How much can k-means be improved by using better initialization and repeats?

•K-means clustering algorithm can be significantly improved by using a better initialization technique, and by repeating (re-starting) the algorithm.•When the data has overlapping clusters, k-means can improve the results of the initialization technique.•When the data has well separated clusters, th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Pattern recognition Ročník 93; s. 95 - 112
Hlavní autoři: Fränti, Pasi, Sieranoja, Sami
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.09.2019
Témata:
ISSN:0031-3203, 1873-5142
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •K-means clustering algorithm can be significantly improved by using a better initialization technique, and by repeating (re-starting) the algorithm.•When the data has overlapping clusters, k-means can improve the results of the initialization technique.•When the data has well separated clusters, the performance of k-means depends completely on the goodness of the initialization.•Initialization using simple furthest point heuristic (Maxmin) reduces the clustering error of k-means from 15% to 6%, on average. In this paper, we study what are the most important factors that deteriorate the performance of the k-means algorithm, and how much this deterioration can be overcome either by using a better initialization technique, or by repeating (restarting) the algorithm. Our main finding is that when the clusters overlap, k-means can be significantly improved using these two tricks. Simple furthest point heuristic (Maxmin) reduces the number of erroneous clusters from 15% to 6%, on average, with our clustering benchmark. Repeating the algorithm 100 times reduces it further down to 1%. This accuracy is more than enough for most pattern recognition applications. However, when the data has well separated clusters, the performance of k-means depends completely on the goodness of the initialization. Therefore, if high clustering accuracy is needed, a better algorithm should be used instead.
AbstractList •K-means clustering algorithm can be significantly improved by using a better initialization technique, and by repeating (re-starting) the algorithm.•When the data has overlapping clusters, k-means can improve the results of the initialization technique.•When the data has well separated clusters, the performance of k-means depends completely on the goodness of the initialization.•Initialization using simple furthest point heuristic (Maxmin) reduces the clustering error of k-means from 15% to 6%, on average. In this paper, we study what are the most important factors that deteriorate the performance of the k-means algorithm, and how much this deterioration can be overcome either by using a better initialization technique, or by repeating (restarting) the algorithm. Our main finding is that when the clusters overlap, k-means can be significantly improved using these two tricks. Simple furthest point heuristic (Maxmin) reduces the number of erroneous clusters from 15% to 6%, on average, with our clustering benchmark. Repeating the algorithm 100 times reduces it further down to 1%. This accuracy is more than enough for most pattern recognition applications. However, when the data has well separated clusters, the performance of k-means depends completely on the goodness of the initialization. Therefore, if high clustering accuracy is needed, a better algorithm should be used instead.
Author Fränti, Pasi
Sieranoja, Sami
Author_xml – sequence: 1
  givenname: Pasi
  orcidid: 0000-0002-9554-2827
  surname: Fränti
  fullname: Fränti, Pasi
  email: pasi.franti@uef.fi
– sequence: 2
  givenname: Sami
  surname: Sieranoja
  fullname: Sieranoja, Sami
  email: sami.sieranoja@uef.fi, samisi@cs.uef.fi
BookMark eNqFkEFOwzAQRS0EEm3hBix8gQQ7TkjKAoQqoEiV2MDassfj4tI4ke0WldOTUlYsYDXSfL2vmTcmx77zSMgFZzln_OpylfcqQbfMC8anOStzxssjMuJNLbKKl8UxGTEmeCYKJk7JOMYVY7weghFZzLsP2m7gjYLy9D1rUflINVLX9qHboqF6RzfR-eWwTAkDdd4lp9buUyXXeaq8oQF7VCnenpETq9YRz3_mhLw-3L_M5tni-fFpdrfIQFRFyiyvNGhruACtlBC2KhBqWzKhRFUyg0MMDdf11ADoBhtdGFAIYKyFyigxIdeHXghdjAGtBJe-z0lBubXkTO69yJU8eJF7L5KVcvAywOUvuA-uVWH3H3ZzwHB4bOswyAgOPaBxASFJ07m_C74A6JOEJA
CitedBy_id crossref_primary_10_1007_s11634_022_00514_6
crossref_primary_10_1109_ACCESS_2023_3327640
crossref_primary_10_1016_j_patcog_2024_110772
crossref_primary_10_1016_j_eswa_2021_114971
crossref_primary_10_1016_j_knosys_2020_105982
crossref_primary_10_1007_s00521_021_06689_x
crossref_primary_10_1017_S1748499523000283
crossref_primary_10_1038_s41598_023_48220_3
crossref_primary_10_1097_JPN_0000000000000865
crossref_primary_10_1016_j_nucengdes_2020_110756
crossref_primary_10_1007_s10994_021_06021_7
crossref_primary_10_1016_j_conbuildmat_2022_128802
crossref_primary_10_1016_j_csbj_2023_07_041
crossref_primary_10_1007_s10115_024_02066_x
crossref_primary_10_1109_TMC_2023_3277333
crossref_primary_10_1155_2024_7086878
crossref_primary_10_3390_electronics8101141
crossref_primary_10_1016_j_eswa_2025_126738
crossref_primary_10_1038_s42949_023_00112_1
crossref_primary_10_1007_s40192_023_00293_8
crossref_primary_10_1016_j_ins_2022_11_139
crossref_primary_10_3390_math12233787
crossref_primary_10_3390_e21101013
crossref_primary_10_1007_s13198_021_01424_0
crossref_primary_10_3390_ijgi11020133
crossref_primary_10_1080_03610926_2021_1872639
crossref_primary_10_3390_app11010177
crossref_primary_10_1016_j_ins_2021_10_048
crossref_primary_10_1016_j_procs_2020_08_022
crossref_primary_10_1088_1742_6596_1727_1_012018
crossref_primary_10_5194_nhess_23_1743_2023
crossref_primary_10_3390_jimaging9070146
crossref_primary_10_1080_00343404_2024_2417704
crossref_primary_10_1016_j_patcog_2024_110639
crossref_primary_10_1109_TIT_2025_3532280
crossref_primary_10_1016_j_ress_2021_107807
crossref_primary_10_1080_10447318_2022_2112077
crossref_primary_10_1097_EDE_0000000000001554
crossref_primary_10_1007_s00500_020_04988_4
crossref_primary_10_1016_j_ijepes_2024_109861
crossref_primary_10_3390_su14052744
crossref_primary_10_1016_j_patcog_2020_107589
crossref_primary_10_1109_TVT_2021_3121217
crossref_primary_10_3390_su142416718
crossref_primary_10_3390_jimaging8100274
crossref_primary_10_1109_ACCESS_2024_3412950
crossref_primary_10_1016_j_pmcj_2022_101614
crossref_primary_10_1007_s10489_021_02527_8
crossref_primary_10_1016_j_ins_2023_119634
crossref_primary_10_1007_s10237_023_01779_2
crossref_primary_10_1109_ACCESS_2019_2939481
crossref_primary_10_2196_35422
crossref_primary_10_1152_jn_00411_2021
crossref_primary_10_1093_iwc_iwac022
crossref_primary_10_1007_s42488_024_00127_y
crossref_primary_10_1109_ACCESS_2022_3230935
crossref_primary_10_1007_s00500_020_05247_2
crossref_primary_10_1186_s44167_024_00045_9
crossref_primary_10_1155_2020_2498487
crossref_primary_10_1007_s00521_022_07554_1
crossref_primary_10_3390_s25010162
crossref_primary_10_1016_j_engappai_2025_111981
crossref_primary_10_1007_s13177_023_00350_8
crossref_primary_10_1016_j_oceaneng_2025_122694
crossref_primary_10_1002_wics_1551
crossref_primary_10_1016_j_applthermaleng_2020_115810
crossref_primary_10_1007_s10514_025_10199_3
crossref_primary_10_1016_j_ins_2024_121204
crossref_primary_10_3390_rs12244152
crossref_primary_10_1155_2020_8881112
crossref_primary_10_1088_1361_6501_ab934e
crossref_primary_10_1007_s10044_024_01228_5
crossref_primary_10_1186_s40537_023_00798_1
crossref_primary_10_4018_IJIRR_289954
crossref_primary_10_1016_j_renene_2022_11_048
crossref_primary_10_1007_s12145_024_01303_9
crossref_primary_10_1016_j_eswa_2022_118862
crossref_primary_10_1016_j_eswa_2020_113682
crossref_primary_10_1108_IJHG_05_2020_0052
crossref_primary_10_1016_j_energy_2023_126703
crossref_primary_10_3390_a16070349
crossref_primary_10_1016_j_neucom_2023_126286
crossref_primary_10_3390_math13081285
crossref_primary_10_1155_2020_2816102
crossref_primary_10_1007_s00603_024_04351_1
crossref_primary_10_3390_math9050542
crossref_primary_10_1007_s10489_021_03134_3
crossref_primary_10_1089_brain_2022_0077
crossref_primary_10_7717_peerj_cs_2286
crossref_primary_10_1016_j_cie_2019_106087
crossref_primary_10_1038_s41524_021_00565_x
crossref_primary_10_3390_math12131930
crossref_primary_10_1002_cpe_7894
crossref_primary_10_1016_j_applthermaleng_2022_119633
crossref_primary_10_1016_j_patcog_2023_109454
crossref_primary_10_1109_TWC_2023_3294530
crossref_primary_10_3390_sym14061237
crossref_primary_10_1007_s12530_022_09447_z
crossref_primary_10_4178_epih_e2024043
crossref_primary_10_3390_math11173637
crossref_primary_10_1186_s12870_024_05542_2
crossref_primary_10_1109_ACCESS_2024_3463712
crossref_primary_10_3390_en15155333
crossref_primary_10_1109_TKDE_2024_3483572
crossref_primary_10_1109_ACCESS_2022_3179803
crossref_primary_10_1002_cyto_a_24901
crossref_primary_10_1016_j_neucom_2024_128198
crossref_primary_10_1007_s11063_020_10298_5
crossref_primary_10_1142_S0218126624501846
crossref_primary_10_1007_s11334_021_00400_y
crossref_primary_10_52080_rvgluz_30_especial13_42
crossref_primary_10_3390_s23084120
crossref_primary_10_1155_2022_5807690
crossref_primary_10_3934_aci_2022004
crossref_primary_10_1080_02331888_2025_2505576
crossref_primary_10_1109_TITS_2022_3202011
crossref_primary_10_1155_2022_3958423
crossref_primary_10_1016_j_inffus_2021_05_011
crossref_primary_10_3390_a14010006
crossref_primary_10_1007_s00778_021_00716_y
crossref_primary_10_1007_s10639_024_12480_x
crossref_primary_10_1007_s41748_024_00409_w
crossref_primary_10_1007_s10115_021_01623_y
crossref_primary_10_1109_ACCESS_2023_3312287
crossref_primary_10_1016_j_jhydrol_2021_126841
crossref_primary_10_1109_ACCESS_2025_3571807
crossref_primary_10_3390_rs13183665
crossref_primary_10_1007_s10044_021_01045_0
crossref_primary_10_1007_s10044_022_01065_4
crossref_primary_10_3390_agriculture13030629
crossref_primary_10_1007_s12652_022_04428_1
crossref_primary_10_1007_s42087_024_00445_y
crossref_primary_10_1016_j_jmapro_2024_04_009
crossref_primary_10_3390_s23198164
crossref_primary_10_3390_math8030373
crossref_primary_10_2478_acss_2023_0001
crossref_primary_10_1007_s10489_022_03698_8
crossref_primary_10_1016_j_patcog_2020_107713
crossref_primary_10_3390_a16120572
crossref_primary_10_1108_K_06_2023_1044
crossref_primary_10_1109_ACCESS_2022_3229582
crossref_primary_10_3390_rs17061065
crossref_primary_10_7717_peerj_14706
crossref_primary_10_1109_TPAMI_2024_3367912
crossref_primary_10_1186_s12942_023_00348_1
crossref_primary_10_3390_sym13050837
crossref_primary_10_1109_ACCESS_2021_3084057
crossref_primary_10_1109_JSEN_2023_3268794
crossref_primary_10_1016_j_procs_2023_01_392
crossref_primary_10_1016_j_patcog_2022_109269
crossref_primary_10_1016_j_patcog_2019_107063
crossref_primary_10_1109_TFUZZ_2023_3247912
crossref_primary_10_3390_rs16010102
crossref_primary_10_1002_cpe_7185
crossref_primary_10_3390_rs12223745
crossref_primary_10_3390_app12157378
crossref_primary_10_3390_app12105125
crossref_primary_10_1109_TKDE_2022_3144294
crossref_primary_10_1186_s12913_023_09375_x
crossref_primary_10_1016_j_ijdrr_2023_103528
crossref_primary_10_3389_fnins_2022_895637
crossref_primary_10_3390_ijgi10070479
crossref_primary_10_1111_jiec_13174
crossref_primary_10_1155_2021_6653816
crossref_primary_10_1007_s41748_024_00516_8
crossref_primary_10_1016_j_knosys_2022_109374
crossref_primary_10_1007_s10479_022_04818_w
crossref_primary_10_1007_s11280_021_00945_9
crossref_primary_10_1016_j_patcog_2022_109036
crossref_primary_10_2139_ssrn_3805831
crossref_primary_10_1016_j_tranpol_2022_02_015
crossref_primary_10_3390_ijgi9110661
crossref_primary_10_3390_math11234800
crossref_primary_10_1016_j_buildenv_2023_111155
crossref_primary_10_1016_j_suscom_2021_100561
crossref_primary_10_1016_j_jss_2025_112576
crossref_primary_10_3390_s23094178
crossref_primary_10_1016_j_ufug_2025_128978
crossref_primary_10_1016_j_trf_2022_08_012
crossref_primary_10_1109_TCAD_2023_3346274
crossref_primary_10_1007_s10489_021_02909_y
crossref_primary_10_3390_a14070197
crossref_primary_10_1016_j_patcog_2020_107625
crossref_primary_10_3390_app13095675
crossref_primary_10_1109_ACCESS_2024_3388720
crossref_primary_10_1016_j_patcog_2022_108875
crossref_primary_10_1007_s10044_025_01463_4
crossref_primary_10_1134_S1995080222010188
crossref_primary_10_1080_02664763_2025_2495718
crossref_primary_10_3390_atmos13101715
crossref_primary_10_1049_ell2_70212
crossref_primary_10_32604_cmc_2025_057693
crossref_primary_10_1007_s10489_024_05636_2
crossref_primary_10_1108_JAMR_07_2021_0242
crossref_primary_10_1038_s41598_023_39058_w
crossref_primary_10_1007_s10107_023_02021_8
crossref_primary_10_1016_j_cageo_2022_105241
crossref_primary_10_1016_j_patcog_2022_109290
crossref_primary_10_1109_ACCESS_2021_3080821
crossref_primary_10_1007_s11634_025_00639_4
crossref_primary_10_1016_j_fuel_2019_116178
crossref_primary_10_3390_math8071090
crossref_primary_10_3390_sym14030623
crossref_primary_10_1007_s42452_020_3129_x
crossref_primary_10_1038_s41598_021_03941_1
crossref_primary_10_1175_JCLI_D_21_0562_1
crossref_primary_10_1016_j_apenergy_2022_119032
crossref_primary_10_1016_j_jksuci_2023_101731
crossref_primary_10_1016_j_knosys_2021_107443
crossref_primary_10_1007_s00521_022_06956_5
crossref_primary_10_1016_j_patcog_2022_109062
crossref_primary_10_1080_10298436_2025_2450098
crossref_primary_10_1007_s11042_025_21119_z
crossref_primary_10_1155_2021_6618505
crossref_primary_10_1016_j_patcog_2021_108250
crossref_primary_10_1016_j_patcog_2020_107206
crossref_primary_10_1088_1742_6596_1752_1_012014
crossref_primary_10_1007_s00357_022_09422_y
crossref_primary_10_1109_ACCESS_2025_3581901
crossref_primary_10_1080_01605682_2020_1830724
crossref_primary_10_1109_LRA_2024_3416790
crossref_primary_10_1016_j_ins_2022_07_101
crossref_primary_10_1080_22797254_2023_2214690
crossref_primary_10_1007_s42979_025_04353_y
crossref_primary_10_1016_j_ecoinf_2025_103390
crossref_primary_10_1016_j_patcog_2021_107849
crossref_primary_10_1109_ACCESS_2025_3561293
crossref_primary_10_3390_math10224301
crossref_primary_10_1109_TEVC_2022_3144134
crossref_primary_10_1007_s41870_024_02340_9
crossref_primary_10_1016_j_neucom_2021_12_019
crossref_primary_10_1016_j_jenvman_2021_113540
crossref_primary_10_1016_j_scitotenv_2021_149728
crossref_primary_10_3390_su17188321
crossref_primary_10_1287_ijoc_2022_1166
crossref_primary_10_1007_s12065_022_00720_3
crossref_primary_10_1016_j_jhydrol_2025_133585
crossref_primary_10_1038_s41598_024_56931_4
crossref_primary_10_3390_en16052367
crossref_primary_10_1016_j_simpat_2022_102712
crossref_primary_10_1016_j_tra_2024_103987
crossref_primary_10_32604_jai_2023_043229
crossref_primary_10_1080_10618600_2023_2210174
crossref_primary_10_1007_s12517_021_06448_1
crossref_primary_10_1109_ACCESS_2021_3050547
crossref_primary_10_1109_ACCESS_2020_2993295
crossref_primary_10_1155_2022_3109609
crossref_primary_10_3390_math11143063
crossref_primary_10_1007_s10898_022_01267_4
crossref_primary_10_1016_j_ins_2024_120661
crossref_primary_10_1371_journal_pone_0255684
crossref_primary_10_1080_10618600_2024_2414889
crossref_primary_10_3389_fenrg_2022_920885
crossref_primary_10_3390_a15040117
crossref_primary_10_1016_j_tranpol_2021_09_013
crossref_primary_10_1109_TCE_2024_3475821
crossref_primary_10_1007_s41748_024_00514_w
crossref_primary_10_3934_aci_2024016
crossref_primary_10_1016_j_eswa_2021_115558
crossref_primary_10_1016_j_segan_2022_100757
crossref_primary_10_3390_app15031032
crossref_primary_10_1007_s42087_025_00495_w
crossref_primary_10_1109_TPWRS_2022_3207926
crossref_primary_10_1109_TKDE_2020_3002926
crossref_primary_10_1186_s12909_025_07818_z
crossref_primary_10_1080_23737484_2021_1911719
crossref_primary_10_1109_JSYST_2025_3532508
crossref_primary_10_1007_s11162_025_09844_8
crossref_primary_10_3390_en13174368
Cites_doi 10.3233/IDA-2007-11402
10.1109/3477.764879
10.1016/j.eswa.2011.02.086
10.1007/s100440070007
10.1016/S0167-8655(99)00133-6
10.1016/j.knosys.2016.06.031
10.1145/1557019.1557118
10.1126/science.1242072
10.1016/S0167-8655(99)00069-0
10.20982/tqmp.09.1.p015
10.1016/j.eswa.2009.01.060
10.1016/j.spl.2013.09.026
10.1109/83.210871
10.1016/j.patcog.2014.03.017
10.1016/j.knosys.2017.11.025
10.1016/j.ins.2018.06.008
10.1016/j.eswa.2012.07.021
10.1016/j.patrec.2009.09.011
10.1016/0196-6774(91)90039-2
10.1016/j.patrec.2007.01.001
10.1037/1082-989X.8.3.294
10.1016/j.patcog.2017.06.023
10.1109/83.841516
10.1016/0304-3975(85)90224-5
10.1109/83.855429
10.14778/2180912.2180915
10.1117/1.601531
10.1109/TCOM.1980.1094577
10.1109/97.329844
10.1109/TIT.1982.1056489
10.1016/j.asoc.2017.08.032
10.3390/a11020019
10.1016/j.patrec.2011.07.011
10.1016/j.camwa.2009.04.017
10.1016/j.patcog.2018.05.028
10.1007/s10489-018-1238-7
10.1109/TIT.2014.2375327
10.1109/TKDE.2016.2551240
10.1177/0960327117695635
10.1007/s00357-007-0003-0
10.1016/j.datak.2014.07.008
10.1016/j.patrec.2011.06.023
10.1016/S0031-3203(02)00060-2
10.1109/TPAMI.2006.227
10.1016/j.patcog.2013.11.014
10.1016/j.patcog.2018.04.020
10.1016/0167-8655(95)00119-0
10.1080/01621459.1963.10500845
10.1016/j.patcog.2018.09.016
10.1007/s00357-010-9049-5
10.1109/82.257335
10.1145/3274656
10.1145/116890.116892
10.1016/j.patcog.2018.05.027
10.1016/j.patcog.2018.05.011
10.1002/bs.3830120210
10.1142/S0218001412500188
10.1109/TFUZZ.2011.2182354
10.1023/A:1009740529316
10.1109/TPAMI.2002.1008381
ContentType Journal Article
Copyright 2019 The Authors
Copyright_xml – notice: 2019 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.patcog.2019.04.014
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-5142
EndPage 112
ExternalDocumentID 10_1016_j_patcog_2019_04_014
S0031320319301608
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c352t-f15bcbfd13cbaa33f52ec7f403a3540de5bcc81b79dccb8e8b2dcaeccdffc5da3
ISICitedReferencesCount 306
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000472697800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-3203
IngestDate Sat Nov 29 07:30:07 EST 2025
Tue Nov 18 22:04:10 EST 2025
Fri Feb 23 02:45:45 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords K-means
Initialization
Prototype selection
Clustering algorithms
Clustering accuracy
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c352t-f15bcbfd13cbaa33f52ec7f403a3540de5bcc81b79dccb8e8b2dcaeccdffc5da3
ORCID 0000-0002-9554-2827
OpenAccessLink https://dx.doi.org/10.1016/j.patcog.2019.04.014
PageCount 18
ParticipantIDs crossref_citationtrail_10_1016_j_patcog_2019_04_014
crossref_primary_10_1016_j_patcog_2019_04_014
elsevier_sciencedirect_doi_10_1016_j_patcog_2019_04_014
PublicationCentury 2000
PublicationDate September 2019
2019-09-00
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: September 2019
PublicationDecade 2010
PublicationTitle Pattern recognition
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Fränti, Kaukoranta, Nevalainen (bib0046) 1997; 36
Fränti, Virmajoki, Hautamäki (bib0047) 2006; 28
Katsavounidis, Kuo, Zhang (bib0057) 1994; 1
M. Rezaei and P. Fränti Can the number of clusters be solved by external index? manuscript. (submitted)
Melnykov, Melnykov (bib0042) 2014; 84
Wang, Pan (bib0004) 2014; 47
Liang, Bai, Dang F. Cao (bib0041) 2012; 20
Linde, Buzo, Gray (bib0085) 1980; 28
Al-Daoud, Roberts (bib0076) 1996; 17
B. Thiesson, C. Meek, D.M. Chickering, and D. Heckerman, Learning mixtures of Bayesian networks, Technical Report MSR-TR-97-30 Cooper & Moral, 1997.
Luxburg (bib0050) 2010; 2
Capo, A, Lozano (bib0006) 2017; 117
Boutsidis, Zouzias, Mahoney, Drineas (bib0005) 2015; 61
Zhu, Ting, Carman (bib0035) 2018; 83
Márquez, Otero, Félix, García (bib0037) 2018; 82
Dong, Moses, Li (bib0081) 2011
Gourgaris, Makris (bib0077) 2015
Arthur, Vassilvitskii (bib0059) January 2007
Norušis (bib0053) 2011
Chiang, Mirkin (bib0055) 2010; 27
Steinley (bib0029) 2003; 8
Redmond, Heneghan (bib0051) 2007; 28
Curti, Wainschenker (bib0083) 2018; 462
Lemke, Keller (bib0049) 2018; 11
Gonzalez (bib0026) 1985; 38
Wu (bib0075) 1991; 12
Bai, Cheng, Liang, Shen, Guo (bib0015) 2017; 71
Kaukoranta, Fränti, Nevalainen (bib0089) 2000; 9
Melnykov, Michael, Melnykov (bib0043) 2015
Huang, Chao, Wang (bib0038) 2019; 86
Celebi, Kingravi, Vela (bib0022) 2013; 40
Cao, Liang, Bai (bib0058) 2009; 36
Al-Daoud (bib0065) 2005
MacQueen (bib0002) 1967; 1
He, Lan, Tan, Sung, Low (bib0020) 2004
Fränti (bib0010) 2000; 21
Astrahan (bib0063) 1970
Yan, Huang, Jordan (bib0014) 2009
Erisoglu, Calis, Sakallioglu (bib0060) 2011; 32
Fränti, Sieranoja (bib0082) June 2018
Huang, Li, Rao, Liu, Huang, Ma, Wang (bib0007) 2018; 37
Xie, Xiong, Zhang, Feng, Ma (bib0084) 2018; 142
Morissette, Chartier (bib0040) 2013; 9
Wu, Zhang (bib0068) 1991
Duda, Hart (bib0032) 1973
Gonzalez (bib0054) 1985; 38
Steinbach, Karypis, Kumar (bib0086) 2000; vol. 400
Yedla, Pathakota, Srinivasa (bib0066) 2010; 1
Rezaei, Fränti (bib0044) 2016; 28
Ward (bib0027) 1963; 58
Krishna, M.N (bib0009) 1999; 29
Zhao, Fränti (bib0017) 2014; 92
Sieranoja, Fränti (bib0072) June 2018
Yu, Chu, Wang, Chan, Chang (bib0087) 2018; 68
Cao, Liang, Jiang (bib0064) 2009; 58
Likas, Vlassis, Verbeek (bib0028) 2003; 36
Hämäläinen, Kärkkäinen (bib0056) 2016
Kaufman, Rousseeuw (bib0023) 1990
Huang, Harris (bib0069) 1993; 2
Lloyd (bib0003) 1982; 28
Fränti, Kaukoranta, Shen, Chang (bib0030) 2000; 9
Steinley, Brusco (bib0021) 2007; 24
Tou, Gonzales (bib0025) 1974
Su, Dy (bib0067) 2007; 11
Jain (bib0008) 2010; 31
Kinnunen, Sidoroff, Tuononen, Fränti (bib0016) 2011; 32
Bicego, Figueiredo (bib0033) 2018; 83
Tezuka, Equyer (bib0052) 1991; 1
Boley (bib0070) 1998; 2
Rodriquez, Laio (bib0078) 2014; 344
Celebi, Kingravi (bib0071) 2012; 26
Frandsen, Calcott, Mayer, Lanfear (bib0036) 2015; 15
Fränti, Kivijärvi (bib0011) 2000; 3
Cleju, Fränti, Wu (bib0074) 2005; vol. 3540
Peña, Lozano, Larrañaga (bib0019) 1999; 20
Bahmani, Mosley, Vattani, Kumar, Vassilvitski, k-means (bib0088) 2012; 5
Karmitsa, Bagirov, Taheri (bib0034) 2018; 83
Gingles, Celebi (bib0061) May 2014
Fränti, Sieranoja (bib0039) 2018; 48
Kalyani, Swarup (bib0013) 2011; 32
Forgy (bib0001) 1965; 21
Fränti, Rezaei, Zhao (bib0045) 2014; 47
Mitra, Murthy, Pal (bib0079) 2002; 24
Fränti (bib0012) 2018; 5
Hartigan, Wong (bib0062) 1979; 28
Ball, Hall (bib0048) 1967; 12
Bradley, Fayyad (bib0031) 1998
Sieranoja, Fränti (bib0080) 2018; 23
Ra, Kim (bib0073) 1993; 40
Melnykov (10.1016/j.patcog.2019.04.014_bib0043) 2015
Forgy (10.1016/j.patcog.2019.04.014_bib0001) 1965; 21
Kalyani (10.1016/j.patcog.2019.04.014_bib0013) 2011; 32
Yan (10.1016/j.patcog.2019.04.014_bib0014) 2009
Morissette (10.1016/j.patcog.2019.04.014_bib0040) 2013; 9
Boutsidis (10.1016/j.patcog.2019.04.014_bib0005) 2015; 61
Tezuka (10.1016/j.patcog.2019.04.014_bib0052) 1991; 1
Sieranoja (10.1016/j.patcog.2019.04.014_bib0080) 2018; 23
Erisoglu (10.1016/j.patcog.2019.04.014_bib0060) 2011; 32
Tou (10.1016/j.patcog.2019.04.014_bib0025) 1974
Rezaei (10.1016/j.patcog.2019.04.014_bib0044) 2016; 28
Celebi (10.1016/j.patcog.2019.04.014_bib0071) 2012; 26
Kaukoranta (10.1016/j.patcog.2019.04.014_bib0089) 2000; 9
Peña (10.1016/j.patcog.2019.04.014_bib0019) 1999; 20
Gourgaris (10.1016/j.patcog.2019.04.014_bib0077) 2015
Cleju (10.1016/j.patcog.2019.04.014_bib0074) 2005; vol. 3540
Xie (10.1016/j.patcog.2019.04.014_bib0084) 2018; 142
MacQueen (10.1016/j.patcog.2019.04.014_bib0002) 1967; 1
Gonzalez (10.1016/j.patcog.2019.04.014_bib0054) 1985; 38
Likas (10.1016/j.patcog.2019.04.014_bib0028) 2003; 36
Al-Daoud (10.1016/j.patcog.2019.04.014_bib0065) 2005
Sieranoja (10.1016/j.patcog.2019.04.014_bib0072) 2018
Hartigan (10.1016/j.patcog.2019.04.014_bib0062) 1979; 28
Boley (10.1016/j.patcog.2019.04.014_bib0070) 1998; 2
Rodriquez (10.1016/j.patcog.2019.04.014_bib0078) 2014; 344
Gingles (10.1016/j.patcog.2019.04.014_bib0061) 2014
Yu (10.1016/j.patcog.2019.04.014_bib0087) 2018; 68
Astrahan (10.1016/j.patcog.2019.04.014_bib0063) 1970
Cao (10.1016/j.patcog.2019.04.014_bib0064) 2009; 58
Linde (10.1016/j.patcog.2019.04.014_bib0085) 1980; 28
Fränti (10.1016/j.patcog.2019.04.014_bib0046) 1997; 36
Frandsen (10.1016/j.patcog.2019.04.014_bib0036) 2015; 15
10.1016/j.patcog.2019.04.014_bib0018
Bradley (10.1016/j.patcog.2019.04.014_bib0031) 1998
Lemke (10.1016/j.patcog.2019.04.014_bib0049) 2018; 11
Kaufman (10.1016/j.patcog.2019.04.014_bib0023) 1990
Huang (10.1016/j.patcog.2019.04.014_bib0069) 1993; 2
Curti (10.1016/j.patcog.2019.04.014_bib0083) 2018; 462
Fränti (10.1016/j.patcog.2019.04.014_bib0045) 2014; 47
Jain (10.1016/j.patcog.2019.04.014_bib0008) 2010; 31
Krishna (10.1016/j.patcog.2019.04.014_bib0009) 1999; 29
Fränti (10.1016/j.patcog.2019.04.014_bib0030) 2000; 9
Ra (10.1016/j.patcog.2019.04.014_bib0073) 1993; 40
Duda (10.1016/j.patcog.2019.04.014_bib0032) 1973
Luxburg (10.1016/j.patcog.2019.04.014_bib0050) 2010; 2
Hämäläinen (10.1016/j.patcog.2019.04.014_bib0056) 2016
Gonzalez (10.1016/j.patcog.2019.04.014_bib0026) 1985; 38
Kinnunen (10.1016/j.patcog.2019.04.014_bib0016) 2011; 32
Steinley (10.1016/j.patcog.2019.04.014_bib0021) 2007; 24
Wu (10.1016/j.patcog.2019.04.014_bib0068) 1991
10.1016/j.patcog.2019.04.014_bib0024
Fränti (10.1016/j.patcog.2019.04.014_bib0047) 2006; 28
Arthur (10.1016/j.patcog.2019.04.014_bib0059) 2007
Katsavounidis (10.1016/j.patcog.2019.04.014_bib0057) 1994; 1
Yedla (10.1016/j.patcog.2019.04.014_bib0066) 2010; 1
Bahmani (10.1016/j.patcog.2019.04.014_bib0088) 2012; 5
Huang (10.1016/j.patcog.2019.04.014_bib0038) 2019; 86
Wu (10.1016/j.patcog.2019.04.014_bib0075) 1991; 12
Lloyd (10.1016/j.patcog.2019.04.014_bib0003) 1982; 28
Huang (10.1016/j.patcog.2019.04.014_bib0007) 2018; 37
Melnykov (10.1016/j.patcog.2019.04.014_bib0042) 2014; 84
Mitra (10.1016/j.patcog.2019.04.014_bib0079) 2002; 24
Karmitsa (10.1016/j.patcog.2019.04.014_bib0034) 2018; 83
Ward (10.1016/j.patcog.2019.04.014_bib0027) 1963; 58
Fränti (10.1016/j.patcog.2019.04.014_bib0082) 2018
Cao (10.1016/j.patcog.2019.04.014_bib0058) 2009; 36
Steinley (10.1016/j.patcog.2019.04.014_bib0029) 2003; 8
Bicego (10.1016/j.patcog.2019.04.014_bib0033) 2018; 83
Fränti (10.1016/j.patcog.2019.04.014_bib0039) 2018; 48
Dong (10.1016/j.patcog.2019.04.014_bib0081) 2011
Márquez (10.1016/j.patcog.2019.04.014_bib0037) 2018; 82
Celebi (10.1016/j.patcog.2019.04.014_bib0022) 2013; 40
Zhu (10.1016/j.patcog.2019.04.014_bib0035) 2018; 83
Liang (10.1016/j.patcog.2019.04.014_bib0041) 2012; 20
Chiang (10.1016/j.patcog.2019.04.014_bib0055) 2010; 27
Steinbach (10.1016/j.patcog.2019.04.014_bib0086) 2000; vol. 400
Capo (10.1016/j.patcog.2019.04.014_bib0006) 2017; 117
He (10.1016/j.patcog.2019.04.014_bib0020) 2004
Norušis (10.1016/j.patcog.2019.04.014_bib0053) 2011
Redmond (10.1016/j.patcog.2019.04.014_bib0051) 2007; 28
Su (10.1016/j.patcog.2019.04.014_bib0067) 2007; 11
Fränti (10.1016/j.patcog.2019.04.014_bib0011) 2000; 3
Zhao (10.1016/j.patcog.2019.04.014_bib0017) 2014; 92
Al-Daoud (10.1016/j.patcog.2019.04.014_bib0076) 1996; 17
Fränti (10.1016/j.patcog.2019.04.014_bib0012) 2018; 5
Ball (10.1016/j.patcog.2019.04.014_bib0048) 1967; 12
Bai (10.1016/j.patcog.2019.04.014_bib0015) 2017; 71
Wang (10.1016/j.patcog.2019.04.014_bib0004) 2014; 47
Fränti (10.1016/j.patcog.2019.04.014_bib0010) 2000; 21
References_xml – volume: 9
  start-page: 773
  year: 2000
  end-page: 777
  ident: bib0030
  article-title: Fast and memory efficient implementation of the exact PNN
  publication-title: IEEE Trans. Image Process.
– volume: 32
  start-page: 1701
  year: 2011
  end-page: 1705
  ident: bib0060
  article-title: A new algorithm for initial cluster centers in k-means algorithm
  publication-title: Pattern Recognit. Lett.
– start-page: 680
  year: June 2018
  end-page: 689
  ident: bib0072
  article-title: Random projection for k-means clustering
  publication-title: Int. Conf. Artificial Intelligence and Soft Computing (ICAISC)
– volume: 11
  start-page: 19
  year: 2018
  ident: bib0049
  article-title: Common nearest neighbor clustering: a benchmark
  publication-title: Algorithms
– start-page: 392
  year: 1991
  end-page: 401
  ident: bib0068
  article-title: A better tree-structured vector quantizer
  publication-title: IEEE Data Compression Conference
– year: 1970
  ident: bib0063
  article-title: Speech Analysis by Clustering, Or the Hyperphome Method, Stanford Artificial Intelligence Project Memorandum AIM-124
– volume: 28
  start-page: 1875
  year: 2006
  end-page: 1881
  ident: bib0047
  article-title: Fast agglomerative clustering using a k-nearest neighbor graph
  publication-title: IEEE Trans. Pattern Anal. Mach. Intel.
– reference: M. Rezaei and P. Fränti Can the number of clusters be solved by external index? manuscript. (submitted)
– volume: 15
  year: 2015
  ident: bib0036
  article-title: Automatic selection of partitioning schemes for phylogenetic analyses using iterative k-means clustering of site rates
  publication-title: BMC Evol. Biol.
– year: 2011
  ident: bib0053
  article-title: IBM SPSS Statistics 19 Guide to Data Analysis
– volume: 58
  start-page: 474
  year: 2009
  end-page: 483
  ident: bib0064
  article-title: An initialization method for the k-means algorithm using neighborhood model
  publication-title: Comput. Math. Appl.
– volume: 11
  start-page: 319
  year: 2007
  end-page: 338
  ident: bib0067
  article-title: In search of deterministic methods for initializing k-means and gaussian mixture clustering
  publication-title: Intel. Data Anal.
– year: 2015
  ident: bib0077
  article-title: A Density Based K-Means Initialization Scheme
– volume: 1
  start-page: 281
  year: 1967
  end-page: 297
  ident: bib0002
  article-title: Some methods for classification and analysis of multivariate observations
  publication-title: Berkeley Symposium on Mathematical Statistics and Probability
– year: January 2007
  ident: bib0059
  article-title: K-means++: the advantages of careful seeding
  publication-title: ACM-SIAM Symp. on Discrete Algorithms (SODA’07)
– volume: 2
  start-page: 325
  year: 1998
  end-page: 344
  ident: bib0070
  article-title: Principal direction divisive partitioning
  publication-title: Data Min. Knowl. Discov.
– volume: 29
  start-page: 433
  year: 1999
  end-page: 439
  ident: bib0009
  article-title: Genetic k-means algorithm
  publication-title: IEEE Trans. Syst. Man Cybern. Part B
– volume: 23
  start-page: 1
  year: 2018
  end-page: 21
  ident: bib0080
  article-title: Constructing a high-dimensional kNN-graph using a Z-order curve
  publication-title: ACM J. Exp. Algorithmics
– volume: 21
  start-page: 61
  year: 2000
  end-page: 68
  ident: bib0010
  article-title: Genetic algorithm with deterministic crossover for vector quantization
  publication-title: Pattern Recognit. Lett.
– year: 2004
  ident: bib0020
  article-title: Initialization of Cluster Refinement Algorithms: a review and comparative study
  publication-title: IEEE Int. Joint Conf. Neural Netw.
– start-page: 907
  year: 2009
  end-page: 916
  ident: bib0014
  article-title: Fast approximate spectral clustering
  publication-title: ACM SIGKDD Int. Conf. Knowl. Discov. Data Min.
– volume: 17
  start-page: 451
  year: 1996
  end-page: 455
  ident: bib0076
  article-title: New methods for the initialisation of clusters
  publication-title: Pattern Recognit. Lett.
– reference: B. Thiesson, C. Meek, D.M. Chickering, and D. Heckerman, Learning mixtures of Bayesian networks, Technical Report MSR-TR-97-30 Cooper & Moral, 1997.
– volume: 8
  start-page: 294
  year: 2003
  end-page: 304
  ident: bib0029
  article-title: Local optima in k-means clustering: what you don't know may hurt you
  publication-title: Psychol. Methods
– volume: 12
  start-page: 153
  year: 1967
  end-page: 155
  ident: bib0048
  article-title: A clustering technique for summarizing multivariate data
  publication-title: Syst. Res. Behav. Sci.
– volume: 28
  start-page: 129
  year: 1982
  end-page: 137
  ident: bib0003
  article-title: Least squares quantization in PCM
  publication-title: IEEE Trans. Inf. Theory
– volume: 83
  start-page: 245
  year: 2018
  end-page: 259
  ident: bib0034
  article-title: Clustering in large data sets with the limited memory bundle method
  publication-title: Pattern Recognit.
– volume: 40
  start-page: 200
  year: 2013
  end-page: 210
  ident: bib0022
  article-title: A comparative study of efficient initialization methods for the k-means clustering algorithm
  publication-title: Expert Syst. Appl.
– volume: 5
  start-page: 622
  year: 2012
  end-page: 633
  ident: bib0088
  publication-title: Proc. VLDB Endow.
– volume: vol. 3540
  start-page: 872
  year: 2005
  end-page: 881
  ident: bib0074
  article-title: Clustering based on principal curve
  publication-title: Scandinavian Conf. On Image Analysis, LNCS
– volume: 28
  start-page: 84
  year: 1980
  end-page: 95
  ident: bib0085
  article-title: An algorithm for vector quantizer design
  publication-title: IEEE Trans. Commun.
– year: 1973
  ident: bib0032
  article-title: Pattern Classification and Scene Analysis
– volume: 47
  start-page: 1917
  year: 2014
  end-page: 1925
  ident: bib0004
  article-title: Robust level set image segmentation via a local correntropy-based k-means clustering
  publication-title: Pattern Recognit.
– volume: 61
  start-page: 1045
  year: 2015
  end-page: 1062
  ident: bib0005
  article-title: Randomized dimensionality reduction for k-means clustering
  publication-title: IEEE Trans. Inf. Theory
– volume: 1
  start-page: 99
  year: 1991
  end-page: 112
  ident: bib0052
  article-title: Efficient portable combined Tausworthe random number generators
  publication-title: ACM Trans. Model. Comput. Simul.
– volume: 36
  start-page: 451
  year: 2003
  end-page: 461
  ident: bib0028
  article-title: The global k-means clustering algorithm
  publication-title: Pattern Recognit.
– volume: 21
  start-page: 768
  year: 1965
  end-page: 780
  ident: bib0001
  article-title: Cluster analysis of multivariate data: efficiency vs. interpretability of classification
  publication-title: Biometrics
– volume: 37
  start-page: 285
  year: 2018
  end-page: 294
  ident: bib0007
  article-title: Development of a data-processing method based on Bayesian k-means clustering to discriminate aneugens and clastogens in a high-content micronucleus assay
  publication-title: Hum. Exp. Toxicol.
– start-page: 577
  year: 2011
  end-page: 586
  ident: bib0081
  article-title: Efficient k-nearest neighbor graph construction for generic similarity measures
  publication-title: Proceedings of the ACM International Conference on World wide web
– year: 1990
  ident: bib0023
  article-title: Finding Groups in data: An introduction to Cluster Analysis
– volume: 83
  start-page: 230
  year: 2018
  end-page: 244
  ident: bib0035
  article-title: Grouping points by shared subspaces for effective subspace clustering
  publication-title: Pattern Recognit.
– volume: 9
  start-page: 15
  year: 2013
  end-page: 24
  ident: bib0040
  article-title: The k-means clustering technique: general considerations and implementation in Mathematica
  publication-title: Tutor. Quant. Methods Psychol.
– volume: 5
  start-page: 1
  year: 2018
  end-page: 29
  ident: bib0012
  article-title: Efficiency of random swap clustering
  publication-title: J. Big Data
– volume: 36
  start-page: 3043
  year: 1997
  end-page: 3051
  ident: bib0046
  article-title: On the splitting method for VQ codebook generation
  publication-title: Opt. Eng.
– volume: 12
  start-page: 663
  year: 1991
  end-page: 673
  ident: bib0075
  article-title: Optimal quantization by matrix searching
  publication-title: J. Algorithms
– volume: 26
  year: 2012
  ident: bib0071
  article-title: Deterministic initialization of the k-means algorithm using hierarchical clustering
  publication-title: Int. J. Pattern Recognit Artif Intell.
– year: 1974
  ident: bib0025
  article-title: Pattern Recognition Principles
– start-page: 343
  year: June 2018
  end-page: 353
  ident: bib0082
  article-title: Dimensionally distributed density estimation
  publication-title: Int. Conf. Artificial Intelligence and Soft Computing (ICAISC)
– start-page: 74
  year: 2005
  end-page: 76
  ident: bib0065
  article-title: A new algorithm for cluster initialization
  publication-title: World Enformatika Conference
– volume: 82
  start-page: 16
  year: 2018
  end-page: 30
  ident: bib0037
  article-title: A novel and simple strategy for evolving prototype based clustering
  publication-title: Pattern Recognit.
– volume: 1
  start-page: 121
  year: 2010
  end-page: 125
  ident: bib0066
  article-title: Enhancing k-means clustering algorithm with improved initial center
  publication-title: Int. J. Comput. Sci. Inf. Technol.
– volume: 40
  start-page: 576
  year: 1993
  end-page: 579
  ident: bib0073
  article-title: A fast mean-distance-ordered partial codebook search algorithm for image vector quantization
  publication-title: IEEE Trans. Circuits Syst.
– volume: 1
  start-page: 144
  year: 1994
  end-page: 146
  ident: bib0057
  article-title: A new initialization technique for generalized Lloyd iteration
  publication-title: IEEE Signal Process Lett.
– year: May 2014
  ident: bib0061
  article-title: Histogram-based method for effective initialization of the k-means clustering algorithm
  publication-title: Florida Artificial Intelligence Research Society Conference
– volume: vol. 400
  start-page: 525
  year: 2000
  end-page: 526
  ident: bib0086
  article-title: A comparison of document clustering techniques
  publication-title: KDD workshop on text mining
– year: 2016
  ident: bib0056
  article-title: Initialization of big data clustering using distributionally balanced folding, Proceedings of the European Symposium on Artificial Neural Networks
  publication-title: Comput. Intel. Mach. Learn.-ESANN
– volume: 83
  start-page: 52
  year: 2018
  end-page: 63
  ident: bib0033
  article-title: Clustering via binary embedding
  publication-title: Pattern Recognit.
– volume: 24
  start-page: 99
  year: 2007
  end-page: 121
  ident: bib0021
  article-title: Initializing k-means batch clustering: a critical evaluation of several techniques
  publication-title: J. Classification
– volume: 47
  start-page: 3034
  year: 2014
  end-page: 3045
  ident: bib0045
  article-title: Centroid index: cluster level similarity measure
  publication-title: Pattern Recognit.
– volume: 36
  start-page: 10223
  year: 2009
  end-page: 10228
  ident: bib0058
  article-title: A new initialization method for categorical data clustering
  publication-title: Expert Syst. Appl.
– volume: 32
  start-page: 10839
  year: 2011
  end-page: 10846
  ident: bib0013
  article-title: Particle swarm optimization based K-means clustering approach for security assessment in power systems
  publication-title: Expert Syst. Appl.
– volume: 68
  start-page: 747
  year: 2018
  end-page: 755
  ident: bib0087
  article-title: Two improved k-means algorithms
  publication-title: Appl. Soft Comput.
– volume: 9
  start-page: 1337
  year: 2000
  end-page: 1342
  ident: bib0089
  article-title: A fast exact GLA based on code vector activity detection
  publication-title: IEEE Trans. Image Process.
– volume: 38
  start-page: 293
  year: 1985
  end-page: 306
  ident: bib0054
  article-title: Clustering to minimize the maximum intercluster distance
  publication-title: Theor. Comput. Sci.
– volume: 28
  start-page: 2173
  year: 2016
  end-page: 2186
  ident: bib0044
  article-title: Set-matching methods for external cluster validity
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 2
  start-page: 108
  year: 1993
  end-page: 112
  ident: bib0069
  article-title: A comparison of several vector quantization codebook generation approaches
  publication-title: IEEE Trans. Image Process.
– volume: 20
  start-page: 1027
  year: 1999
  end-page: 1040
  ident: bib0019
  article-title: An empirical comparison of four initialization methods for the k-means algorithm
  publication-title: Pattern Recognit. Lett.
– volume: 20
  start-page: 728
  year: 2012
  end-page: 745
  ident: bib0041
  article-title: The k-means-type algorithms versus imbalanced data distributions
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 117
  start-page: 56
  year: 2017
  end-page: 69
  ident: bib0006
  article-title: An efficient approximation to the k-means clustering for massive data
  publication-title: Knowl.-Based Syst.
– volume: 38
  start-page: 293
  year: 1985
  end-page: 306
  ident: bib0026
  article-title: Clustering to minimize the maximum intercluster distance
  publication-title: Theor. Comput. Sci.
– volume: 344
  start-page: 1492
  year: 2014
  end-page: 1496
  ident: bib0078
  article-title: Clustering by fast search and find of density peaks
  publication-title: Science
– volume: 24
  start-page: 734
  year: 2002
  end-page: 747
  ident: bib0079
  article-title: Density-based multiscale data condensation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intel.
– volume: 2
  start-page: 235
  year: 2010
  end-page: 274
  ident: bib0050
  article-title: Clustering stability: an overview
  publication-title: Found. Trends Mach. Learn.
– start-page: 91
  year: 1998
  end-page: 99
  ident: bib0031
  article-title: Refining initial points for k-means clustering
  publication-title: International Conference on Machine Learning
– volume: 58
  start-page: 236
  year: 1963
  end-page: 244
  ident: bib0027
  article-title: Hierarchical grouping to optimize an objective function
  publication-title: J. Am. Stat. Assoc.
– volume: 48
  start-page: 4743
  year: 2018
  end-page: 4759
  ident: bib0039
  article-title: K-means properties on six clustering benchmark datasets
  publication-title: Appl. Intel.
– volume: 84
  start-page: 88
  year: 2014
  end-page: 95
  ident: bib0042
  article-title: On k-means algorithm with the use of Mahalanobis distances
  publication-title: Stat. Probab. Lett.
– year: 2015
  ident: bib0043
  article-title: Recent developments in model-based clustering with applications
  publication-title: Partitional Clustering Algorithms
– volume: 3
  start-page: 358
  year: 2000
  end-page: 369
  ident: bib0011
  article-title: Randomized local search algorithm for the clustering problem
  publication-title: Pattern Anal. Appl.
– volume: 92
  start-page: 77
  year: 2014
  end-page: 89
  ident: bib0017
  article-title: WB-index: a sum-of-squares based index for cluster validity
  publication-title: Data Knowl. Eng.
– volume: 27
  start-page: 3
  year: 2010
  end-page: 40
  ident: bib0055
  article-title: Intelligent choice of the number of clusters in k-means clustering: an experimental study with different cluster spreads
  publication-title: J. Classification
– volume: 462
  start-page: 182
  year: 2018
  end-page: 203
  ident: bib0083
  article-title: FAUM: fast Autonomous Unsupervised Multidimensional classification
  publication-title: Inf. Sci.
– volume: 32
  start-page: 1604
  year: 2011
  end-page: 1617
  ident: bib0016
  article-title: Comparison of clustering methods: a case study of text-independent speaker modeling
  publication-title: Pattern Recognit. Lett.
– volume: 28
  start-page: 965
  year: 2007
  end-page: 973
  ident: bib0051
  article-title: A method for initialising the K-means clustering algorithm using kd-trees
  publication-title: Pattern Recognit. Lett.
– volume: 142
  start-page: 68
  year: 2018
  end-page: 70
  ident: bib0084
  article-title: Density core-based clustering algorithm with dynamic scanning radius
  publication-title: Knowl.-Based Syst.
– volume: 31
  start-page: 651
  year: 2010
  end-page: 666
  ident: bib0008
  article-title: Data clustering: 50 years beyond K-means
  publication-title: Pattern Recognit. Lett.
– volume: 86
  start-page: 344
  year: 2019
  end-page: 353
  ident: bib0038
  article-title: Multi-view intact space clustering
  publication-title: Pattern Recognit.
– volume: 28
  start-page: 100
  year: 1979
  end-page: 108
  ident: bib0062
  article-title: Algorithm AS 136: a k-means clustering algorithm
  publication-title: J. R. Stat. Soc. C
– volume: 71
  start-page: 375
  year: 2017
  end-page: 386
  ident: bib0015
  article-title: Fast density clustering strategies based on the k-means algorithm
  publication-title: Pattern Recognit.
– start-page: 91
  year: 1998
  ident: 10.1016/j.patcog.2019.04.014_bib0031
  article-title: Refining initial points for k-means clustering
– volume: 2
  start-page: 235
  issue: 3
  year: 2010
  ident: 10.1016/j.patcog.2019.04.014_bib0050
  article-title: Clustering stability: an overview
  publication-title: Found. Trends Mach. Learn.
– volume: 11
  start-page: 319
  issue: 4
  year: 2007
  ident: 10.1016/j.patcog.2019.04.014_bib0067
  article-title: In search of deterministic methods for initializing k-means and gaussian mixture clustering
  publication-title: Intel. Data Anal.
  doi: 10.3233/IDA-2007-11402
– year: 2015
  ident: 10.1016/j.patcog.2019.04.014_bib0077
– volume: 29
  start-page: 433
  issue: 3
  year: 1999
  ident: 10.1016/j.patcog.2019.04.014_bib0009
  article-title: Genetic k-means algorithm
  publication-title: IEEE Trans. Syst. Man Cybern. Part B
  doi: 10.1109/3477.764879
– volume: 32
  start-page: 10839
  issue: 9
  year: 2011
  ident: 10.1016/j.patcog.2019.04.014_bib0013
  article-title: Particle swarm optimization based K-means clustering approach for security assessment in power systems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.02.086
– volume: 3
  start-page: 358
  issue: 4
  year: 2000
  ident: 10.1016/j.patcog.2019.04.014_bib0011
  article-title: Randomized local search algorithm for the clustering problem
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s100440070007
– year: 1970
  ident: 10.1016/j.patcog.2019.04.014_bib0063
– volume: 21
  start-page: 61
  issue: 1
  year: 2000
  ident: 10.1016/j.patcog.2019.04.014_bib0010
  article-title: Genetic algorithm with deterministic crossover for vector quantization
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/S0167-8655(99)00133-6
– volume: 117
  start-page: 56
  year: 2017
  ident: 10.1016/j.patcog.2019.04.014_bib0006
  article-title: An efficient approximation to the k-means clustering for massive data
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2016.06.031
– start-page: 907
  year: 2009
  ident: 10.1016/j.patcog.2019.04.014_bib0014
  article-title: Fast approximate spectral clustering
  publication-title: ACM SIGKDD Int. Conf. Knowl. Discov. Data Min.
  doi: 10.1145/1557019.1557118
– volume: 344
  start-page: 1492
  issue: 6191
  year: 2014
  ident: 10.1016/j.patcog.2019.04.014_bib0078
  article-title: Clustering by fast search and find of density peaks
  publication-title: Science
  doi: 10.1126/science.1242072
– volume: vol. 400
  start-page: 525
  year: 2000
  ident: 10.1016/j.patcog.2019.04.014_bib0086
  article-title: A comparison of document clustering techniques
– volume: 20
  start-page: 1027
  issue: 10, October
  year: 1999
  ident: 10.1016/j.patcog.2019.04.014_bib0019
  article-title: An empirical comparison of four initialization methods for the k-means algorithm
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/S0167-8655(99)00069-0
– volume: 9
  start-page: 15
  issue: 1
  year: 2013
  ident: 10.1016/j.patcog.2019.04.014_bib0040
  article-title: The k-means clustering technique: general considerations and implementation in Mathematica
  publication-title: Tutor. Quant. Methods Psychol.
  doi: 10.20982/tqmp.09.1.p015
– volume: 1
  start-page: 281
  year: 1967
  ident: 10.1016/j.patcog.2019.04.014_bib0002
  article-title: Some methods for classification and analysis of multivariate observations
– volume: 36
  start-page: 10223
  issue: 7
  year: 2009
  ident: 10.1016/j.patcog.2019.04.014_bib0058
  article-title: A new initialization method for categorical data clustering
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.01.060
– volume: 84
  start-page: 88
  issue: January
  year: 2014
  ident: 10.1016/j.patcog.2019.04.014_bib0042
  article-title: On k-means algorithm with the use of Mahalanobis distances
  publication-title: Stat. Probab. Lett.
  doi: 10.1016/j.spl.2013.09.026
– volume: 5
  start-page: 1
  issue: 13
  year: 2018
  ident: 10.1016/j.patcog.2019.04.014_bib0012
  article-title: Efficiency of random swap clustering
  publication-title: J. Big Data
– start-page: 680
  year: 2018
  ident: 10.1016/j.patcog.2019.04.014_bib0072
  article-title: Random projection for k-means clustering
– volume: 2
  start-page: 108
  issue: 1
  year: 1993
  ident: 10.1016/j.patcog.2019.04.014_bib0069
  article-title: A comparison of several vector quantization codebook generation approaches
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.210871
– volume: 47
  start-page: 3034
  issue: 9
  year: 2014
  ident: 10.1016/j.patcog.2019.04.014_bib0045
  article-title: Centroid index: cluster level similarity measure
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2014.03.017
– volume: 142
  start-page: 68
  year: 2018
  ident: 10.1016/j.patcog.2019.04.014_bib0084
  article-title: Density core-based clustering algorithm with dynamic scanning radius
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.11.025
– volume: 462
  start-page: 182
  year: 2018
  ident: 10.1016/j.patcog.2019.04.014_bib0083
  article-title: FAUM: fast Autonomous Unsupervised Multidimensional classification
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.06.008
– volume: 21
  start-page: 768
  year: 1965
  ident: 10.1016/j.patcog.2019.04.014_bib0001
  article-title: Cluster analysis of multivariate data: efficiency vs. interpretability of classification
  publication-title: Biometrics
– volume: 40
  start-page: 200
  year: 2013
  ident: 10.1016/j.patcog.2019.04.014_bib0022
  article-title: A comparative study of efficient initialization methods for the k-means clustering algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.07.021
– volume: 31
  start-page: 651
  year: 2010
  ident: 10.1016/j.patcog.2019.04.014_bib0008
  article-title: Data clustering: 50 years beyond K-means
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2009.09.011
– volume: 12
  start-page: 663
  issue: 4
  year: 1991
  ident: 10.1016/j.patcog.2019.04.014_bib0075
  article-title: Optimal quantization by matrix searching
  publication-title: J. Algorithms
  doi: 10.1016/0196-6774(91)90039-2
– volume: 28
  start-page: 965
  issue: 8
  year: 2007
  ident: 10.1016/j.patcog.2019.04.014_bib0051
  article-title: A method for initialising the K-means clustering algorithm using kd-trees
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2007.01.001
– volume: 8
  start-page: 294
  year: 2003
  ident: 10.1016/j.patcog.2019.04.014_bib0029
  article-title: Local optima in k-means clustering: what you don't know may hurt you
  publication-title: Psychol. Methods
  doi: 10.1037/1082-989X.8.3.294
– year: 2004
  ident: 10.1016/j.patcog.2019.04.014_bib0020
  article-title: Initialization of Cluster Refinement Algorithms: a review and comparative study
  publication-title: IEEE Int. Joint Conf. Neural Netw.
– start-page: 577
  year: 2011
  ident: 10.1016/j.patcog.2019.04.014_bib0081
  article-title: Efficient k-nearest neighbor graph construction for generic similarity measures
– ident: 10.1016/j.patcog.2019.04.014_bib0024
– volume: 71
  start-page: 375
  year: 2017
  ident: 10.1016/j.patcog.2019.04.014_bib0015
  article-title: Fast density clustering strategies based on the k-means algorithm
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.06.023
– volume: 9
  start-page: 773
  issue: 5, May
  year: 2000
  ident: 10.1016/j.patcog.2019.04.014_bib0030
  article-title: Fast and memory efficient implementation of the exact PNN
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.841516
– volume: 38
  start-page: 293
  issue: 2–3
  year: 1985
  ident: 10.1016/j.patcog.2019.04.014_bib0026
  article-title: Clustering to minimize the maximum intercluster distance
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/0304-3975(85)90224-5
– volume: 9
  start-page: 1337
  issue: 8, August
  year: 2000
  ident: 10.1016/j.patcog.2019.04.014_bib0089
  article-title: A fast exact GLA based on code vector activity detection
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.855429
– volume: 5
  start-page: 622
  issue: 7
  year: 2012
  ident: 10.1016/j.patcog.2019.04.014_bib0088
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/2180912.2180915
– volume: 36
  start-page: 3043
  issue: 11, November
  year: 1997
  ident: 10.1016/j.patcog.2019.04.014_bib0046
  article-title: On the splitting method for VQ codebook generation
  publication-title: Opt. Eng.
  doi: 10.1117/1.601531
– volume: 28
  start-page: 84
  issue: 1, January
  year: 1980
  ident: 10.1016/j.patcog.2019.04.014_bib0085
  article-title: An algorithm for vector quantizer design
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOM.1980.1094577
– year: 2015
  ident: 10.1016/j.patcog.2019.04.014_bib0043
  article-title: Recent developments in model-based clustering with applications
– volume: 1
  start-page: 144
  issue: 10
  year: 1994
  ident: 10.1016/j.patcog.2019.04.014_bib0057
  article-title: A new initialization technique for generalized Lloyd iteration
  publication-title: IEEE Signal Process Lett.
  doi: 10.1109/97.329844
– volume: 28
  start-page: 129
  issue: 2
  year: 1982
  ident: 10.1016/j.patcog.2019.04.014_bib0003
  article-title: Least squares quantization in PCM
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1982.1056489
– start-page: 74
  year: 2005
  ident: 10.1016/j.patcog.2019.04.014_bib0065
  article-title: A new algorithm for cluster initialization
– start-page: 392
  year: 1991
  ident: 10.1016/j.patcog.2019.04.014_bib0068
  article-title: A better tree-structured vector quantizer
– volume: 68
  start-page: 747
  year: 2018
  ident: 10.1016/j.patcog.2019.04.014_bib0087
  article-title: Two improved k-means algorithms
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.08.032
– volume: 11
  start-page: 19
  issue: 2
  year: 2018
  ident: 10.1016/j.patcog.2019.04.014_bib0049
  article-title: Common nearest neighbor clustering: a benchmark
  publication-title: Algorithms
  doi: 10.3390/a11020019
– volume: 32
  start-page: 1701
  issue: 14
  year: 2011
  ident: 10.1016/j.patcog.2019.04.014_bib0060
  article-title: A new algorithm for initial cluster centers in k-means algorithm
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2011.07.011
– volume: 58
  start-page: 474
  year: 2009
  ident: 10.1016/j.patcog.2019.04.014_bib0064
  article-title: An initialization method for the k-means algorithm using neighborhood model
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2009.04.017
– year: 1990
  ident: 10.1016/j.patcog.2019.04.014_bib0023
– volume: 83
  start-page: 245
  year: 2018
  ident: 10.1016/j.patcog.2019.04.014_bib0034
  article-title: Clustering in large data sets with the limited memory bundle method
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2018.05.028
– volume: 48
  start-page: 4743
  issue: 12
  year: 2018
  ident: 10.1016/j.patcog.2019.04.014_bib0039
  article-title: K-means properties on six clustering benchmark datasets
  publication-title: Appl. Intel.
  doi: 10.1007/s10489-018-1238-7
– year: 2007
  ident: 10.1016/j.patcog.2019.04.014_bib0059
  article-title: K-means++: the advantages of careful seeding
– year: 1974
  ident: 10.1016/j.patcog.2019.04.014_bib0025
– year: 2011
  ident: 10.1016/j.patcog.2019.04.014_bib0053
– volume: 1
  start-page: 121
  issue: 2
  year: 2010
  ident: 10.1016/j.patcog.2019.04.014_bib0066
  article-title: Enhancing k-means clustering algorithm with improved initial center
  publication-title: Int. J. Comput. Sci. Inf. Technol.
– volume: 61
  start-page: 1045
  issue: 2, February
  year: 2015
  ident: 10.1016/j.patcog.2019.04.014_bib0005
  article-title: Randomized dimensionality reduction for k-means clustering
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2014.2375327
– volume: 28
  start-page: 2173
  issue: 8, August
  year: 2016
  ident: 10.1016/j.patcog.2019.04.014_bib0044
  article-title: Set-matching methods for external cluster validity
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2016.2551240
– volume: 37
  start-page: 285
  issue: 3
  year: 2018
  ident: 10.1016/j.patcog.2019.04.014_bib0007
  article-title: Development of a data-processing method based on Bayesian k-means clustering to discriminate aneugens and clastogens in a high-content micronucleus assay
  publication-title: Hum. Exp. Toxicol.
  doi: 10.1177/0960327117695635
– volume: 24
  start-page: 99
  year: 2007
  ident: 10.1016/j.patcog.2019.04.014_bib0021
  article-title: Initializing k-means batch clustering: a critical evaluation of several techniques
  publication-title: J. Classification
  doi: 10.1007/s00357-007-0003-0
– ident: 10.1016/j.patcog.2019.04.014_bib0018
– volume: 92
  start-page: 77
  issue: July
  year: 2014
  ident: 10.1016/j.patcog.2019.04.014_bib0017
  article-title: WB-index: a sum-of-squares based index for cluster validity
  publication-title: Data Knowl. Eng.
  doi: 10.1016/j.datak.2014.07.008
– volume: 32
  start-page: 1604
  issue: 13, October
  year: 2011
  ident: 10.1016/j.patcog.2019.04.014_bib0016
  article-title: Comparison of clustering methods: a case study of text-independent speaker modeling
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2011.06.023
– volume: 36
  start-page: 451
  year: 2003
  ident: 10.1016/j.patcog.2019.04.014_bib0028
  article-title: The global k-means clustering algorithm
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(02)00060-2
– volume: 28
  start-page: 1875
  issue: 11, November
  year: 2006
  ident: 10.1016/j.patcog.2019.04.014_bib0047
  article-title: Fast agglomerative clustering using a k-nearest neighbor graph
  publication-title: IEEE Trans. Pattern Anal. Mach. Intel.
  doi: 10.1109/TPAMI.2006.227
– volume: 47
  start-page: 1917
  year: 2014
  ident: 10.1016/j.patcog.2019.04.014_bib0004
  article-title: Robust level set image segmentation via a local correntropy-based k-means clustering
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2013.11.014
– volume: 38
  start-page: 293
  issue: 2–3
  year: 1985
  ident: 10.1016/j.patcog.2019.04.014_bib0054
  article-title: Clustering to minimize the maximum intercluster distance
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/0304-3975(85)90224-5
– volume: 82
  start-page: 16
  year: 2018
  ident: 10.1016/j.patcog.2019.04.014_bib0037
  article-title: A novel and simple strategy for evolving prototype based clustering
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2018.04.020
– volume: 17
  start-page: 451
  issue: 5
  year: 1996
  ident: 10.1016/j.patcog.2019.04.014_bib0076
  article-title: New methods for the initialisation of clusters
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/0167-8655(95)00119-0
– start-page: 343
  year: 2018
  ident: 10.1016/j.patcog.2019.04.014_bib0082
  article-title: Dimensionally distributed density estimation
– volume: 58
  start-page: 236
  issue: 301
  year: 1963
  ident: 10.1016/j.patcog.2019.04.014_bib0027
  article-title: Hierarchical grouping to optimize an objective function
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1963.10500845
– volume: 28
  start-page: 100
  issue: 1
  year: 1979
  ident: 10.1016/j.patcog.2019.04.014_bib0062
  article-title: Algorithm AS 136: a k-means clustering algorithm
  publication-title: J. R. Stat. Soc. C
– year: 1973
  ident: 10.1016/j.patcog.2019.04.014_bib0032
– volume: 86
  start-page: 344
  year: 2019
  ident: 10.1016/j.patcog.2019.04.014_bib0038
  article-title: Multi-view intact space clustering
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2018.09.016
– volume: 27
  start-page: 3
  year: 2010
  ident: 10.1016/j.patcog.2019.04.014_bib0055
  article-title: Intelligent choice of the number of clusters in k-means clustering: an experimental study with different cluster spreads
  publication-title: J. Classification
  doi: 10.1007/s00357-010-9049-5
– volume: 40
  start-page: 576
  issue: September
  year: 1993
  ident: 10.1016/j.patcog.2019.04.014_bib0073
  article-title: A fast mean-distance-ordered partial codebook search algorithm for image vector quantization
  publication-title: IEEE Trans. Circuits Syst.
  doi: 10.1109/82.257335
– volume: vol. 3540
  start-page: 872
  year: 2005
  ident: 10.1016/j.patcog.2019.04.014_bib0074
  article-title: Clustering based on principal curve
– volume: 23
  start-page: 1
  issue: 1, October
  year: 2018
  ident: 10.1016/j.patcog.2019.04.014_bib0080
  article-title: Constructing a high-dimensional kNN-graph using a Z-order curve
  publication-title: ACM J. Exp. Algorithmics
  doi: 10.1145/3274656
– volume: 1
  start-page: 99
  year: 1991
  ident: 10.1016/j.patcog.2019.04.014_bib0052
  article-title: Efficient portable combined Tausworthe random number generators
  publication-title: ACM Trans. Model. Comput. Simul.
  doi: 10.1145/116890.116892
– volume: 83
  start-page: 230
  year: 2018
  ident: 10.1016/j.patcog.2019.04.014_bib0035
  article-title: Grouping points by shared subspaces for effective subspace clustering
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2018.05.027
– volume: 83
  start-page: 52
  year: 2018
  ident: 10.1016/j.patcog.2019.04.014_bib0033
  article-title: Clustering via binary embedding
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2018.05.011
– volume: 12
  start-page: 153
  issue: 2, March
  year: 1967
  ident: 10.1016/j.patcog.2019.04.014_bib0048
  article-title: A clustering technique for summarizing multivariate data
  publication-title: Syst. Res. Behav. Sci.
  doi: 10.1002/bs.3830120210
– year: 2016
  ident: 10.1016/j.patcog.2019.04.014_bib0056
  article-title: Initialization of big data clustering using distributionally balanced folding, Proceedings of the European Symposium on Artificial Neural Networks
  publication-title: Comput. Intel. Mach. Learn.-ESANN
– volume: 26
  issue: 07
  year: 2012
  ident: 10.1016/j.patcog.2019.04.014_bib0071
  article-title: Deterministic initialization of the k-means algorithm using hierarchical clustering
  publication-title: Int. J. Pattern Recognit Artif Intell.
  doi: 10.1142/S0218001412500188
– volume: 20
  start-page: 728
  issue: 4, August
  year: 2012
  ident: 10.1016/j.patcog.2019.04.014_bib0041
  article-title: The k-means-type algorithms versus imbalanced data distributions
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2011.2182354
– volume: 2
  start-page: 325
  issue: 4
  year: 1998
  ident: 10.1016/j.patcog.2019.04.014_bib0070
  article-title: Principal direction divisive partitioning
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1023/A:1009740529316
– volume: 15
  issue: 13
  year: 2015
  ident: 10.1016/j.patcog.2019.04.014_bib0036
  article-title: Automatic selection of partitioning schemes for phylogenetic analyses using iterative k-means clustering of site rates
  publication-title: BMC Evol. Biol.
– volume: 24
  start-page: 734
  issue: 6
  year: 2002
  ident: 10.1016/j.patcog.2019.04.014_bib0079
  article-title: Density-based multiscale data condensation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intel.
  doi: 10.1109/TPAMI.2002.1008381
– year: 2014
  ident: 10.1016/j.patcog.2019.04.014_bib0061
  article-title: Histogram-based method for effective initialization of the k-means clustering algorithm
SSID ssj0017142
Score 2.6922736
Snippet •K-means clustering algorithm can be significantly improved by using a better initialization technique, and by repeating (re-starting) the algorithm.•When the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 95
SubjectTerms Clustering accuracy
Clustering algorithms
Initialization
K-means
Prototype selection
Title How much can k-means be improved by using better initialization and repeats?
URI https://dx.doi.org/10.1016/j.patcog.2019.04.014
Volume 93
WOSCitedRecordID wos000472697800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxELZa6KEX6FMF2sqH3iJXu2tv1ntCCIHaCqFIpSi3lV_bJiWbKA8E_56xx5sEqOhD6mW12sTZaObzeDz-ZoaQD6JbJ07kksHqqpkoDWfSWrjToH9uYEsUeh2enxSnp7LfL3uxoMIstBMomkZeXZWT_6pqeAbK9qmzf6Hu5Y_CA7gHpcMV1A7XP1K8bxI3Wpgfns_V-clGDhajjnY-H3I6vkSHcxEiBDqk8nQGnj-kLmJCJhLO3QRs9OwO668XanH6_JdIOlod4R_jibtokB3QU7PBMnYDC69qxkOFAejRYD3QkK6YVDH61WbArOhGwaLylPEsQSPl0IjKgjNwxG5Z2ZKvmUnsqxkX3BR51PdsOYYVhh8nsCaNv3sWXhmq0mLS6Z0q2V-xCKXPyeK-aJ58TDazIi_B0G0efD7qf1keLRWpwBLy8Y-3-ZSB9Hf_Xb_2V9Z8kLNnZCtuHugBKv05eeSaF2S7bcxBo51-SU4AA9RjgAIGaMQA1Y62GKD6mgYMUMQAvY0BChigEQP7r8i346Ozw08sts1gBrzpOavTXBtdW5hqWinO6zxzpqhFwpUP8lkHHxvYrRSlNUZLJ3VmjYKpbOva5Fbx12SjGTfuDaGlL86UdJ3KHRemzjR4606avGudEFqYHcJb4VQm1pT3rU0uqpY8OKxQpJUXaZWICkS6Q9hy1ARrqvzm-0Ur9yr6hejvVQCVB0fu_vPIPfJ0NQfeko35dOHekSfmcj6YTd9HTN0AYQuKLw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+much+can+k-means+be+improved+by+using+better+initialization+and+repeats%3F&rft.jtitle=Pattern+recognition&rft.au=Fr%C3%A4nti%2C+Pasi&rft.au=Sieranoja%2C+Sami&rft.date=2019-09-01&rft.pub=Elsevier+Ltd&rft.issn=0031-3203&rft.eissn=1873-5142&rft.volume=93&rft.spage=95&rft.epage=112&rft_id=info:doi/10.1016%2Fj.patcog.2019.04.014&rft.externalDocID=S0031320319301608
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon