An Improved Frequent Directions Algorithm for Low-Rank Approximation via Block Krylov Iteration

Frequent directions (FDs), as a deterministic matrix sketching technique, have been proposed for tackling low-rank approximation problems. This method has a high degree of accuracy and practicality but experiences a lot of computational cost for large-scale data. Several recent works on the randomiz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems Jg. 35; H. 7; S. 9428 - 9442
Hauptverfasser: Wang, Chenhao, Yi, Qianxin, Liao, Xiuwu, Wang, Yao
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.07.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2162-237X, 2162-2388, 2162-2388
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!