Continual Image Deraining With Hypergraph Convolutional Networks

Image deraining is a challenging task since rain streaks have the characteristics of a spatially long structure and have a complex diversity. Existing deep learning-based methods mainly construct the deraining networks by stacking vanilla convolutional layers with local relations, and can only handl...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on pattern analysis and machine intelligence Ročník 45; číslo 8; s. 9534 - 9551
Hlavní autori: Fu, Xueyang, Xiao, Jie, Zhu, Yurui, Liu, Aiping, Wu, Feng, Zha, Zheng-Jun
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Image deraining is a challenging task since rain streaks have the characteristics of a spatially long structure and have a complex diversity. Existing deep learning-based methods mainly construct the deraining networks by stacking vanilla convolutional layers with local relations, and can only handle a single dataset due to catastrophic forgetting, resulting in a limited performance and insufficient adaptability. To address these issues, we propose a new image deraining framework to effectively explore nonlocal similarity, and to continuously learn on multiple datasets. Specifically, we first design a patchwise hypergraph convolutional module, which aims to better extract the nonlocal properties with higher-order constraints on the data, to construct a new backbone and to improve the deraining performance. Then, to achieve better generalizability and adaptability in real-world scenarios, we propose a biological brain-inspired continual learning algorithm. By imitating the plasticity mechanism of brain synapses during the learning and memory process, our continual learning process allows the network to achieve a subtle stability-plasticity tradeoff. This it can effectively alleviate catastrophic forgetting and enables a single network to handle multiple datasets. Compared with the competitors, our new deraining network with unified parameters attains a state-of-the-art performance on seen synthetic datasets and has a significantly improved generalizability on unseen real rainy images.
AbstractList Image deraining is a challenging task since rain streaks have the characteristics of a spatially long structure and have a complex diversity. Existing deep learning-based methods mainly construct the deraining networks by stacking vanilla convolutional layers with local relations, and can only handle a single dataset due to catastrophic forgetting, resulting in a limited performance and insufficient adaptability. To address these issues, we propose a new image deraining framework to effectively explore nonlocal similarity, and to continuously learn on multiple datasets. Specifically, we first design a patchwise hypergraph convolutional module, which aims to better extract the nonlocal properties with higher-order constraints on the data, to construct a new backbone and to improve the deraining performance. Then, to achieve better generalizability and adaptability in real-world scenarios, we propose a biological brain-inspired continual learning algorithm. By imitating the plasticity mechanism of brain synapses during the learning and memory process, our continual learning process allows the network to achieve a subtle stability-plasticity tradeoff. This it can effectively alleviate catastrophic forgetting and enables a single network to handle multiple datasets. Compared with the competitors, our new deraining network with unified parameters attains a state-of-the-art performance on seen synthetic datasets and has a significantly improved generalizability on unseen real rainy images.
Image deraining is a challenging task since rain streaks have the characteristics of a spatially long structure and have a complex diversity. Existing deep learning-based methods mainly construct the deraining networks by stacking vanilla convolutional layers with local relations, and can only handle a single dataset due to catastrophic forgetting, resulting in a limited performance and insufficient adaptability. To address these issues, we propose a new image deraining framework to effectively explore nonlocal similarity, and to continuously learn on multiple datasets. Specifically, we first design a patchwise hypergraph convolutional module, which aims to better extract the nonlocal properties with higher-order constraints on the data, to construct a new backbone and to improve the deraining performance. Then, to achieve better generalizability and adaptability in real-world scenarios, we propose a biological brain-inspired continual learning algorithm. By imitating the plasticity mechanism of brain synapses during the learning and memory process, our continual learning process allows the network to achieve a subtle stability-plasticity tradeoff. This it can effectively alleviate catastrophic forgetting and enables a single network to handle multiple datasets. Compared with the competitors, our new deraining network with unified parameters attains a state-of-the-art performance on seen synthetic datasets and has a significantly improved generalizability on unseen real rainy images.Image deraining is a challenging task since rain streaks have the characteristics of a spatially long structure and have a complex diversity. Existing deep learning-based methods mainly construct the deraining networks by stacking vanilla convolutional layers with local relations, and can only handle a single dataset due to catastrophic forgetting, resulting in a limited performance and insufficient adaptability. To address these issues, we propose a new image deraining framework to effectively explore nonlocal similarity, and to continuously learn on multiple datasets. Specifically, we first design a patchwise hypergraph convolutional module, which aims to better extract the nonlocal properties with higher-order constraints on the data, to construct a new backbone and to improve the deraining performance. Then, to achieve better generalizability and adaptability in real-world scenarios, we propose a biological brain-inspired continual learning algorithm. By imitating the plasticity mechanism of brain synapses during the learning and memory process, our continual learning process allows the network to achieve a subtle stability-plasticity tradeoff. This it can effectively alleviate catastrophic forgetting and enables a single network to handle multiple datasets. Compared with the competitors, our new deraining network with unified parameters attains a state-of-the-art performance on seen synthetic datasets and has a significantly improved generalizability on unseen real rainy images.
Author Xiao, Jie
Wu, Feng
Fu, Xueyang
Liu, Aiping
Zha, Zheng-Jun
Zhu, Yurui
Author_xml – sequence: 1
  givenname: Xueyang
  orcidid: 0000-0001-8036-4071
  surname: Fu
  fullname: Fu, Xueyang
  email: xyfu@ustc.edu.cn
  organization: University of Science and Technology of China, Hefei, China
– sequence: 2
  givenname: Jie
  surname: Xiao
  fullname: Xiao, Jie
  email: ustchbxj@mail.ustc.edu.cn
  organization: University of Science and Technology of China, Hefei, China
– sequence: 3
  givenname: Yurui
  surname: Zhu
  fullname: Zhu, Yurui
  email: zry@mail.ustc.edu.cn
  organization: University of Science and Technology of China, Hefei, China
– sequence: 4
  givenname: Aiping
  orcidid: 0000-0001-8849-5228
  surname: Liu
  fullname: Liu, Aiping
  email: aipingl@ustc.edu.cn
  organization: University of Science and Technology of China, Hefei, China
– sequence: 5
  givenname: Feng
  surname: Wu
  fullname: Wu, Feng
  email: fengwu@ustc.edu.cn
  organization: University of Science and Technology of China, Hefei, China
– sequence: 6
  givenname: Zheng-Jun
  orcidid: 0000-0003-2510-8993
  surname: Zha
  fullname: Zha, Zheng-Jun
  email: zhazj@ustc.edu.cn
  organization: University of Science and Technology of China, Hefei, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37022385$$D View this record in MEDLINE/PubMed
BookMark eNp90U9v0zAYBnALDbFu8AUQQpG4cEn3-rXjPzemDlilDTgMcYyc9E3nkcbFTob27XFpQWgHTr78Htt6nhN2NISBGHvJYc452LObL-fXyzkCirlAyXWlnrAZcgWlRYtHbAZcYWkMmmN2ktIdAJcViGfsWGhAFKaasXeLMIx-mFxfLDduTcUFRecHP6yLb368LS4fthTX0W1viyzvQz-NPgxZf6LxZ4jf03P2tHN9oheH85R9_fD-ZnFZXn3-uFycX5WtqHAsO92gcabTAEYIaqRdGelAQtUa1SkUZEXTGuSNAu1AG4tCNZV15FaklBSn7O3-3m0MPyZKY73xqaW-dwOFKdWorebSaGsyffOI3oUp5k9nZQSvQCtjs3p9UFOzoVW9jX7j4kP9p5sMcA_aGFKK1P0lHOrdAPXvAerdAPVhgBwyj0KtH92uszH32v8_-mof9UT0z1sgKim1-AVFN5Eg
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1016_j_neucom_2025_130161
crossref_primary_10_1109_TPAMI_2025_3586712
crossref_primary_10_1038_s41598_024_53360_1
crossref_primary_10_1016_j_sigpro_2024_109718
crossref_primary_10_1109_TGRS_2024_3451471
crossref_primary_10_1109_TCSVT_2024_3411655
crossref_primary_10_1016_j_engappai_2024_109067
crossref_primary_10_1109_TMM_2024_3382873
crossref_primary_10_1016_j_engappai_2025_111373
crossref_primary_10_1016_j_eswa_2023_121339
crossref_primary_10_3390_pr13061628
crossref_primary_10_1109_TPAMI_2024_3416731
crossref_primary_10_1016_j_knosys_2025_114086
crossref_primary_10_1049_csy2_12115
crossref_primary_10_1007_s00371_024_03659_x
crossref_primary_10_1109_TCSVT_2025_3559624
crossref_primary_10_1016_j_jvcir_2024_104060
crossref_primary_10_1109_TPAMI_2025_3556133
crossref_primary_10_3390_sym15081571
crossref_primary_10_1049_ipr2_13258
crossref_primary_10_3390_wevj16020072
crossref_primary_10_1016_j_inffus_2025_103016
crossref_primary_10_1016_j_engappai_2024_109207
crossref_primary_10_1109_LSP_2023_3330129
crossref_primary_10_1007_s00371_023_03252_8
crossref_primary_10_1109_TCSVT_2025_3543622
crossref_primary_10_1109_TCSVT_2023_3337884
crossref_primary_10_1002_adma_202310704
Cites_doi 10.1007/978-3-030-01246-5_21
10.1109/CVPR.2019.00821
10.1109/TPAMI.2021.3095064
10.1109/CVPR46437.2021.01212
10.1007/978-3-030-58520-4_22
10.1109/CVPR.2018.00079
10.1109/TIP.2018.2867951
10.1109/CVPR42600.2020.00179
10.1109/CVPR.2016.90
10.1109/CVPR.2017.186
10.1109/CVPR.2018.00324
10.1145/3240508.3240636
10.1109/TIP.2020.3013166
10.1038/nature01276
10.1007/s11263-020-01428-6
10.1109/CVPR42600.2020.00897
10.1109/CVPR42600.2020.00297
10.1109/CVPR.2017.183
10.1007/s11263-020-01425-9
10.1109/CVPR.2018.00133
10.1109/ICCV.2015.388
10.1109/CVPR.2018.00810
10.1109/CVPR42600.2020.01459
10.1109/TIP.2017.2691802
10.1109/CVPR42600.2020.01457
10.1109/TPAMI.2021.3061604
10.1007/978-3-030-01234-2_16
10.1109/CVPR.2018.00813
10.1073/pnas.1611835114
10.1109/CVPR.2019.00400
10.1109/TCSVT.2019.2920407
10.1109/TPAMI.2019.2938758
10.1038/nature08577
10.1109/TPAMI.2020.2968521
10.1109/TPAMI.2019.2918284
10.1109/CVPR.2016.299
10.1109/TPAMI.2018.2873610
10.1007/s13042-020-01061-2
10.1016/j.neunet.2019.01.012
10.1109/TIP.2011.2179057
10.1109/CVPR46437.2021.00025
10.1609/aaai.v33i01.33013558
10.1109/ICCV48922.2021.00495
10.1109/TIP.2020.2993406
10.1016/j.cviu.2019.05.003
10.1109/TNNLS.2019.2921597
10.1109/TIP.2021.3074804
10.1109/TPAMI.2020.2969348
10.1007/s11263-020-01416-w
10.1109/TIP.2017.2662206
10.1007/s11263-006-0028-6
10.1109/TIP.2020.2973802
10.1109/CVPR42600.2020.00280
10.1109/TPAMI.2019.2895793
10.1109/CVPR.2019.00406
10.1109/CVPR.2011.5995401
10.1109/TPAMI.2020.2995190
10.1073/pnas.0605184103
10.1109/TMM.2013.2284759
10.1609/aaai.v34i07.6954
10.1109/CVPR42600.2020.00317
10.1109/ICCV48922.2021.00420
10.1109/CVPR42600.2020.00837
10.1109/CVPR.2018.00745
10.1109/ICCV.2017.275
10.1109/TPAMI.2017.2773081
10.1109/CVPR.2019.01255
10.1109/ICCV.2017.191
10.1109/CVPR46437.2021.00487
10.1109/TIP.2020.2990606
10.1109/ICCV48922.2021.00494
10.1109/ICCV.2017.189
10.1109/ICCV48922.2021.00475
10.1109/CVPR.2017.301
10.1007/s11263-020-01421-z
10.1109/CVPR.2018.00695
10.1109/CVPR.2017.587
10.1109/WACV.2017.145
10.1109/ICCV.2013.247
10.1109/TPAMI.2021.3088914
10.1109/ICCV.2017.368
10.1007/978-3-030-58621-8_23
10.1109/AVSS.2019.8909828
10.1109/CVPR.2019.00396
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2023.3241756
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Technology Research Database
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 9551
ExternalDocumentID 37022385
10_1109_TPAMI_2023_3241756
10035447
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Key R&D Program of China
  grantid: 2020AAA0105702
– fundername: National Natural Science Foundation of China
  grantid: 62225207; 62276243; U19B2038
  funderid: 10.13039/501100001809
– fundername: University Synergy Innovation Program of Anhui Province
  grantid: GXXT-2019-025
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
AAYXX
CITATION
NPM
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c352t-f7b28a8f700833eb49d84a0405c86f623e93bc821b607a0789236b59aeade6643
IEDL.DBID RIE
ISICitedReferencesCount 35
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001022958600017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Sun Sep 28 03:27:12 EDT 2025
Sun Nov 09 07:21:54 EST 2025
Mon Jul 21 05:27:55 EDT 2025
Sat Nov 29 02:58:22 EST 2025
Tue Nov 18 22:43:54 EST 2025
Wed Aug 27 02:25:48 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-f7b28a8f700833eb49d84a0405c86f623e93bc821b607a0789236b59aeade6643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8849-5228
0000-0003-2510-8993
0000-0001-8036-4071
PMID 37022385
PQID 2831507689
PQPubID 85458
PageCount 18
ParticipantIDs ieee_primary_10035447
crossref_citationtrail_10_1109_TPAMI_2023_3241756
pubmed_primary_37022385
crossref_primary_10_1109_TPAMI_2023_3241756
proquest_miscellaneous_2797148798
proquest_journals_2831507689
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
ref59
ref58
ref53
ref52
ref55
zhou (ref84) 2006
chaudhry (ref78) 2019
ref51
ref50
yang (ref10) 2022; 44
hinton (ref90) 2015
ref46
ref45
ref48
ref47
ref41
ref44
ref43
kirkpatrick (ref77) 2017; 114
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref100
ref40
waqas zamir (ref93) 2021
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref39
ref38
aljundi (ref99) 2018
ref24
ref23
ref26
ref25
ref20
defferrard (ref85) 2016
ref22
ref28
ref27
ref29
dosovitskiy (ref96) 2020
ref13
ref12
ref15
ref14
ref97
ref11
ref98
ref17
ref16
ref19
ref18
kingma (ref95) 2015
ref92
zhu (ref42) 2017
ref89
tarvainen (ref91) 2017
ref86
ref88
ref87
krizhevsky (ref94) 2012
ref82
ref81
ref83
ref79
yoon (ref80) 2018
ref75
ref74
ref76
ref2
ref1
ref71
ref70
ref73
ref72
kipf (ref62) 2017
ref68
ref67
ref69
ref64
ref63
ref66
ref65
goodfellow (ref54) 2014
ref60
ref61
zhang (ref21) 2019
References_xml – ident: ref64
  doi: 10.1007/978-3-030-01246-5_21
– ident: ref56
  doi: 10.1109/CVPR.2019.00821
– ident: ref81
  doi: 10.1109/TPAMI.2021.3095064
– ident: ref97
  doi: 10.1109/CVPR46437.2021.01212
– start-page: 1
  year: 2020
  ident: ref96
  article-title: An image is worth 16x16 words: Transformers for image recognition at scale
  publication-title: Proc Int Conf Learn Representations
– ident: ref49
  doi: 10.1007/978-3-030-58520-4_22
– ident: ref55
  doi: 10.1109/CVPR.2018.00079
– ident: ref98
  doi: 10.1109/TIP.2018.2867951
– ident: ref9
  doi: 10.1109/CVPR42600.2020.00179
– ident: ref15
  doi: 10.1109/CVPR.2016.90
– ident: ref51
  doi: 10.1109/CVPR.2017.186
– ident: ref19
  doi: 10.1109/CVPR.2018.00324
– ident: ref67
  doi: 10.1145/3240508.3240636
– ident: ref65
  doi: 10.1109/TIP.2020.3013166
– start-page: 2526
  year: 2017
  ident: ref42
  article-title: Joint bi-layer optimization for single-image rain streak removal
  publication-title: Proc IEEE Int Conf Comput Vis
– ident: ref89
  doi: 10.1038/nature01276
– ident: ref68
  doi: 10.1007/s11263-020-01428-6
– ident: ref66
  doi: 10.1109/CVPR42600.2020.00897
– ident: ref71
  doi: 10.1109/CVPR42600.2020.00297
– ident: ref28
  doi: 10.1109/CVPR.2017.183
– ident: ref34
  doi: 10.1007/s11263-020-01425-9
– ident: ref63
  doi: 10.1109/CVPR.2018.00133
– ident: ref40
  doi: 10.1109/ICCV.2015.388
– ident: ref79
  doi: 10.1109/CVPR.2018.00810
– start-page: 1
  year: 2019
  ident: ref78
  article-title: Efficient lifelong learning with A-GEM
  publication-title: Proc Int Conf Learn Representations
– year: 2015
  ident: ref90
  article-title: Distilling the knowledge in a neural network
– ident: ref70
  doi: 10.1109/CVPR42600.2020.01459
– ident: ref50
  doi: 10.1109/TIP.2017.2691802
– ident: ref59
  doi: 10.1109/CVPR42600.2020.01457
– ident: ref26
  doi: 10.1109/TPAMI.2021.3061604
– ident: ref52
  doi: 10.1007/978-3-030-01234-2_16
– start-page: 139
  year: 2018
  ident: ref99
  article-title: Memory aware synapses: Learning what (not) to forget
  publication-title: Proc Eur Conf Comput Vis
– start-page: 14816
  year: 2021
  ident: ref93
  article-title: Multi-stage progressive image restoration
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref86
  doi: 10.1109/CVPR.2018.00813
– volume: 114
  start-page: 3521
  year: 2017
  ident: ref77
  article-title: Overcoming catastrophic forgetting in neural networks
  publication-title: Proc Nat Acad Sci
  doi: 10.1073/pnas.1611835114
– ident: ref61
  doi: 10.1109/CVPR.2019.00400
– ident: ref29
  doi: 10.1109/TCSVT.2019.2920407
– ident: ref17
  doi: 10.1109/TPAMI.2019.2938758
– ident: ref88
  doi: 10.1038/nature08577
– ident: ref23
  doi: 10.1109/TPAMI.2020.2968521
– ident: ref16
  doi: 10.1109/TPAMI.2019.2918284
– start-page: 1097
  year: 2012
  ident: ref94
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref14
  doi: 10.1109/CVPR.2016.299
– ident: ref20
  doi: 10.1109/TPAMI.2018.2873610
– ident: ref3
  doi: 10.1007/s13042-020-01061-2
– ident: ref72
  doi: 10.1016/j.neunet.2019.01.012
– ident: ref12
  doi: 10.1109/TIP.2011.2179057
– ident: ref100
  doi: 10.1109/CVPR46437.2021.00025
– ident: ref35
  doi: 10.1609/aaai.v33i01.33013558
– ident: ref27
  doi: 10.1109/ICCV48922.2021.00495
– ident: ref58
  doi: 10.1109/TIP.2020.2993406
– ident: ref44
  doi: 10.1016/j.cviu.2019.05.003
– ident: ref43
  doi: 10.1109/TNNLS.2019.2921597
– ident: ref47
  doi: 10.1109/TIP.2021.3074804
– ident: ref22
  doi: 10.1109/TPAMI.2020.2969348
– ident: ref4
  doi: 10.1007/s11263-020-01416-w
– start-page: 3844
  year: 2016
  ident: ref85
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
  publication-title: Proc 30th Int Conf Neural Inf Process Syst
– volume: 44
  start-page: 8569
  year: 2022
  ident: ref10
  article-title: Recurrent multi-frame deraining: Combining physics guidance and adversarial learning
  publication-title: IEEE Trans Pattern Anal Mach Intell
– ident: ref18
  doi: 10.1109/TIP.2017.2662206
– ident: ref5
  doi: 10.1007/s11263-006-0028-6
– ident: ref48
  doi: 10.1109/TIP.2020.2973802
– ident: ref11
  doi: 10.1109/CVPR42600.2020.00280
– ident: ref30
  doi: 10.1109/TPAMI.2019.2895793
– ident: ref31
  doi: 10.1109/CVPR.2019.00406
– ident: ref69
  doi: 10.1109/CVPR.2011.5995401
– start-page: 1
  year: 2018
  ident: ref80
  article-title: Lifelong learning with dynamically expandable networks
  publication-title: Proc Int Conf Learn Representations
– ident: ref2
  doi: 10.1109/TPAMI.2020.2995190
– ident: ref87
  doi: 10.1073/pnas.0605184103
– ident: ref39
  doi: 10.1109/TMM.2013.2284759
– ident: ref92
  doi: 10.1609/aaai.v34i07.6954
– start-page: 1195
  year: 2017
  ident: ref91
  article-title: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref32
  doi: 10.1109/CVPR42600.2020.00317
– ident: ref60
  doi: 10.1109/ICCV48922.2021.00420
– ident: ref45
  doi: 10.1109/CVPR42600.2020.00837
– ident: ref53
  doi: 10.1109/CVPR.2018.00745
– start-page: 1601
  year: 2006
  ident: ref84
  article-title: Learning with hypergraphs: Clustering, classification, and embedding
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref7
  doi: 10.1109/ICCV.2017.275
– ident: ref76
  doi: 10.1109/TPAMI.2017.2773081
– ident: ref57
  doi: 10.1109/CVPR.2019.01255
– start-page: 1
  year: 2019
  ident: ref21
  article-title: Residual non-local attention networks for image restoration
  publication-title: Proc Int Conf Learn Representations
– ident: ref37
  doi: 10.1109/ICCV.2017.191
– ident: ref83
  doi: 10.1109/CVPR46437.2021.00487
– start-page: 2672
  year: 2014
  ident: ref54
  article-title: Generative adversarial nets
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref46
  doi: 10.1109/TIP.2020.2990606
– ident: ref36
  doi: 10.1109/ICCV48922.2021.00494
– ident: ref41
  doi: 10.1109/ICCV.2017.189
– ident: ref25
  doi: 10.1109/ICCV48922.2021.00475
– start-page: 1
  year: 2017
  ident: ref62
  article-title: Semi-supervised classification with graph convolutional networks
  publication-title: Proc Int Conf Learn Representations
– ident: ref6
  doi: 10.1109/CVPR.2017.301
– ident: ref33
  doi: 10.1007/s11263-020-01421-z
– ident: ref8
  doi: 10.1109/CVPR.2018.00695
– ident: ref73
  doi: 10.1109/CVPR.2017.587
– ident: ref38
  doi: 10.1109/WACV.2017.145
– ident: ref13
  doi: 10.1109/ICCV.2013.247
– start-page: 1
  year: 2015
  ident: ref95
  article-title: Adam: A method for stochastic optimization
  publication-title: Proc Int Conf Learn Representations
– ident: ref24
  doi: 10.1109/TPAMI.2021.3088914
– ident: ref74
  doi: 10.1109/ICCV.2017.368
– ident: ref82
  doi: 10.1007/978-3-030-58621-8_23
– ident: ref75
  doi: 10.1109/AVSS.2019.8909828
– ident: ref1
  doi: 10.1109/CVPR.2019.00396
SSID ssj0014503
Score 2.6157742
Snippet Image deraining is a challenging task since rain streaks have the characteristics of a spatially long structure and have a complex diversity. Existing deep...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9534
SubjectTerms Algorithms
Brain
Continual learning
Convolution
Convolutional codes
Datasets
Deep learning
Graph theory
Graphs
hypergraph convolution
image deraining
image restoration
Machine learning
Memory
Optimization
Plastic properties
Rain
Synapses
Synthetic data
Task analysis
Training
Title Continual Image Deraining With Hypergraph Convolutional Networks
URI https://ieeexplore.ieee.org/document/10035447
https://www.ncbi.nlm.nih.gov/pubmed/37022385
https://www.proquest.com/docview/2831507689
https://www.proquest.com/docview/2797148798
Volume 45
WOSCitedRecordID wos001022958600017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLYAcYAD70d5qUjcUEeXR5PcQMA0DkwcQOxWNWkqJsGG9vr9OGk67QISt0p1H4rt-nNj-wO4KpklFecmyZQgCWvLMtEV0YnmBcIBbhS10pNNiF5P9vvqJTSr-14Ya60vPrMtd-j38suRmblfZejhKeWMiVVYFSKrm7UWWwaMexpkhDDo4phHNB0yqbp5fbl7fmo5ovAW4gcMmI64iAoMX9RxKC8FJM-w8jvY9EGns_3P192BrYAu47vaHHZhxQ73YLthboiDI-_B5tIYwn24dSOqBm42afz0hd-X-MEG4oj4fTD9iLuYq479ZOsYJefBWFG6V9eQTw7grfP4et9NArNCYhBwTZNKaCILWQmHwKjVTJWSFejP3MisQkRkFdVGkrbOUlG4ifSEZpqrwpVXZwhiDmFtOBraY4i5oZgVmbKSRclISnVRlYRgliItM6UgEbSb5c1NGDvu2C8-c59-pCr32smddvKgnQiuF9d810M3_pQ-cGu_JFkvewRnjRrz4JiTHNGUg8CZVBFcLk6jS7l9kmJoRzOUEUpgliiUjOCoVv_i5o3VnPzy0FPYcO9Wlwiewdp0PLPnsG7m08FkfIF225cX3m5_AOC15Ow
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4ScCB96M8i8QNdXRJ0yQ3EA9tAiYOQ3CrmjQVk2BDe_D7cdJ02gUkTq1Ut41iu_nc2P4AzovEkJIxHaWSkyhpiiJSJVGRYjnCAaYlNcKRTfBOR7y9yWdfrO5qYYwxLvnMNOyp28svBnpif5Whh8eUJQmfh0U8kLgq15puGiTMESEjiEEnx0iirpGJ5WX3-fqp3bBU4Q1EELhkWuoiynEBo5ZFeWZJchwrv8NNt-zcr_9zwBuw5vFleF0ZxCbMmf4WrNfcDaF35S1YnWlEuA1XtklVz3YnDduf-IUJb42njghfe-P3sIXR6tD1tg5R8tubK0p3qizy0Q683N91b1qR51aINEKucVRyRUQuSm4xGDUqkYVIcvRopkVaIiYykiotSFOlMc9tT3pCU8VkbhOsU4Qxu7DQH_TNPoRMU4yLdFGKvEClUJWXBSEYpwiT6IKTAJr19GbaNx63_BcfmQtAYpk57WRWO5nXTgAX03u-qrYbf0rv2LmfkaymPYCjWo2Zd81RhnjKguBUyADOppfRqexOSd43gwnKcMkxTuRSBLBXqX_68NpqDn556Skst7pPj9lju_NwCCt2nFXC4BEsjIcTcwxL-nvcGw1PnPX-AIyv50s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Continual+Image+Deraining+With+Hypergraph+Convolutional+Networks&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Fu%2C+Xueyang&rft.au=Xiao%2C+Jie&rft.au=Zhu%2C+Yurui&rft.au=Liu%2C+Aiping&rft.date=2023-08-01&rft.issn=1939-3539&rft.eissn=1939-3539&rft.volume=45&rft.issue=8&rft.spage=9534&rft_id=info:doi/10.1109%2FTPAMI.2023.3241756&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon