Generating neural architectures from parameter spaces for multi-agent reinforcement learning
We explore a data-driven approach to generating neural network parameters to determine whether generative models can capture the underlying distribution of a collection of neural network checkpoints. We compile a dataset of checkpoints from neural networks trained within the multi-agent reinforcemen...
Saved in:
| Published in: | Pattern recognition letters Vol. 185; pp. 272 - 278 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.09.2024
|
| Subjects: | |
| ISSN: | 0167-8655 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We explore a data-driven approach to generating neural network parameters to determine whether generative models can capture the underlying distribution of a collection of neural network checkpoints. We compile a dataset of checkpoints from neural networks trained within the multi-agent reinforcement learning framework, thus potentially producing previously unseen combinations of neural network parameters. In particular, our generative model is a conditional transformer-based variational autoencoder that, when provided with random noise and a specified performance metric – in our context, returns – predicts the appropriate distribution over the parameter space to achieve the desired performance metric. Our method successfully generates parameters for a specified optimal return without further fine-tuning. We also show that the parameters generated using this approach are more constrained and less variable and, most importantly, perform on par with those trained directly under the multi-agent reinforcement learning framework. We test our method on the neural network architectures commonly employed in the most advanced state-of-the-art algorithms.
•Variational autoencoders with multi-head self-attention architecture.•Generate dataset of neural networks and augmentation processes.•Generating from random noise neural network parameter conditioned on return.•Discuss implications in the context of MARL and perform analysis of generations vs traditional. |
|---|---|
| AbstractList | We explore a data-driven approach to generating neural network parameters to determine whether generative models can capture the underlying distribution of a collection of neural network checkpoints. We compile a dataset of checkpoints from neural networks trained within the multi-agent reinforcement learning framework, thus potentially producing previously unseen combinations of neural network parameters. In particular, our generative model is a conditional transformer-based variational autoencoder that, when provided with random noise and a specified performance metric – in our context, returns – predicts the appropriate distribution over the parameter space to achieve the desired performance metric. Our method successfully generates parameters for a specified optimal return without further fine-tuning. We also show that the parameters generated using this approach are more constrained and less variable and, most importantly, perform on par with those trained directly under the multi-agent reinforcement learning framework. We test our method on the neural network architectures commonly employed in the most advanced state-of-the-art algorithms.
•Variational autoencoders with multi-head self-attention architecture.•Generate dataset of neural networks and augmentation processes.•Generating from random noise neural network parameter conditioned on return.•Discuss implications in the context of MARL and perform analysis of generations vs traditional. |
| Author | De-Silva, Varuna Pina, Rafael Artaud, Corentin Shi, Xiyu |
| Author_xml | – sequence: 1 givenname: Corentin orcidid: 0009-0002-0387-235X surname: Artaud fullname: Artaud, Corentin email: c.artaud2@lboro.ac.uk – sequence: 2 givenname: Varuna surname: De-Silva fullname: De-Silva, Varuna email: v.d.de-silva2@lboro.ac.uk – sequence: 3 givenname: Rafael surname: Pina fullname: Pina, Rafael email: r.m.pina@lboro.ac.uk – sequence: 4 givenname: Xiyu surname: Shi fullname: Shi, Xiyu email: x.shi@lboro.ac.uk |
| BookMark | eNqFkE9LAzEQxXOoYFv9Bh7yBXZN9n89CFK0CoIXvQlhNpmtKbvZZZIKfnuz1JMHPQ3zZt6D91uxhRsdMnYlRSqFrK4P6QSBUKeZyIpU1KmQ-YIt46lOmqosz9nK-4MQoso3zZK979AhQbBuzx0eCXoOpD9sQB2OhJ53NA58AoIBAxL3E-hZHYkPxz7YBPboAie0Lmoah3nrEcjFxAt21kHv8fJnrtnbw_3r9jF5ftk9be-eE52XWUg6EDWUuSlMJTFr86wrG2xl05gKtQSQTVFLBJl1Ao3BosK26FqJWEltNk2Rr9nNKVfT6D1hp7QNsdPoAoHtlRRqZqMO6sRGzWyUqFVkE83FL_NEdgD6-s92e7JhLPZpkZTXFp1GY-NrUGa0fwd8Aw87iEY |
| CitedBy_id | crossref_primary_10_1016_j_asoc_2025_112986 |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s) |
| Copyright_xml | – notice: 2024 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.patrec.2024.07.013 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EndPage | 278 |
| ExternalDocumentID | 10_1016_j_patrec_2024_07_013 S0167865524002162 |
| GroupedDBID | --K --M .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WH7 WUQ XPP Y6R ZMT ~G- 9DU AATTM AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c352t-fa07a53d4d61e2b32f58eb188d6ec1aa18471ea12f0edde46eb4fb1ee61cd9843 |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001315824900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0167-8655 |
| IngestDate | Sat Nov 29 03:58:59 EST 2025 Tue Nov 18 22:15:41 EST 2025 Sat Sep 14 18:10:36 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multi-agent reinforcement learning Transformers Parameter generation Generative models Neural networks |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c352t-fa07a53d4d61e2b32f58eb188d6ec1aa18471ea12f0edde46eb4fb1ee61cd9843 |
| ORCID | 0009-0002-0387-235X |
| OpenAccessLink | https://dx.doi.org/10.1016/j.patrec.2024.07.013 |
| PageCount | 7 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_patrec_2024_07_013 crossref_primary_10_1016_j_patrec_2024_07_013 elsevier_sciencedirect_doi_10_1016_j_patrec_2024_07_013 |
| PublicationCentury | 2000 |
| PublicationDate | September 2024 2024-09-00 |
| PublicationDateYYYYMMDD | 2024-09-01 |
| PublicationDate_xml | – month: 09 year: 2024 text: September 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Pattern recognition letters |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Roeder, Metz, Kingma (b28) 2021; 139 Sohn, Lee, Yan (b10) 2015; vol. 28 Rashid, Samvelyan, Schroeder, Farquhar, Foerster, Whiteson (b21) 2018; vol. 80 Rezende, Mohamed (b3) 2015; vol. 37 Kingma, Rezende, Mohamed, Welling (b9) 2014 Touvron, Lavril, Izacard, Martinet, Lachaux, Lacroix, Rozière, Goyal, Hambro, Azhar, Rodriguez, Joulin, Grave, Lample (b14) 2023 Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b12) 2017; vol. 30 Ho, Jain, Abbeel (b4) 2020; vol. 33 Pol, Berger, Germain, Cerminara, Pierini (b11) 2019 Pina, De Silva, Hook, Kondoz (b22) 2022 Sunehag, Lever, Gruslys, Czarnecki, Zambaldi, Jaderberg, Lanctot, Sonnerat, Leibo, Tuyls, Graepel (b20) 2017 Hinton (b27) 2018 Schürholt, Kostadinov, Borth (b18) 2021; 34 Samvelyan, Rashid, de Witt, Farquhar, Nardelli, Rudner, Hung, Torr, Foerster, Whiteson (b6) 2019 Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer, Heigold, Gelly, Uszkoreit, Houlsby (b16) 2021 Radford, Wu, Child, Luan, Amodei, Sutskever (b13) 2019 Ha, Dai, Le (b5) 2017 Schürholt, Knyazev, i Nieto, Borth (b19) 2022 Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (b2) 2014; vol. 27 Touvron, Martin, Stone, Albert, Almahairi, Babaei, Bashlykov, Batra, Bhargava, Bhosale, Bikel, Blecher, Ferrer, Chen, Cucurull, Esiobu, Fernandes, Fu, Fu, Fuller, Gao, Goswami, Goyal, Hartshorn, Hosseini, Hou, Inan, Kardas, Kerkez, Khabsa, Kloumann, Korenev, Koura, Lachaux, Lavril, Lee, Liskovich, Lu, Mao, Martinet, Mihaylov, Mishra, Molybog, Nie, Poulton, Reizenstein, Rungta, Saladi, Schelten, Silva, Smith, Subramanian, Tan, Tang, Taylor, Williams, Kuan, Xu, Yan, Zarov, Zhang, Fan, Kambadur, Narang, Rodriguez, Stojnic, Edunov, Scialom (b15) 2023 Chen, Lu, Rajeswaran, Lee, Grover, Laskin, Abbeel, Srinivas, Mordatch (b17) 2021 Huang, Li, He, Sun, Tan (b7) 2018 Kingma, Welling (b1) 2013 Wang, Ren, Liu, Yu, Zhang (b26) 2021 Lin, Clark, Birke, Schönborn, Trigoni, Roberts (b8) 2020 Wang, Xu, Zhou, Zang, Darrell, Liu, You (b24) 2024 Son, Kim, Kang, Hostallero, Yi (b25) 2019; vol. 97 Peebles, Radosavovic, Brooks, Efros, Malik (b23) 2022 Peebles (10.1016/j.patrec.2024.07.013_b23) 2022 Chen (10.1016/j.patrec.2024.07.013_b17) 2021 Roeder (10.1016/j.patrec.2024.07.013_b28) 2021; 139 Wang (10.1016/j.patrec.2024.07.013_b24) 2024 Goodfellow (10.1016/j.patrec.2024.07.013_b2) 2014; vol. 27 Touvron (10.1016/j.patrec.2024.07.013_b15) 2023 Dosovitskiy (10.1016/j.patrec.2024.07.013_b16) 2021 Ha (10.1016/j.patrec.2024.07.013_b5) 2017 Rezende (10.1016/j.patrec.2024.07.013_b3) 2015; vol. 37 Hinton (10.1016/j.patrec.2024.07.013_b27) 2018 Lin (10.1016/j.patrec.2024.07.013_b8) 2020 Kingma (10.1016/j.patrec.2024.07.013_b1) 2013 Radford (10.1016/j.patrec.2024.07.013_b13) 2019 Pina (10.1016/j.patrec.2024.07.013_b22) 2022 Kingma (10.1016/j.patrec.2024.07.013_b9) 2014 Ho (10.1016/j.patrec.2024.07.013_b4) 2020; vol. 33 Rashid (10.1016/j.patrec.2024.07.013_b21) 2018; vol. 80 Touvron (10.1016/j.patrec.2024.07.013_b14) 2023 Son (10.1016/j.patrec.2024.07.013_b25) 2019; vol. 97 Sohn (10.1016/j.patrec.2024.07.013_b10) 2015; vol. 28 Schürholt (10.1016/j.patrec.2024.07.013_b19) 2022 Samvelyan (10.1016/j.patrec.2024.07.013_b6) 2019 Pol (10.1016/j.patrec.2024.07.013_b11) 2019 Vaswani (10.1016/j.patrec.2024.07.013_b12) 2017; vol. 30 Sunehag (10.1016/j.patrec.2024.07.013_b20) 2017 Schürholt (10.1016/j.patrec.2024.07.013_b18) 2021; 34 Huang (10.1016/j.patrec.2024.07.013_b7) 2018 Wang (10.1016/j.patrec.2024.07.013_b26) 2021 |
| References_xml | – year: 2021 ident: b17 article-title: Decision transformer: Reinforcement learning via sequence modeling – year: 2021 ident: b26 article-title: {QPLEX}: Duplex dueling multi-agent Q-learning publication-title: International Conference on Learning Representations – year: 2022 ident: b23 article-title: Learning to learn with generative models of neural network checkpoints – year: 2023 ident: b15 article-title: Llama 2: Open foundation and fine-tuned chat models – year: 2014 ident: b9 article-title: Semi-supervised learning with deep generative models – volume: 34 start-page: 16481 year: 2021 end-page: 16493 ident: b18 article-title: Self-supervised representation learning on neural network weights for model characteristic prediction publication-title: Adv. Neural Inf. Process. Syst. – volume: vol. 80 start-page: 4295 year: 2018 end-page: 4304 ident: b21 article-title: QMIX: Monotonic value function factorisation for deep multi-agent reinforcement learning publication-title: Proceedings of the 35th International Conference on Machine Learning – year: 2017 ident: b5 article-title: HyperNetworks publication-title: International Conference on Learning Representations – start-page: 4322 year: 2020 end-page: 4326 ident: b8 article-title: Anomaly detection for time series using vae-lstm hybrid model publication-title: ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing – year: 2013 ident: b1 article-title: Auto-encoding variational Bayes – start-page: 1651 year: 2019 end-page: 1657 ident: b11 article-title: Anomaly detection with conditional variational autoencoders publication-title: 2019 18th IEEE International Conference on Machine Learning and Applications – year: 2022 ident: b19 article-title: Hyper-representations as generative models: Sampling unseen neural network weights publication-title: Advances in Neural Information Processing Systems – year: 2019 ident: b13 article-title: Language models are unsupervised multitask learners – volume: vol. 27 year: 2014 ident: b2 article-title: Generative adversarial nets publication-title: Advances in Neural Information Processing Systems – year: 2018 ident: b7 article-title: IntroVAE: Introspective variational autoencoders for photographic image synthesis – volume: vol. 33 start-page: 6840 year: 2020 end-page: 6851 ident: b4 article-title: Denoising diffusion probabilistic models publication-title: Advances in Neural Information Processing Systems – year: 2021 ident: b16 article-title: An image is worth 16 × 16 words: Transformers for image recognition at scale – year: 2024 ident: b24 article-title: Neural network diffusion – volume: vol. 37 start-page: 1530 year: 2015 end-page: 1538 ident: b3 article-title: Variational inference with normalizing flows publication-title: Proceedings of the 32nd International Conference on Machine Learning – year: 2023 ident: b14 article-title: LLaMA: Open and efficient foundation language models – volume: vol. 30 year: 2017 ident: b12 article-title: Attention is all you need publication-title: Advances in Neural Information Processing Systems – year: 2018 ident: b27 article-title: RMSProp: A mini-batch version of RProp – volume: 139 start-page: 9030 year: 2021 end-page: 9039 ident: b28 article-title: On linear identifiability of learned representations publication-title: Proceedings of the 38th International Conference on Machine Learning – volume: vol. 28 year: 2015 ident: b10 article-title: Learning structured output representation using deep conditional generative models publication-title: Advances in Neural Information Processing Systems – year: 2019 ident: b6 article-title: The StarCraft multi-agent challenge, corr abs/1902.04043 – volume: vol. 97 start-page: 5887 year: 2019 end-page: 5896 ident: b25 article-title: QTRAN: Learning to factorize with transformation for cooperative multi-agent reinforcement learning publication-title: Proceedings of the 36th International Conference on Machine Learning – year: 2017 ident: b20 article-title: Value-decomposition networks for cooperative multi-agent learning – year: 2022 ident: b22 article-title: Residual q-networks for value function factorizing in multiagent reinforcement learning publication-title: IEEE Trans. Neural Netw. Learn. Syst. – year: 2014 ident: 10.1016/j.patrec.2024.07.013_b9 – year: 2022 ident: 10.1016/j.patrec.2024.07.013_b23 – year: 2022 ident: 10.1016/j.patrec.2024.07.013_b19 article-title: Hyper-representations as generative models: Sampling unseen neural network weights – year: 2021 ident: 10.1016/j.patrec.2024.07.013_b17 – volume: vol. 80 start-page: 4295 year: 2018 ident: 10.1016/j.patrec.2024.07.013_b21 article-title: QMIX: Monotonic value function factorisation for deep multi-agent reinforcement learning – year: 2021 ident: 10.1016/j.patrec.2024.07.013_b26 article-title: {QPLEX}: Duplex dueling multi-agent Q-learning – year: 2017 ident: 10.1016/j.patrec.2024.07.013_b5 article-title: HyperNetworks – year: 2022 ident: 10.1016/j.patrec.2024.07.013_b22 article-title: Residual q-networks for value function factorizing in multiagent reinforcement learning publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: vol. 28 year: 2015 ident: 10.1016/j.patrec.2024.07.013_b10 article-title: Learning structured output representation using deep conditional generative models – volume: vol. 27 year: 2014 ident: 10.1016/j.patrec.2024.07.013_b2 article-title: Generative adversarial nets – year: 2023 ident: 10.1016/j.patrec.2024.07.013_b14 – volume: vol. 97 start-page: 5887 year: 2019 ident: 10.1016/j.patrec.2024.07.013_b25 article-title: QTRAN: Learning to factorize with transformation for cooperative multi-agent reinforcement learning – volume: vol. 30 year: 2017 ident: 10.1016/j.patrec.2024.07.013_b12 article-title: Attention is all you need – year: 2023 ident: 10.1016/j.patrec.2024.07.013_b15 – start-page: 1651 year: 2019 ident: 10.1016/j.patrec.2024.07.013_b11 article-title: Anomaly detection with conditional variational autoencoders – year: 2018 ident: 10.1016/j.patrec.2024.07.013_b27 – year: 2019 ident: 10.1016/j.patrec.2024.07.013_b6 – year: 2018 ident: 10.1016/j.patrec.2024.07.013_b7 – year: 2024 ident: 10.1016/j.patrec.2024.07.013_b24 – volume: 34 start-page: 16481 year: 2021 ident: 10.1016/j.patrec.2024.07.013_b18 article-title: Self-supervised representation learning on neural network weights for model characteristic prediction publication-title: Adv. Neural Inf. Process. Syst. – start-page: 4322 year: 2020 ident: 10.1016/j.patrec.2024.07.013_b8 article-title: Anomaly detection for time series using vae-lstm hybrid model – volume: vol. 37 start-page: 1530 year: 2015 ident: 10.1016/j.patrec.2024.07.013_b3 article-title: Variational inference with normalizing flows – year: 2017 ident: 10.1016/j.patrec.2024.07.013_b20 – year: 2021 ident: 10.1016/j.patrec.2024.07.013_b16 – volume: 139 start-page: 9030 year: 2021 ident: 10.1016/j.patrec.2024.07.013_b28 article-title: On linear identifiability of learned representations – year: 2019 ident: 10.1016/j.patrec.2024.07.013_b13 – year: 2013 ident: 10.1016/j.patrec.2024.07.013_b1 – volume: vol. 33 start-page: 6840 year: 2020 ident: 10.1016/j.patrec.2024.07.013_b4 article-title: Denoising diffusion probabilistic models |
| SSID | ssj0006398 |
| Score | 2.4504 |
| Snippet | We explore a data-driven approach to generating neural network parameters to determine whether generative models can capture the underlying distribution of a... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 272 |
| SubjectTerms | Generative models Multi-agent reinforcement learning Neural networks Parameter generation Transformers |
| Title | Generating neural architectures from parameter spaces for multi-agent reinforcement learning |
| URI | https://dx.doi.org/10.1016/j.patrec.2024.07.013 |
| Volume | 185 |
| WOSCitedRecordID | wos001315824900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0167-8655 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0006398 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZWWw5w4FFAlJd84FYZxc7LOValCBCqVlCqPSBFjmOjVEta7UvlN_CnmbHjbJaiQg9colW08SaZb2fG9jffEPIKInptY7dnKCuWpJIzCCMF41aLLBWpThzL9_Rjfnwsp9NiMhr9DLUw61netvLysrj4r6aGc2BsLJ29gbn7QeEEfAajwxHMDsd_MrwXknZsZhSrRC2AwWbBwheUoOL3d2TC7INHQVIWsg0duZApLLbanxsnqard6mHoLfFtmMpOnDInVsN0FCTA0cwVBy02KFqqlYPQ4TmqQDU9Et8Y9rmZrV3meqrmq7aPDpPGV6l9UjbQ-Z2CpGMdTJsfq-E6hUh6Ila_dAkuGctgt31vOvSevotPF4iF7-1zxcf75Yaz17hZYFCFUiROf9XXtG5Lav8W6noCYuC2nZV-lBJHKaO8jLAD8o7I00KOyc7B-6Pphz6wQzIng1Q8PkioxHR0wat38-dMZ5C9nNwnd7tpBz3wcHlARqbdJfdCSw_aefhdcmegT_mQfN1giXos0S0sUcQS7bFEPZYo4IYOsES3sEQDlh6RL2-PTg7fsa4dB9OQpS-ZVVGu0rhO6owbUcXCphIivZR1ZjRXimOiYxQXNjIQNJPMVImtuDEZ13Uhk_gxGbfnrXlCqI3zgpsaXnJqYUZQqyrKtOK5xu4LmZR7JA6vrtSdVj22TJmV1xluj7D-qguv1fKX7-fBKmWXb_o8sgSoXXvl0xv-0jNye_OXeE7Gy_nKvCC39HrZLOYvO5z9Ao7sqCk |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generating+neural+architectures+from+parameter+spaces+for+multi-agent+reinforcement+learning&rft.jtitle=Pattern+recognition+letters&rft.au=Artaud%2C+Corentin&rft.au=De-Silva%2C+Varuna&rft.au=Pina%2C+Rafael&rft.au=Shi%2C+Xiyu&rft.date=2024-09-01&rft.issn=0167-8655&rft.volume=185&rft.spage=272&rft.epage=278&rft_id=info:doi/10.1016%2Fj.patrec.2024.07.013&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patrec_2024_07_013 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8655&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8655&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8655&client=summon |