computation time under control.
AbstractList •A HPC job dispatcher capable of bounding the power consumption is proposed.•The novel approach combines machine learning techniques and a constraint programming model.•Key idea: predict the power consumption of HPC application and use this knowledge to schedule them effectively.•A thorough comparison with other methods from the state-of-the-art is performed. Supercomputer installed capacity worldwide increased for many years and further growth is expected in the future. The next goal for high performance computing (HPC) systems is reaching Exascale. The increase in computational power threatens to lead to unacceptable power demands, if future machines will be built using current technology. Therefore reducing supercomputer power consumption has been the subject of intense research. A common approach to curtail the excessive power demands of supercomputers is to hard-bound their consumption, power capping. Power capping can be enforced by reactively throttling system performance when the power bound is hit, or by scheduling workload in a proactive fashion to avoid hitting the bound. In this paper we explore the second approach: our scheduler meets power capping constraints and minimizes quality-of-service (QoS) disruption through smart planning of the job execution order. The approach is based on constraint programming in conjunction with a machine learning module predicting the power consumptions of HPC applications. We evaluate our method on the Eurora supercomputer, using both synthetic workloads and historical traces. Our approach outperforms the state-of-the-art power capping techniques in terms of waiting time and QoS, while keeping schedule computation time under control.
Author Milano, Michela
Borghesi, Andrea
Lombardi, Michele
Bartolini, Andrea
Benini, Luca
Author_xml – sequence: 1
  givenname: Andrea
  surname: Borghesi
  fullname: Borghesi, Andrea
  email: andrea.borghesi3@unibo.it
  organization: DISI, University of Bologna, Viale Risorgimento 2, 40123 Bologna, Italy
– sequence: 2
  givenname: Andrea
  surname: Bartolini
  fullname: Bartolini, Andrea
  email: barandre@iis.ee.ethz.ch
  organization: DEI, University of Bologna, Viale Risorgimento 2, 40123 Bologna, Italy
– sequence: 3
  givenname: Michele
  surname: Lombardi
  fullname: Lombardi, Michele
  email: michele.lombardi2@unibo.it
  organization: DISI, University of Bologna, Viale Risorgimento 2, 40123 Bologna, Italy
– sequence: 4
  givenname: Michela
  surname: Milano
  fullname: Milano, Michela
  email: michela.milano@unibo.it
  organization: DISI, University of Bologna, Viale Risorgimento 2, 40123 Bologna, Italy
– sequence: 5
  givenname: Luca
  surname: Benini
  fullname: Benini, Luca
  email: luca.benini@iis.ee.ethz.ch
  organization: DEI, University of Bologna, Viale Risorgimento 2, 40123 Bologna, Italy
BookMark eNqFkMtOwzAQRb0oEqX0D1jkBxL8iPNggYTKU6rEAlhbjj1uXTVxZDug_j2uyooFzGakGZ07mnOBZoMbAKErgguCSXW9K8IUlOsLiklTYF5gXM_QnFKCc87q9hwtQ9jhVLwiLSvn6P5NbUFPezts8k4G0NnovsBnSo5jmmV2yLZ2s81G8Mb5Xg4KsnRgnOJxGw4hQh8u0ZmR-wDLn75AH48P76vnfP369LK6W-eKcRpz05WKc8k1rjqQFCqCG2g4pSXhTNFOlrqpGmA1M01Xa25a0lZalZgZihkBtkDlKVd5F4IHI0Zve-kPgmBxFCB24iRAHAUIzEUSkLCbX5iyUUbrhuil3f8H355gSI99WvAiKAtJg7YeVBTa2b8DvgFBRX6B
CitedBy_id crossref_primary_10_1109_TPDS_2020_3000418
crossref_primary_10_1177_1094342018814593
crossref_primary_10_1016_j_ymssp_2020_107108
crossref_primary_10_1002_cpe_7897
crossref_primary_10_1007_s10586_025_05521_8
crossref_primary_10_1109_JIOT_2021_3125885
Cites_doi 10.1109/TSUSC.2016.2623775
10.7873/DATE2014.290
10.1109/TPDS.2016.2516997
10.1109/HPCSim.2015.7237023
10.1007/BF00116251
10.1023/A:1010933404324
10.1016/j.parco.2012.08.001
10.1016/j.jpdc.2012.01.006
10.1002/cpe.3191
10.1007/s10586-007-0045-4
10.1016/j.future.2013.12.011
10.1016/j.future.2017.01.015
10.1016/j.future.2015.05.012
10.1016/S1574-6526(06)80026-X
10.1007/s11432-016-5588-7
10.1109/SC.2014.71
10.1007/BF01721162
10.1109/71.932708
10.1109/TPDS.2007.1026
10.1016/j.future.2013.07.012
10.1007/s00450-011-0189-6
10.1007/s00450-010-0129-x
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright_xml – notice: 2018 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.suscom.2018.05.007
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EndPage 13
ExternalDocumentID 10_1016_j_suscom_2018_05_007
S2210537917302317
GroupedDBID --K
--M
.~1
0R~
1~.
4.4
457
4G.
7-5
8P~
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AARJD
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BELTK
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HZ~
J1W
JARJE
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SES
SPC
SPCBC
SSR
SSV
SSZ
T5K
~G-
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c352t-fb4c55a5d06bea2e6108e85224153c2ba4d868e373f8b7d5f9196dc403f2031e3
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000446122000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2210-5379
IngestDate Tue Nov 18 22:32:41 EST 2025
Sat Nov 29 02:53:00 EST 2025
Fri Feb 23 02:26:31 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Keywords Power consumption
Constraint programming
Machine learning
HPC
Scheduling
Power modeling
Optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c352t-fb4c55a5d06bea2e6108e85224153c2ba4d868e373f8b7d5f9196dc403f2031e3
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2210537917302317
PageCount 13
ParticipantIDs crossref_primary_10_1016_j_suscom_2018_05_007
crossref_citationtrail_10_1016_j_suscom_2018_05_007
elsevier_sciencedirect_doi_10_1016_j_suscom_2018_05_007
PublicationCentury 2000
PublicationDate September 2018
2018-09-00
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: September 2018
PublicationDecade 2010
PublicationTitle Sustainable computing informatics and systems
PublicationYear 2018
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Varsamopoulos, Gupta (bib0065) 2010
Fraternali, Bartolini, Cavazzoni, Benini (bib0315) 2017
Shoukourian, Wilde, Auweter, Bode, Tafani (bib0225) 2014; 1
Cineca Inter-University Consortium Web Site.
Kogge, Resnick (bib0005) 2013
Prace. Partnership for Advanced Computing in Europe.
Jarus, Oleksiak, Piontek, Weglarz (bib0220) 2014; 36
Wallace, Yang, Vishwanath (bib0300) 2016
Dongarra, Meuer, Strohmaier (bib0010) 1994
Shoukourian, Wilde, Auweter, Bode (bib0080) 2015
Storlie, Sexton, Pakin (bib0195) 2014
Borghesi, Collina, Lombardi (bib0270) 2015
Pakin, Storlie, Lang (bib0190) 2016; 28
Li (bib0185) 2016; 1
Bergman, Borkar, Campbell (bib0020) 2008
Mämmelä, Majanen, Basmadjian (bib0100) 2012; 27
Borghesi, Conficoni, Lombardi (bib0265) 2015
Kaushik, Vidyarthi (bib0180) 2016; 9
Breiman (bib0285) 2001; 45
Etinski, Corbalan, Labarta, Valero (bib0040) 2012; 72
Eurora Page on the Cineca Web Site.
Gaussier, Glesser, Reis, Trystram (bib0330) 2015
Wu (bib0050) 2016; 56
Tesfatsion, Wadbro, Tordsson (bib0055) 2014; 4
Stillwell, Vivien, Casanova (bib0325) 2010
(accessed 14.04.14).
.
Mu’alem, Feitelson (bib0115) 2001; 12
Bartolini, Cacciari, Cavazzoni (bib0250) 2014
De Vogeleer, Memmi, Jouvelot (bib0060) 2017; 15
Lefurgy, Wang, Ware (bib0025) 2008; 11
Etinski, Corbalan, Labarta (bib0140) 2010; 25
Bridi, Bartolini, Lombardi (bib0030) 2016; 27
Baptiste, Laborie, Le Pape, Nuijten (bib0295) 2006; 2
Marathe (bib0305) 2014
Bodas, Song, Rajappa, Hoffman (bib0155) 2014
Bartolini, Borghesi, Bridi (bib0035) 2014
Chetsa, Lefevre, Pierson (bib0210) 2014; 36
Lee, Lin, Chang (bib0045) 2014; 34
Etinski, Corbalan, Labarta, Valero (bib0145) 2012; 38
Huang, Fan, Quan (bib0200) 2013; 3
Haupt (bib0290) 1998; 11
Patki, Lowenthal, Sasidharan (bib0110) 2015
Bartolini, Cacciari, Tilli, Benini, Gries (bib0310) 2010
Inadomi, Patki, Inoue (bib0120) 2015
Patki, Lowenthal, Rountree (bib0070) 2013
Choi, Govindan, Urgaonkar (bib0205) 2008
Meng, McCauley, Kaplan, Leung, Coskun (bib0085) 2015; 6
Sarood, Langer, Gupta, Kale (bib0095) 2014
Baptiste, Pape, Nuijten (bib0260) 2001
De Assunç ao, Buyya (bib0320) 2008
Bailey, Lowenthal, Ravi (bib0105) 2014
Contreras, Martonosi (bib0215) 2005
David, Gorbatov, Hanebutte (bib0090) 2010
Auweter, Bode, Brehm (bib0230) 2014
Bhattacharya, Culler, Kansal, Govindan, Sankar (bib0165) 2013; 3
Kumar, Vidyarthi (bib0150) 2017
Hikita, Hirano, Nakashima (bib0075) 2008
Ellsworth, Malony, Rountree, Schulz (bib0160) 2015
Rossi, Van Beek, Walsh (bib0255) 2006
Fu, Liao, Yang (bib0015) 2016; 59
Borghesi, Bartolini, Lombardi (bib0275) 2016
Khemka, Friese, Pasricha, Maciejewski, Siegel, Koenig, Powers, Hilton, Rambharos, Poole (bib0170) 2015; 5
Etinski, Corbalan, Labarta, Valero (bib0135) 2010
Quinlan (bib0280) 1986; 1
Hsu, Feng (bib0130) 2005
Freeh, Lowenthal, Pan (bib0125) 2007; 18
Leal (bib0175) 2016; 9
Bridi (10.1016/j.suscom.2018.05.007_bib0030) 2016; 27
Tesfatsion (10.1016/j.suscom.2018.05.007_bib0055) 2014; 4
Fraternali (10.1016/j.suscom.2018.05.007_bib0315) 2017
Breiman (10.1016/j.suscom.2018.05.007_bib0285) 2001; 45
Bartolini (10.1016/j.suscom.2018.05.007_bib0310) 2010
David (10.1016/j.suscom.2018.05.007_bib0090) 2010
Etinski (10.1016/j.suscom.2018.05.007_bib0135) 2010
Huang (10.1016/j.suscom.2018.05.007_bib0200) 2013; 3
Pakin (10.1016/j.suscom.2018.05.007_bib0190) 2016; 28
Gaussier (10.1016/j.suscom.2018.05.007_bib0330) 2015
Bartolini (10.1016/j.suscom.2018.05.007_bib0035) 2014
Rossi (10.1016/j.suscom.2018.05.007_bib0255) 2006
Borghesi (10.1016/j.suscom.2018.05.007_bib0270) 2015
Chetsa (10.1016/j.suscom.2018.05.007_bib0210) 2014; 36
Etinski (10.1016/j.suscom.2018.05.007_bib0145) 2012; 38
Fu (10.1016/j.suscom.2018.05.007_bib0015) 2016; 59
Patki (10.1016/j.suscom.2018.05.007_bib0110) 2015
Bailey (10.1016/j.suscom.2018.05.007_bib0105) 2014
Kogge (10.1016/j.suscom.2018.05.007_bib0005) 2013
Meng (10.1016/j.suscom.2018.05.007_bib0085) 2015; 6
Inadomi (10.1016/j.suscom.2018.05.007_bib0120) 2015
Jarus (10.1016/j.suscom.2018.05.007_bib0220) 2014; 36
Hsu (10.1016/j.suscom.2018.05.007_bib0130) 2005
De Assunç ao (10.1016/j.suscom.2018.05.007_bib0320) 2008
Sarood (10.1016/j.suscom.2018.05.007_bib0095) 2014
Lee (10.1016/j.suscom.2018.05.007_bib0045) 2014; 34
Hikita (10.1016/j.suscom.2018.05.007_bib0075) 2008
Kumar (10.1016/j.suscom.2018.05.007_bib0150) 2017
Haupt (10.1016/j.suscom.2018.05.007_bib0290) 1998; 11
Storlie (10.1016/j.suscom.2018.05.007_bib0195) 2014
Bartolini (10.1016/j.suscom.2018.05.007_bib0250) 2014
Patki (10.1016/j.suscom.2018.05.007_bib0070) 2013
Shoukourian (10.1016/j.suscom.2018.05.007_bib0080) 2015
Contreras (10.1016/j.suscom.2018.05.007_bib0215) 2005
Wallace (10.1016/j.suscom.2018.05.007_bib0300) 2016
Etinski (10.1016/j.suscom.2018.05.007_bib0140) 2010; 25
Borghesi (10.1016/j.suscom.2018.05.007_bib0265) 2015
10.1016/j.suscom.2018.05.007_bib0240
Borghesi (10.1016/j.suscom.2018.05.007_bib0275) 2016
Lefurgy (10.1016/j.suscom.2018.05.007_bib0025) 2008; 11
Quinlan (10.1016/j.suscom.2018.05.007_bib0280) 1986; 1
10.1016/j.suscom.2018.05.007_bib0245
Wu (10.1016/j.suscom.2018.05.007_bib0050) 2016; 56
De Vogeleer (10.1016/j.suscom.2018.05.007_bib0060) 2017; 15
Choi (10.1016/j.suscom.2018.05.007_bib0205) 2008
Mämmelä (10.1016/j.suscom.2018.05.007_bib0100) 2012; 27
Auweter (10.1016/j.suscom.2018.05.007_bib0230) 2014
Marathe (10.1016/j.suscom.2018.05.007_bib0305) 2014
Leal (10.1016/j.suscom.2018.05.007_bib0175) 2016; 9
Li (10.1016/j.suscom.2018.05.007_bib0185) 2016; 1
Bhattacharya (10.1016/j.suscom.2018.05.007_bib0165) 2013; 3
Varsamopoulos (10.1016/j.suscom.2018.05.007_bib0065) 2010
Kaushik (10.1016/j.suscom.2018.05.007_bib0180) 2016; 9
Shoukourian (10.1016/j.suscom.2018.05.007_bib0225) 2014; 1
Freeh (10.1016/j.suscom.2018.05.007_bib0125) 2007; 18
Stillwell (10.1016/j.suscom.2018.05.007_bib0325) 2010
Etinski (10.1016/j.suscom.2018.05.007_bib0040) 2012; 72
Bergman (10.1016/j.suscom.2018.05.007_bib0020) 2008
Mu’alem (10.1016/j.suscom.2018.05.007_bib0115) 2001; 12
Bodas (10.1016/j.suscom.2018.05.007_bib0155) 2014
Baptiste (10.1016/j.suscom.2018.05.007_bib0295) 2006; 2
Baptiste (10.1016/j.suscom.2018.05.007_bib0260) 2001
Ellsworth (10.1016/j.suscom.2018.05.007_bib0160) 2015
Khemka (10.1016/j.suscom.2018.05.007_bib0170) 2015; 5
Dongarra (10.1016/j.suscom.2018.05.007_bib0010) 1994
10.1016/j.suscom.2018.05.007_bib0235
References_xml – year: 2015
  ident: bib0265
  article-title: MS3: a mediterranean-stile job scheduler for supercomputers – do less when it’s too hot! 
  publication-title: 2015 International Conference on High Performance Computing & Simulation, HPCS 2015
– start-page: 64
  year: 2015
  ident: bib0330
  article-title: Improving backfilling by using machine learning to predict running times
  publication-title: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis
– start-page: 121
  year: 2015
  end-page: 132
  ident: bib0110
  article-title: Practical resource management in power-constrained, high performance computing
  publication-title: Proceedings of the 24th International Symposium on High-Performance Parallel and Distributed Computing, HPDC’15
– year: 2013
  ident: bib0070
  article-title: Exploring hardware overprovisioning in power-constrained, high performance computing
  publication-title: Proceedings of the 27th International ACM Conference on International Conference on Supercomputing, ICS’13
– volume: 59
  year: 2016
  ident: bib0015
  article-title: The sunway taihulight supercomputer: system and applications
  publication-title: Sci. China Inform. Sci.
– volume: 3
  start-page: 274
  year: 2013
  end-page: 285
  ident: bib0200
  article-title: Thermal aware overall energy minimization scheduling for hard real-time systems
  publication-title: Sustain. Comput. Inform. Syst.
– volume: 11
  year: 2008
  ident: bib0025
  article-title: Power capping: a prelude to power shifting
  publication-title: Cluster Comput.
– year: 2014
  ident: bib0095
  article-title: Maximizing throughput of overprovisioned HPC data centers under a strict power budget
  publication-title: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC’14
– reference: Eurora Page on the Cineca Web Site.
– volume: 1
  start-page: 7
  year: 2016
  end-page: 19
  ident: bib0185
  article-title: Energy-efficient task scheduling on multiple heterogeneous computers: algorithms, analysis, and performance evaluation
  publication-title: IEEE Trans. Sustain. Comput.
– volume: 27
  start-page: 2781
  year: 2016
  end-page: 2794
  ident: bib0030
  article-title: A constraint programming scheduler for heterogeneous high-performance computing machines
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– volume: 9
  start-page: 42
  year: 2016
  end-page: 56
  ident: bib0180
  article-title: A green energy model for resource allocation in computational grid using dynamic threshold and GA
  publication-title: Sustain. Comput. Inform. Syst.
– volume: 34
  start-page: 66
  year: 2014
  end-page: 75
  ident: bib0045
  article-title: Power-aware code scheduling assisted with power gating and DVS
  publication-title: Future Gen. Comput. Syst.
– year: 2014
  ident: bib0105
  article-title: Adaptive configuration selection for power-constrained heterogeneous systems
  publication-title: Proceedings of the 2014 Brazilian Conference on Intelligent Systems, BRACIS’14
– start-page: 311
  year: 2010
  end-page: 316
  ident: bib0310
  article-title: A virtual platform environment for exploring power, thermal and reliability management control strategies in high-performance multicores
  publication-title: Proceedings of the 20th Symposium on Great Lakes Symposium on VLSI
– year: 2010
  ident: bib0090
  article-title: Rapl: memory power estimation and capping
  publication-title: Proceedings of the 16th ACM/IEEE International Symposium on Low Power Electronics and Design, ISLPED’10
– year: 2015
  ident: bib0120
  article-title: Analyzing and mitigating the impact of manufacturing variability in power-constrained supercomputing
  publication-title: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC’15
– volume: 36
  start-page: 299
  year: 2014
  end-page: 310
  ident: bib0220
  article-title: Runtime power usage estimation of HPC servers for various classes of real-life applications
  publication-title: Future Gen. Comput. Syst.
– volume: 27
  start-page: 265
  year: 2012
  end-page: 275
  ident: bib0100
  article-title: Energy-aware job scheduler for high-performance computing
  publication-title: Comput. Sci. Res. Dev.
– year: 2014
  ident: bib0305
  article-title: Evaluation and Optimization of Turnaround Time and Cost of HPC Applications on the Cloud
– year: 2008
  ident: bib0020
  article-title: Exascale Computing Study: Technology Challenges in Achieving Exascale Systems
– year: 1994
  ident: bib0010
  article-title: 29th top500 Supercomputer Sites, Tech. Rep.
– year: 2014
  ident: bib0195
  article-title: Modeling and Predicting Power Consumption of High Performance Computing Jobs
– volume: 1
  start-page: 81
  year: 1986
  end-page: 106
  ident: bib0280
  article-title: Induction of decision trees
  publication-title: Mach. Learn.
– year: 2017
  ident: bib0150
  article-title: An energy aware cost effective scheduling framework for heterogeneous cluster system
  publication-title: Future Gen. Comput. Syst.
– year: 2010
  ident: bib0135
  article-title: Optimizing job performance under a given power constraint in HPC centers
  publication-title: Green Computing Conference, 2010 International
– year: 2016
  ident: bib0300
  article-title: A data driven scheduling approach for power management on HPC systems
  publication-title: Proceedings of SC16: International Conference for High Performance Computing, Networking, Storage and Analysis, SC, vol. 16
– volume: 6
  start-page: 48
  year: 2015
  end-page: 57
  ident: bib0085
  article-title: Simulation and optimization of HPC job allocation for jointly reducing communication and cooling costs
  publication-title: Sustain. Comput. Inform. Syst.
– volume: 38
  year: 2012
  ident: bib0145
  article-title: Parallel job scheduling for power constrained {HPC} systems
  publication-title: Parallel Comput.
– year: 2014
  ident: bib0250
  article-title: Unveiling Eurora – thermal and power characterization of the most energy-efficient supercomputer in the world
  publication-title: Design, Automation Test in Europe Conference Exhibition (DATE), 2014
– reference: (accessed 14.04.14).
– year: 2006
  ident: bib0255
  article-title: Handbook of Constraint Programming
– year: 2017
  ident: bib0315
  article-title: Quantifying the impact of variability and heterogeneity on the energy efficiency for a next-generation ultra-green supercomputer
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– volume: 18
  year: 2007
  ident: bib0125
  article-title: Analyzing the energy-time trade-off in high-performance computing applications
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– volume: 5
  start-page: 14
  year: 2015
  end-page: 30
  ident: bib0170
  article-title: Utility maximizing dynamic resource management in an oversubscribed energy-constrained heterogeneous computing system
  publication-title: Sustain. Comput. Inform. Syst.
– volume: 1
  start-page: 20
  year: 2014
  end-page: 41
  ident: bib0225
  article-title: Predicting the energy and power consumption of strong and weak scaling HPC applications
  publication-title: Supercomput. Front. Innov.
– volume: 36
  year: 2014
  ident: bib0210
  article-title: Exploiting performance counters to predict and improve energy performance of HPC systems
  publication-title: Future Gen. Comput. Syst.
– start-page: 1
  year: 2008
  end-page: 8
  ident: bib0075
  article-title: Saving 200kw and $200 k/year by power-aware job/machine scheduling
  publication-title: IEEE International Symposium on Parallel and Distributed Processing, 2008, IPDPS 2008
– year: 2014
  ident: bib0035
  article-title: Proactive workload dispatching on the EURORA supercomputer
  publication-title: Principles and Practice of Constraint Programming – 20th International Conference, CP 2014
– year: 2014
  ident: bib0230
  article-title: A case study of energy aware scheduling on supermuc
  publication-title: Supercomputing, Vol. 8488 of Lecture Notes in Computer Science
– volume: 3
  start-page: 183
  year: 2013
  end-page: 193
  ident: bib0165
  article-title: The need for speed and stability in data center power capping
  publication-title: Sustain. Comput. Inform. Syst.
– volume: 56
  start-page: 179
  year: 2016
  end-page: 191
  ident: bib0050
  article-title: Energy-efficient scheduling of real-time tasks with shared resources
  publication-title: Future Gen. Comput. Syst.
– year: 2015
  ident: bib0270
  article-title: Power capping in high performance computing systems
  publication-title: Principles and Practice of Constraint Programming – 21st International Conference, CP 2015
– volume: 12
  start-page: 529
  year: 2001
  end-page: 543
  ident: bib0115
  article-title: Utilization, predictability, workloads, and user runtime estimates in scheduling the IBM sp2 with backfilling
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– volume: 2
  start-page: 761
  year: 2006
  end-page: 799
  ident: bib0295
  article-title: Constraint-based scheduling and planning
  publication-title: Found. Artif. Intell.
– volume: 4
  start-page: 205
  year: 2014
  end-page: 214
  ident: bib0055
  article-title: A combined frequency scaling and application elasticity approach for energy-efficient cloud computing
  publication-title: Sustain. Comput. Inform. Syst.
– reference: Cineca Inter-University Consortium Web Site.
– year: 2005
  ident: bib0130
  article-title: A power-aware run-time system for high-performance computing
  publication-title: Proceedings of the 2005 ACM/IEEE Conference on SUPERCOMPUTING
– volume: 9
  start-page: 33
  year: 2016
  end-page: 41
  ident: bib0175
  article-title: Energy efficient scheduling strategies in federated grids
  publication-title: Sustain. Comput. Inform. Syst.
– start-page: 221
  year: 2005
  end-page: 226
  ident: bib0215
  article-title: Power prediction for intel xscale
  publication-title: Proceedings of the 2005 International Symposium on Low Power Electronics and Design, ISLPED’05
– volume: 45
  year: 2001
  ident: bib0285
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 28
  start-page: 274
  year: 2016
  end-page: 290
  ident: bib0190
  article-title: Power usage of production supercomputers and production workloads
  publication-title: Concurr. Comput. Pract. Exper.
– start-page: 181
  year: 2016
  end-page: 199
  ident: bib0275
  article-title: Predictive Modeling for Job Power Consumption in HPC Systems
– reference: Prace. Partnership for Advanced Computing in Europe.
– start-page: 21
  year: 2014
  end-page: 30
  ident: bib0155
  article-title: Simple power-aware scheduler to limit power consumption by HPC system within a budget
  publication-title: Proceedings of the 2Nd International Workshop on Energy Efficient Supercomputing, E2SC’14
– volume: 72
  year: 2012
  ident: bib0040
  article-title: Understanding the future of energy-performance trade-off via {DVFS} in {HPC} environments
  publication-title: J. Parallel Distrib. Comput.
– reference: .
– year: 2015
  ident: bib0160
  article-title: Dynamic power sharing for higher job throughput
  publication-title: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC’15
– volume: 15
  start-page: 16
  year: 2017
  end-page: 27
  ident: bib0060
  article-title: Parameter sensitivity analysis of the energy/frequency convexity rule for application processors
  publication-title: Sustain. Comput. Inform. Syst.
– volume: 11
  year: 1998
  ident: bib0290
  article-title: A survey of priority rule-based scheduling
  publication-title: Operations-Research-Spektrum
– start-page: 1
  year: 2010
  end-page: 12
  ident: bib0325
  article-title: Dynamic fractional resource scheduling for HPC workloads
  publication-title: 2010 IEEE International Symposium on Parallel & Distributed Processing (IPDPS)
– year: 2013
  ident: bib0005
  article-title: Yearly Update? Exascale Projections for 2013
– year: 2010
  ident: bib0065
  article-title: Energy proportionality and the future: Metrics and directions
  publication-title: 2010 39th International Conference on Parallel Processing Workshops (ICPPW)
– volume: 25
  start-page: 207
  year: 2010
  end-page: 216
  ident: bib0140
  article-title: Utilization driven power-aware parallel job scheduling
  publication-title: Comput. Sci. Res. Dev.
– year: 2008
  ident: bib0205
  article-title: Profiling, prediction, and capping of power consumption in consolidated environments
  publication-title: IEEE International Symposium on Modeling, Analysis and Simulation of Computers and Telecommunication Systems, 2008, MASCOTS 2008
– year: 2015
  ident: bib0080
  article-title: Power variation aware configuration adviser for scalable HPC schedulers
  publication-title: 2015 International Conference on High Performance Computing Simulation (HPCS)
– year: 2001
  ident: bib0260
  article-title: Constraint-based Scheduling
– year: 2008
  ident: bib0320
  article-title: Performance analysis of multiple site resource provisioning: effects of the precision of availability information
  publication-title: Proceedings of the 15th International Conference on High Performance Computing, HiPC’08
– start-page: 311
  year: 2010
  ident: 10.1016/j.suscom.2018.05.007_bib0310
  article-title: A virtual platform environment for exploring power, thermal and reliability management control strategies in high-performance multicores
– volume: 1
  start-page: 7
  issue: 1
  year: 2016
  ident: 10.1016/j.suscom.2018.05.007_bib0185
  article-title: Energy-efficient task scheduling on multiple heterogeneous computers: algorithms, analysis, and performance evaluation
  publication-title: IEEE Trans. Sustain. Comput.
  doi: 10.1109/TSUSC.2016.2623775
– year: 2014
  ident: 10.1016/j.suscom.2018.05.007_bib0250
  article-title: Unveiling Eurora – thermal and power characterization of the most energy-efficient supercomputer in the world
  publication-title: Design, Automation Test in Europe Conference Exhibition (DATE), 2014
  doi: 10.7873/DATE2014.290
– year: 2017
  ident: 10.1016/j.suscom.2018.05.007_bib0315
  article-title: Quantifying the impact of variability and heterogeneity on the energy efficiency for a next-generation ultra-green supercomputer
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– volume: 9
  start-page: 42
  year: 2016
  ident: 10.1016/j.suscom.2018.05.007_bib0180
  article-title: A green energy model for resource allocation in computational grid using dynamic threshold and GA
  publication-title: Sustain. Comput. Inform. Syst.
– year: 2001
  ident: 10.1016/j.suscom.2018.05.007_bib0260
– volume: 1
  start-page: 20
  issue: 2
  year: 2014
  ident: 10.1016/j.suscom.2018.05.007_bib0225
  article-title: Predicting the energy and power consumption of strong and weak scaling HPC applications
  publication-title: Supercomput. Front. Innov.
– ident: 10.1016/j.suscom.2018.05.007_bib0245
– volume: 36
  year: 2014
  ident: 10.1016/j.suscom.2018.05.007_bib0210
  article-title: Exploiting performance counters to predict and improve energy performance of HPC systems
  publication-title: Future Gen. Comput. Syst.
– volume: 27
  start-page: 2781
  issue: 10
  year: 2016
  ident: 10.1016/j.suscom.2018.05.007_bib0030
  article-title: A constraint programming scheduler for heterogeneous high-performance computing machines
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2016.2516997
– volume: 6
  start-page: 48
  year: 2015
  ident: 10.1016/j.suscom.2018.05.007_bib0085
  article-title: Simulation and optimization of HPC job allocation for jointly reducing communication and cooling costs
  publication-title: Sustain. Comput. Inform. Syst.
– start-page: 1
  year: 2008
  ident: 10.1016/j.suscom.2018.05.007_bib0075
  article-title: Saving 200kw and $200 k/year by power-aware job/machine scheduling
  publication-title: IEEE International Symposium on Parallel and Distributed Processing, 2008, IPDPS 2008
– year: 2008
  ident: 10.1016/j.suscom.2018.05.007_bib0205
  article-title: Profiling, prediction, and capping of power consumption in consolidated environments
– year: 2015
  ident: 10.1016/j.suscom.2018.05.007_bib0080
  article-title: Power variation aware configuration adviser for scalable HPC schedulers
  publication-title: 2015 International Conference on High Performance Computing Simulation (HPCS)
  doi: 10.1109/HPCSim.2015.7237023
– volume: 5
  start-page: 14
  year: 2015
  ident: 10.1016/j.suscom.2018.05.007_bib0170
  article-title: Utility maximizing dynamic resource management in an oversubscribed energy-constrained heterogeneous computing system
  publication-title: Sustain. Comput. Inform. Syst.
– year: 2014
  ident: 10.1016/j.suscom.2018.05.007_bib0105
  article-title: Adaptive configuration selection for power-constrained heterogeneous systems
– ident: 10.1016/j.suscom.2018.05.007_bib0235
– volume: 1
  start-page: 81
  issue: 1
  year: 1986
  ident: 10.1016/j.suscom.2018.05.007_bib0280
  article-title: Induction of decision trees
  publication-title: Mach. Learn.
  doi: 10.1007/BF00116251
– year: 2015
  ident: 10.1016/j.suscom.2018.05.007_bib0270
  article-title: Power capping in high performance computing systems
– volume: 45
  issue: 1
  year: 2001
  ident: 10.1016/j.suscom.2018.05.007_bib0285
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– year: 2005
  ident: 10.1016/j.suscom.2018.05.007_bib0130
  article-title: A power-aware run-time system for high-performance computing
– volume: 38
  issue: 12
  year: 2012
  ident: 10.1016/j.suscom.2018.05.007_bib0145
  article-title: Parallel job scheduling for power constrained {HPC} systems
  publication-title: Parallel Comput.
  doi: 10.1016/j.parco.2012.08.001
– year: 2013
  ident: 10.1016/j.suscom.2018.05.007_bib0005
– start-page: 1
  year: 2010
  ident: 10.1016/j.suscom.2018.05.007_bib0325
  article-title: Dynamic fractional resource scheduling for HPC workloads
– volume: 4
  start-page: 205
  issue: 4
  year: 2014
  ident: 10.1016/j.suscom.2018.05.007_bib0055
  article-title: A combined frequency scaling and application elasticity approach for energy-efficient cloud computing
  publication-title: Sustain. Comput. Inform. Syst.
– year: 2014
  ident: 10.1016/j.suscom.2018.05.007_bib0305
– start-page: 221
  year: 2005
  ident: 10.1016/j.suscom.2018.05.007_bib0215
  article-title: Power prediction for intel xscale® processors using performance monitoring unit events
– year: 2010
  ident: 10.1016/j.suscom.2018.05.007_bib0065
  article-title: Energy proportionality and the future: Metrics and directions
– year: 2008
  ident: 10.1016/j.suscom.2018.05.007_bib0320
  article-title: Performance analysis of multiple site resource provisioning: effects of the precision of availability information
– volume: 72
  issue: 4
  year: 2012
  ident: 10.1016/j.suscom.2018.05.007_bib0040
  article-title: Understanding the future of energy-performance trade-off via {DVFS} in {HPC} environments
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/j.jpdc.2012.01.006
– volume: 15
  start-page: 16
  year: 2017
  ident: 10.1016/j.suscom.2018.05.007_bib0060
  article-title: Parameter sensitivity analysis of the energy/frequency convexity rule for application processors
  publication-title: Sustain. Comput. Inform. Syst.
– start-page: 121
  year: 2015
  ident: 10.1016/j.suscom.2018.05.007_bib0110
  article-title: Practical resource management in power-constrained, high performance computing
– year: 2010
  ident: 10.1016/j.suscom.2018.05.007_bib0135
  article-title: Optimizing job performance under a given power constraint in HPC centers
  publication-title: Green Computing Conference, 2010 International
– volume: 28
  start-page: 274
  issue: 2
  year: 2016
  ident: 10.1016/j.suscom.2018.05.007_bib0190
  article-title: Power usage of production supercomputers and production workloads
  publication-title: Concurr. Comput. Pract. Exper.
  doi: 10.1002/cpe.3191
– start-page: 64
  year: 2015
  ident: 10.1016/j.suscom.2018.05.007_bib0330
  article-title: Improving backfilling by using machine learning to predict running times
– volume: 11
  issue: 2
  year: 2008
  ident: 10.1016/j.suscom.2018.05.007_bib0025
  article-title: Power capping: a prelude to power shifting
  publication-title: Cluster Comput.
  doi: 10.1007/s10586-007-0045-4
– year: 2015
  ident: 10.1016/j.suscom.2018.05.007_bib0120
  article-title: Analyzing and mitigating the impact of manufacturing variability in power-constrained supercomputing
– start-page: 181
  year: 2016
  ident: 10.1016/j.suscom.2018.05.007_bib0275
– year: 2014
  ident: 10.1016/j.suscom.2018.05.007_bib0035
  article-title: Proactive workload dispatching on the EURORA supercomputer
– year: 2016
  ident: 10.1016/j.suscom.2018.05.007_bib0300
  article-title: A data driven scheduling approach for power management on HPC systems
  publication-title: Proceedings of SC16: International Conference for High Performance Computing, Networking, Storage and Analysis, SC, vol. 16
– year: 2006
  ident: 10.1016/j.suscom.2018.05.007_bib0255
– volume: 9
  start-page: 33
  year: 2016
  ident: 10.1016/j.suscom.2018.05.007_bib0175
  article-title: Energy efficient scheduling strategies in federated grids
  publication-title: Sustain. Comput. Inform. Syst.
– volume: 34
  start-page: 66
  year: 2014
  ident: 10.1016/j.suscom.2018.05.007_bib0045
  article-title: Power-aware code scheduling assisted with power gating and DVS
  publication-title: Future Gen. Comput. Syst.
  doi: 10.1016/j.future.2013.12.011
– year: 2008
  ident: 10.1016/j.suscom.2018.05.007_bib0020
– start-page: 21
  year: 2014
  ident: 10.1016/j.suscom.2018.05.007_bib0155
  article-title: Simple power-aware scheduler to limit power consumption by HPC system within a budget
– ident: 10.1016/j.suscom.2018.05.007_bib0240
– year: 2017
  ident: 10.1016/j.suscom.2018.05.007_bib0150
  article-title: An energy aware cost effective scheduling framework for heterogeneous cluster system
  publication-title: Future Gen. Comput. Syst.
  doi: 10.1016/j.future.2017.01.015
– year: 2015
  ident: 10.1016/j.suscom.2018.05.007_bib0160
  article-title: Dynamic power sharing for higher job throughput
– year: 2014
  ident: 10.1016/j.suscom.2018.05.007_bib0230
  article-title: A case study of energy aware scheduling on supermuc
– year: 1994
  ident: 10.1016/j.suscom.2018.05.007_bib0010
– year: 2010
  ident: 10.1016/j.suscom.2018.05.007_bib0090
  article-title: Rapl: memory power estimation and capping
– volume: 3
  start-page: 183
  issue: 3
  year: 2013
  ident: 10.1016/j.suscom.2018.05.007_bib0165
  article-title: The need for speed and stability in data center power capping
  publication-title: Sustain. Comput. Inform. Syst.
– volume: 56
  start-page: 179
  year: 2016
  ident: 10.1016/j.suscom.2018.05.007_bib0050
  article-title: Energy-efficient scheduling of real-time tasks with shared resources
  publication-title: Future Gen. Comput. Syst.
  doi: 10.1016/j.future.2015.05.012
– year: 2014
  ident: 10.1016/j.suscom.2018.05.007_bib0195
– volume: 2
  start-page: 761
  year: 2006
  ident: 10.1016/j.suscom.2018.05.007_bib0295
  article-title: Constraint-based scheduling and planning
  publication-title: Found. Artif. Intell.
  doi: 10.1016/S1574-6526(06)80026-X
– volume: 59
  issue: 7
  year: 2016
  ident: 10.1016/j.suscom.2018.05.007_bib0015
  article-title: The sunway taihulight supercomputer: system and applications
  publication-title: Sci. China Inform. Sci.
  doi: 10.1007/s11432-016-5588-7
– year: 2015
  ident: 10.1016/j.suscom.2018.05.007_bib0265
  article-title: MS3: a mediterranean-stile job scheduler for supercomputers – do less when it’s too hot! 
– year: 2014
  ident: 10.1016/j.suscom.2018.05.007_bib0095
  article-title: Maximizing throughput of overprovisioned HPC data centers under a strict power budget
  publication-title: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC’14
  doi: 10.1109/SC.2014.71
– volume: 11
  issue: 1
  year: 1998
  ident: 10.1016/j.suscom.2018.05.007_bib0290
  article-title: A survey of priority rule-based scheduling
  publication-title: Operations-Research-Spektrum
  doi: 10.1007/BF01721162
– volume: 12
  start-page: 529
  issue: 6
  year: 2001
  ident: 10.1016/j.suscom.2018.05.007_bib0115
  article-title: Utilization, predictability, workloads, and user runtime estimates in scheduling the IBM sp2 with backfilling
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/71.932708
– volume: 18
  issue: 6
  year: 2007
  ident: 10.1016/j.suscom.2018.05.007_bib0125
  article-title: Analyzing the energy-time trade-off in high-performance computing applications
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2007.1026
– volume: 3
  start-page: 274
  issue: 4
  year: 2013
  ident: 10.1016/j.suscom.2018.05.007_bib0200
  article-title: Thermal aware overall energy minimization scheduling for hard real-time systems
  publication-title: Sustain. Comput. Inform. Syst.
– volume: 36
  start-page: 299
  year: 2014
  ident: 10.1016/j.suscom.2018.05.007_bib0220
  article-title: Runtime power usage estimation of HPC servers for various classes of real-life applications
  publication-title: Future Gen. Comput. Syst.
  doi: 10.1016/j.future.2013.07.012
– volume: 27
  start-page: 265
  issue: 4
  year: 2012
  ident: 10.1016/j.suscom.2018.05.007_bib0100
  article-title: Energy-aware job scheduler for high-performance computing
  publication-title: Comput. Sci. Res. Dev.
  doi: 10.1007/s00450-011-0189-6
– year: 2013
  ident: 10.1016/j.suscom.2018.05.007_bib0070
  article-title: Exploring hardware overprovisioning in power-constrained, high performance computing
– volume: 25
  start-page: 207
  issue: 3
  year: 2010
  ident: 10.1016/j.suscom.2018.05.007_bib0140
  article-title: Utilization driven power-aware parallel job scheduling
  publication-title: Comput. Sci. Res. Dev.
  doi: 10.1007/s00450-010-0129-x
SSID ssj0000561934
Score 2.2344213
Snippet •A HPC job dispatcher capable of bounding the power consumption is proposed.•The novel approach combines machine learning techniques and a constraint...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Constraint programming
HPC
Machine learning
Optimization
Power consumption
Power modeling
Scheduling
Title Scheduling-based power capping in high performance computing systems
URI https://dx.doi.org/10.1016/j.suscom.2018.05.007
Volume 19
WOSCitedRecordID wos000446122000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 2210-5379
  databaseCode: AIEXJ
  dateStart: 20110301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0000561934
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbbTQ-99F2a9IEOvQWDbVkr-RjalLaUUEgKezO2HukuG8fsbkOO_emZkSXZTUJf0IsxtmUZzWfNSHwzHyFvwEM2XOcq4SxNkwIC1qSW3CbgzjUrtFRNaZ3YhDg6kvN5-WUy-RFyYS5Wom3l5WXZ_VdTwzUwNqbO_oW540vhApyD0eEIZofjHxn-GMygkV9-mqCL0vsdCqHtq7rrfP4KlijGesUxY0A5aQe3szAqYL4MuSJDitXwoC-4Gos8jxs69uH69JvZLCJnclj3wyejUNAttz6fnzUI2EDnN6uBmLtY1U4k3N-ox7sVmYx0LL-FFtJofmJ55rDuBLD0qjJxWi5H82o2ctB97uqNqb_fhViCz9kgDwg7dzVZe1Hda0W1j7FL7DETqJqUiTtkJxe8lFOyc_DxcP4p7tPhCqt05IT4lSED09EEb3Z3e4QzilpOHpL7frlBD3qYPCIT0z4mD4KUB_Uz-xPy7jpqqEMN9aihi5YiaugINTSCgXrjPyVf3x-evP2QeIGNREHcvU1sUyjOa67TWWPq3EAoLY3kLqpjKm9q-Fln0jDBrGyE5raE-VqrImU2B2dg2DMybc9b85zQnDNua21sI2eF4FkDfsFKFDdAHaS83CUsDEqlfPV5FEFZVYFmuKz6oaxwKKuUVzCUuySJrbq--spvnhdhvCsfQfaRYQUo-WXLvX9u-YLcG4D-kky36-_mFbmrLraLzfq1h9MVT2CbUw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scheduling-based+power+capping+in+high+performance+computing+systems&rft.jtitle=Sustainable+computing+informatics+and+systems&rft.au=Borghesi%2C+Andrea&rft.au=Bartolini%2C+Andrea&rft.au=Lombardi%2C+Michele&rft.au=Milano%2C+Michela&rft.date=2018-09-01&rft.pub=Elsevier+Inc&rft.issn=2210-5379&rft.volume=19&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1016%2Fj.suscom.2018.05.007&rft.externalDocID=S2210537917302317
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-5379&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-5379&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-5379&client=summon